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Abstract. In this work, we give some conditions for the existence of perio-
dic orbits for a Susceptible-Infectious-Recovered (SIR) model with seasonal
saturated incidence functions and saturated treatment rate. We use Leray-
Schauder degree theory to prove the existence of periodic orbits.
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Oscilaciones en modelos SIR estacionales con
tratamiento saturado

Resumen. En este trabajo presentamos condiciones suficientes para la exis-
tencia de soluciones periédicas en modelos epidemiolégicos estacionales de
tipo SIR con funciones de incidencia y de tratamiento saturados. Utilizamos
la teoria de grado de Leray-Schauder para establecer la existencia de orbitas
periddicas en tales modelos.

Palabras clave: Grado de Leray-Schauder, modelo SIR, orbitas periddicas,
nimero reproductivo bésico.

Introduction

Based on the fact that many infectious diseases exhibit periodic fluctuations, such as
pertussis, rubeola, influenza, polio, chickenpox, mumps, rabies, etc., we consider a
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Susceptible-Infectious-Recovered (SIR) model with saturated and periodic incidence rate
and saturated treatment function

S = A—dS—p#)SI/(1+kI),
I' = BW)SI/(1+kI)—(d+e+u)l —~vI/(1+al™), (1)
R = pul+~I/(1+al™) —dR, n € NU{0},

where S, I and R are the fractions of the population representing susceptible, infective
and recovered individuals, respectively.

All of the parameters are positive constants. The natural death rate and birth rate are
assumed to be equal, and denoted by d, € is the disease-related death rate. It is assumed
that the infected population recovers at a rate of y and joins the recovered class. The
interactions between susceptible and infected individuals is modeled by the incidence
function B(¢t)SI/(1 + kI), with 8 a non constant function (several different incidence
rates of this type with 8 constant have been proposed by authors, for example: [2],[7]
and [11]). The use of a periodic incidence function can account for the variability of
diseases according to climate seasons, school calendars, etc.

We also consider a saturated treatment rate T'(I) = vI/(1 4+ o™) to describe the effect
of the infected individuals being delayed for treatment due to the inhibition effect from
the behavioral change of the susceptible individuals when their number increases or from
the crowding effect of the infective individuals; this class of treatment was considered in
[6],[8] and [12]. In the treatment function, « is a parameter to measure the extent of
the delaying treatment to the infected and « is the cure rate. The parameter n yields
different treatment strategies, so, if n = 0 the rate of treatment is constant, that is, each
infectious individual has an equal chance of being treated. When n = 1 the function 7'(1)
is a function of saturation; thus, when the treatment capacity of a community is limited,
then from certain value of I(t) the total treatment rate is almost constant. Now, if n > 1
the treatment T'(I) reaches a maximum at I* = ﬁ; thus, the treatment rate is
an(n—1)n
small at the beginning of the outbreak, after the treatment rate will be increased with
the improving of the treatment conditions, for example including effective medicines,
skillful techniques, etc., reaching a maximum. At last, from the critical value I* total
treatment rate begins to decrease. This type of treatment rates can model scenarios
where infected people accumulate critical supplies, or the number of workers health is
diminished because some are victims of the infection. That was certainly the case in the
influenza pandemic of 1918. Another scenario is that treatment centers could be filled or
lost, leaving a greater portion of non treated spreading the disease infected more easily,
etc.

2. Existence results

At any given time, ¢, the total population size N = S + I + R is variable with N’ =
A — dN — el. In the absence of disease, the population size N approaches the carrying
capacity A/d. The differential equation for N implies that solutions of (1) starting in
the positive orthant Ri either approach, enter, or remain in the subset of R? defined by

Y3 :={(S,[,R)|S>0,1>0,R>0,S+1+R<A/d}.
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Thus, it suffices to consider solutions in the invariant set 3. Moreover, since the third
equation is independent of the first two equations in system (1), it can be ignored, so we
can study the following reduced model:

S'=A—dS— B(t)SI/(1+kI),
{ . (2)

=pt)SI/(1+kl) — (d+e+pu)l —~I/(1+al™).
We restrict our attention to the region ¥5 := {(S,I) e R?: 0 < S,0 < I,S+ I < A/d}.

The existence of periodic orbits for (2) implies the existence of periodic solution for
system (1).

It is easy to see that the system (2) has an infection-free equilibrium state (So, Ip) =
(A/d,0).

The basic reproductive number R of model (2), i.e., the average number of secondary
cases produced by a single infective introduced into an entirely susceptible population is
given (see [9]), when § is constant, for the system (2); a direct calculation yields

BSo
Rop:=——.
0 d+e+p+y

Motivated by this, we define R for system (2) as follows:

BA/d

Ro = —"—,
T dtetutny

where 3 := fOT B(t)dt.
Now we state our main result

Theorem 2.1. If Ry > 1+ kA/d, then the system (2) admits a non-trivial periodic
solution.

Li and coworkers [6] studied the existence of periodic solutions of model (1) when n =1,
by using Mawhin’s continuation theorem [3]. The existence of periodic orbits of some
epidemiological models with A = d and k = v = 0 is analyzed in [4] and [5].

