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Abstra
t. In this work, we give some 
onditions for the existen
e of perio-

di
 orbits for a Sus
eptible-Infe
tious-Re
overed (SIR) model with seasonal

saturated in
iden
e fun
tions and saturated treatment rate. We use Leray-

S
hauder degree theory to prove the existen
e of periodi
 orbits.
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Os
ila
iones en modelos SIR esta
ionales 
on

tratamiento saturado

Resumen. En este trabajo presentamos 
ondi
iones su�
ientes para la exis-

ten
ia de solu
iones periódi
as en modelos epidemiológi
os esta
ionales de

tipo SIR 
on fun
iones de in
iden
ia y de tratamiento saturados. Utilizamos

la teoría de grado de Leray-S
hauder para estable
er la existen
ia de órbitas

periódi
as en tales modelos.

Palabras 
lave: Grado de Leray-S
hauder, modelo SIR, órbitas periódi
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número reprodu
tivo bási
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1. Introdu
tion

Based on the fa
t that many infe
tious diseases exhibit periodi
 �u
tuations, su
h as

pertussis, rubeola, in�uenza, polio, 
hi
kenpox, mumps, rabies, et
., we 
onsider a
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Sus
eptible-Infe
tious-Re
overed (SIR) model with saturated and periodi
 in
iden
e rate

and saturated treatment fun
tion

S′ = Λ− dS − β(t)SI/(1 + kI),

I ′ = β(t)SI/(1 + kI)− (d+ ǫ+ µ)I − γI/(1 + αIn), (1)

R′ = µI + γI/(1 + αIn)− dR, n ∈ N ∪ {0},

where S, I and R are the fra
tions of the population representing sus
eptible, infe
tive

and re
overed individuals, respe
tively.

All of the parameters are positive 
onstants. The natural death rate and birth rate are

assumed to be equal, and denoted by d, ǫ is the disease-related death rate. It is assumed

that the infe
ted population re
overs at a rate of µ and joins the re
overed 
lass. The

intera
tions between sus
eptible and infe
ted individuals is modeled by the in
iden
e

fun
tion β(t)SI/(1 + kI), with β a non 
onstant fun
tion (several di�erent in
iden
e

rates of this type with β 
onstant have been proposed by authors, for example: [2℄, [7℄

and [11℄). The use of a periodi
 in
iden
e fun
tion 
an a

ount for the variability of

diseases a

ording to 
limate seasons, s
hool 
alendars, et
.

We also 
onsider a saturated treatment rate T (I) = γI/(1 + αIn) to des
ribe the e�e
t

of the infe
ted individuals being delayed for treatment due to the inhibition e�e
t from

the behavioral 
hange of the sus
eptible individuals when their number in
reases or from

the 
rowding e�e
t of the infe
tive individuals; this 
lass of treatment was 
onsidered in

[6℄, [8℄ and [12℄. In the treatment fun
tion, α is a parameter to measure the extent of

the delaying treatment to the infe
ted and γ is the 
ure rate. The parameter n yields

di�erent treatment strategies, so, if n = 0 the rate of treatment is 
onstant, that is, ea
h

infe
tious individual has an equal 
han
e of being treated. When n = 1 the fun
tion T (I)
is a fun
tion of saturation; thus, when the treatment 
apa
ity of a 
ommunity is limited,

then from 
ertain value of I(t) the total treatment rate is almost 
onstant. Now, if n > 1
the treatment T (I) rea
hes a maximum at I∗ = 1

α
1

n (n−1)
1

n

; thus, the treatment rate is

small at the beginning of the outbreak, after the treatment rate will be in
reased with

the improving of the treatment 
onditions, for example in
luding e�e
tive medi
ines,

skillful te
hniques, et
., rea
hing a maximum. At last, from the 
riti
al value I∗ total

treatment rate begins to de
rease. This type of treatment rates 
an model s
enarios

where infe
ted people a

umulate 
riti
al supplies, or the number of workers health is

diminished be
ause some are vi
tims of the infe
tion. That was 
ertainly the 
ase in the

in�uenza pandemi
 of 1918. Another s
enario is that treatment 
enters 
ould be �lled or

lost, leaving a greater portion of non treated spreading the disease infe
ted more easily,

et
.

