DOI: http://dx.doi.org/10.18273/revint.v34n1-2016003
On a finite moment perturbation of linear
functionals and the inverse SzegŐ
transformation
EDINSON FUENTESa*, LUIS E. GARZAb
a Universidad Pedagógica y Tecnológica de Colombia, Escuela de Matemáticas y
Estadística, Tunja, Colombia.
b Universidad de Colima, Facultad de Ciencias, Colima, México.
Abstract. Given a sequence of moments {cn}n∈ℤ associated with an Hermitian linear functional L defined in the space of Laurent polynomials, we study a new functional LΩ which is a perturbationof L in such a way that a finite number of moments are perturbed. Necessary and sufficient conditions are given for the regularity of LΩ, and a connection formula between the corresponding families of orthogonal polynomials is obtained. On the other hand, assuming LΩ is positive definite, the perturbation is analyzed through the inverse SzegŐ transformation.
Keywords: Orthogonal polynomials on the unit circle, perturbation of moments,
inverse SzegŐ transformation.
MSC2010: 42C05, 33C45, 33D45, 33C47.
Sobre una perturbación finita de momentos de un
funcional lineal y la transformación inversa de SzegŐ
Resumen. Dada una sucesión de momentos {cn}n∈ℤ asociada a un funcional lineal hermitiano L definido en el espacio de los polinomios de Laurent, estudiamos un nuevo funcional LΩ que consiste en una perturbación de L de tal forma que se perturba un número finito de momentos de la sucesión. Se encuentran condiciones necesarias y suficientes para la regularidad de LΩ, y se obtiene una fórmula de conexión que relaciona las familias de polinomios ortogonales correspondientes. Por otro lado, suponiendo que LΩ es definido positivo, se analiza la perturbación mediante de la transformación inversa de SzegŐ.
Palabras clave: Polinomios ortogonales en la circunferencia unidad, perturbación de momentos, transformación de SzegŐ inversa.
Texto Completo disponible en PDF
Referencias
[1] Bueno M.I. and Marcellán F., "Polynomial perturbations of bilinear functionals and Hessenberg matrices", Linear Algebra Appl. 414 (2006), No. 1, 64-83.
[2] Castillo K., Garza L.E. and Marcellán F., "Linear spectral transformations, Hessenberg matrices and orthogonal polynomials", Rend. Circ. Mat. Palermo (2) Suppl. (2010), No. 82, 3-26.
[3] Castillo K., Garza L.E. and Marcellán F., "Perturbations on the subdiagonals of Toeplitz matrices", Linear Algebra Appl. 434 (2011), No. 6, 1563-1579.
[4] Castillo K. and Marcellán F., "Generators of rational spectral transformations for nontrivial C-functions", Math. Comp. 82 (2013), No. 282, 1057-1068.
[5] Fuentes E. and Garza L.E., "Analysis of perturbations of moments associated with orthogonality linear functionals through the SzegŐ transformation", Rev. Integr. Temas Mat. 33 (2015), No. 1, 61-82.
[6] Garza L., Hernández J. and Marcellán F., "Spectral transformations of measures supported on the unit circle and the SzegŐ transformation", Numer. Algorithms. 49 (2008), No. 1-4, 169-185., Springer, New York, 2007.
[7] Grenander U. and SzegŐ G., Toeplitz forms and their applications, Second ed., Chelsea Publishing Co., New York, 1984.
[8] Kreyszig E., Introductory functional analysis with applications, John Wiley & Sons Inc., New York, 1989.
[9] Peherstorfer F., "A special class of polynomials orthogonal on the circle including the associated polynomials", Constr. Approx. 12 (1996), No. 2, 161-185.
[10] Simon B., Orthogonal polynomials on the unit circle. Part 1 and 2, American Mathematical Society Colloquium Publications 54, American Mathematical Society, Providence, RI, 2005.
[11] SzegŐ G., Orthogonal polynomials, Fourth ed., American Mathematical Society Colloquium Publications 23, American Mathematical Society, Providence, RI, 1975.
[12] Zhedanov A., "Rational spectral transformations and orthogonal polynomials", J. Comput. Appl. Math. 85 (1997), No. 1, 67-86.
*Email: edinson.fuentes@uptc.edu.co
Received: 13 October 2015, Accepted: 03 February 2016.
To cite this article: E. Fuentes, L.E. Garza, On a finite moment perturbation of linear functionals and the
inverse SzegŐ transformation, Rev. Integr. Temas Mat. 34 (2016), No. 1, 39-58.