We carry out the proof of this theorem in two parts. First taking k = a = 0. We write

T
B(t) = B+ Bo(t), where / Bo(t)dt = 0.
0
For X € [0,1] we define the homotopy

S =A—dS — B\IS,
I'=B\IS — (d+ e+ p+),

where £y := 3 + A\Bo().
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To show the existence of a positive periodic solution, we shall use the Leray-Schauder
degree theory [1]. So, we need to reformulate the problem in a functional setting. We
consider the Banach spaces

Cl:={(51):S8,1€C(R,R),S{t+T)=S@t),I[t+T)=1It} 1=0,1.
Let L:C!' — CY and Ny : C° — C° be the operators given by
L(S,I):=(S"+dS, I+ (d+ e+ p)I),
and
NA(S, 1) := (A = BALS, BALS —I).
Since L is invertible we define

Fy(S, 1) := (S,I) — L™ o N5 (S, 1). (4)

Since C! is compactly embedded in C°, we can think of L~! as going from C" to C°,
therefore L= o N, : CY — C° is a compact operator. In a similar fashion, we can consider
F\ : C° — C° Thus, (4) is a functional reformulation of problem (3); in particular,
periodic solutions of (3) correspond to zeroes of F).

We consider the open sets D := {(S,1) €C°:0< S,0< I,S+1 < A/d} and
U:={(S,I)eD : [I(I)lij%S(t) <r(A/d)},

for a fixed 0 < r < 1. Note that we can adapt the results of the work developed in [5];
thus we get

Proposition 2.2. If Ry > 1, then there is at least one T-periodic orbit of (8) whose
components are positive.

In particular, we obtain that deg(Fy,U) # 0.

To analyze the more general case (2), we consider a second homotopy. For 7 € [0,1] we

define the homotopy
S'=A—dS—p@)SI/(1+ TkI), -
I'=3(t)SI/(1 +7kI) — (d+ e+ p)I —~I/(1 4+ Tad™).

To reformulate our problem in a functional context, we consider the operator Ny : C° —
CY given by

M)(S,I):=(A—BSI/(1+7kI), BST/(1 +TkI) —~I/(1 + Tad™)),

and we define

G-(S,I):=(S,I) — L' o M.(S,1I). (6)
As already discussed, we can consider G, : C° — C° Thus, (6) is a functional refor-
mulation of problem (5); in particular, periodic solutions of (5) correspond to zeroes of
G-.
Recall that the existence of a solution for G; in U via Leray-Schauder degree is guaranteed
if deg(Go,U) # 0 and G, is an admissible homotopy, i.e., 0 ¢ G, (9U),¥r € [0,1]. The
next result says that G, is admissible.
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Lemma 2.3. If Ry > 1+ kA/d and 0 < r < 1 is such that %0 < 155a7a < 1, then for
any T € [0,1] there are no solutions (S,I) of (5) on OU.

Proof. First note that (Sp,Ip) is the only solution of (5) on 9D for any 7 € [0,1]. If
(S,1) € dU, then (S,1) ¢ 9D, so

(S,I) € D and S(t) > r(A/d), Vt. (7)
The following inequality in D is valid:

~

N 1
(@ et )14 RAd) > (@4 et )+ T

} (1 + k). ®)

Multiplying by (1 + 7kI)/I and integrating the second equation in (5) on the interval
[0, 7], we have that

TI'(1+7kI) T v Y
/Ofcm/o ({(d+e+u)+m}(l+rkl)>dt—/o BSdt;

but fOT Mdt = 0 because [ is T-periodic; and using the inequalities (7) and (8)
one gets

17 —
(d+e+p+v)(1+EkA/d) > T / BSdt > r(A/d)p.
0
Now, from our hypothesis

r(A/d)

— 1

d+e+p+y>8

which is a contradiction. v

Proof of Theorem 2.1. First by Lemma 2.3 the homotopy (5) is admissible.

On the other hand, note that the initial system of our homotopy Gy is the same as the
ending system of the homotopy F in (3) . Thus, using the conclusions developed in [5]
and our Proposition 2.2 we conclude that the degree of the system where 7 = 0 in the
fixed domain U is nonzero, i.e., deg(Go,U) # 0.

Using the invariance of the Leray-Schauder degree under homotopy by Lemma 2.3, we
obtain that deg(G1,U) # 0.

Therefore the system (2) admits a non-trivial periodic solution, which proves Theorem
2.1. ]
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Example 2.4. In order to testify the validity of our results we consider an example whose
form is as equation (1); to model the transmission rate of this infection the term (B(t)
can be approximated by

B(t) = bo[1 + by cos(2m(t + a))],

where by is the baseline transmission rate, by is the relative seasonal forcing and a ac-
counts for the time when the transmission rate is mazimal [10]. This transmission rate
assumes that the period of transmission is one year. We take by = 60, b1 =0.16 and
a=0.15. We also set A=0.2, d=0.041, k = 1, u=0.01, ¢=0.001, v = 10, n = 10 and
a = 2 in system (1). We based some of these choices of parameters on the parameter
ranges developed in [10], for the city of Gambia.

Numerical simulation are shown in the next figure which exhibits an oscillatory behavior
for the susceptible and infected population according to the Theorem 2.1.

0.5¥ T T T
*  Susceptible
0.451 Infected i

0.4

e
ST

0.3 1

0.25

0.2

Scaled Population

0.15

0.1

0.05

0 2 4 6 8 10 12 14 16 18 20
Time (Years)

Figure 1. Existence of a periodic solution. The initial conditions are Sop =0.5, Ip=0.1 and Rp=0.0.
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