2. Existen
e results

At any given time, t, the total population size N = S + I + R is variable with N ′ =
Λ − dN − ǫI. In the absen
e of disease, the population size N approa
hes the 
arrying


apa
ity Λ/d. The di�erential equation for N implies that solutions of (1) starting in

the positive orthant R
3
+ either approa
h, enter, or remain in the subset of R

3
de�ned by

Σ3 := {(S, I, R) | S ≥ 0, I ≥ 0, R ≥ 0, S + I +R ≤ Λ/d}.
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Thus, it su�
es to 
onsider solutions in the invariant set Σ3. Moreover, sin
e the third

equation is independent of the �rst two equations in system (1), it 
an be ignored, so we


an study the following redu
ed model:

{

S′ = Λ − dS − β(t)SI/(1 + kI),

I ′ = β(t)SI/(1 + kI)− (d+ ǫ+ µ)I − γI/(1 + αIn).
(2)

We restri
t our attention to the region Σ2 := {(S, I) ∈ R
2 : 0 < S, 0 < I, S + I < Λ/d}.

The existen
e of periodi
 orbits for (2) implies the existen
e of periodi
 solution for

system (1).

It is easy to see that the system (2) has an infe
tion-free equilibrium state (S0, I0) =
(Λ/d, 0).

The basi
 reprodu
tive number R0 of model (2), i.e., the average number of se
ondary


ases produ
ed by a single infe
tive introdu
ed into an entirely sus
eptible population is

given (see [9℄), when β is 
onstant, for the system (2); a dire
t 
al
ulation yields

R0 :=
βS0

d+ ǫ+ µ+ γ
.

Motivated by this, we de�ne R0 for system (2) as follows:

R0 :=
βΛ/d

d+ ǫ+ µ+ γ
,

where β := 1
T

∫ T

0 β(t)dt.

Now we state our main result

Theorem 2.1. If R0 > 1 + kΛ/d, then the system (2) admits a non-trivial periodi


solution.

Li and 
oworkers [6℄ studied the existen
e of periodi
 solutions of model (1) when n = 1,
by using Mawhin's 
ontinuation theorem [3℄. The existen
e of periodi
 orbits of some

epidemiologi
al models with Λ = d and k = γ = 0 is analyzed in [4℄ and [5℄.

We 
arry out the proof of this theorem in two parts. First taking k = α = 0. We write

β(t) = β + β0(t), where

∫ T

0

β0(t)dt = 0.

For λ ∈ [0, 1] we de�ne the homotopy

{

S′ = Λ − dS − βλIS,

I ′ = βλIS − (d+ ǫ+ µ+ γ)I,
(3)

where βλ := β + λβ0(t).

Vol. 34, No. 2, 2016℄



128 L.R. González-Ramírez, O. Osuna & G. Villavi
en
io-Pulido

To show the existen
e of a positive periodi
 solution, we shall use the Leray-S
hauder

degree theory [1℄. So, we need to reformulate the problem in a fun
tional setting. We


onsider the Bana
h spa
es

Cl := {(S, I) : S, I ∈ Cl(R,R), S(t+ T ) = S(t), I(t+ T ) = I(t)}, l = 0, 1.

Let L : C1 → C0
and Nλ : C0 → C0

be the operators given by

L(S, I) := (S′ + dS, I ′ + (d+ ǫ+ µ)I),

and

Nλ(S, I) := (Λ − βλIS, βλIS − γI).

Sin
e L is invertible we de�ne

Fλ(S, I) := (S, I)− L−1 ◦Nλ(S, I). (4)

Sin
e C1
is 
ompa
tly embedded in C0

, we 
an think of L−1
as going from C0

to C0
,

therefore L−1 ◦Nλ : C0 → C0
is a 
ompa
t operator. In a similar fashion, we 
an 
onsider

Fλ : C0 → C0
. Thus, (4) is a fun
tional reformulation of problem (3); in parti
ular,

periodi
 solutions of (3) 
orrespond to zeroes of Fλ.

We 
onsider the open sets D := {(S, I) ∈ C0 : 0 < S, 0 < I, S + I < Λ/d} and

U := {(S, I) ∈ D : min
[0,T ]

S(t) < r(Λ/d)},

for a �xed 0 < r < 1. Note that we 
an adapt the results of the work developed in [5℄;

thus we get

Proposition 2.2. If R0 > 1, then there is at least one T -periodi
 orbit of (3) whose


omponents are positive.

In parti
ular, we obtain that deg(F1, U) 6= 0.

To analyze the more general 
ase (2), we 
onsider a se
ond homotopy. For τ ∈ [0, 1] we
de�ne the homotopy

{

S′ = Λ− dS − β(t)SI/(1 + τkI),

I ′ = β(t)SI/(1 + τkI)− (d+ ǫ+ µ)I − γI/(1 + ταIn).
(5)

To reformulate our problem in a fun
tional 
ontext, we 
onsider the operator Nλ : C0 →
C0

given by

Mλ(S, I) := (Λ− βSI/(1 + τkI), βSI/(1 + τkI)− γI/(1 + ταIn)) ,

and we de�ne

Gτ (S, I) := (S, I)− L−1 ◦Mτ (S, I). (6)

As already dis
ussed, we 
an 
onsider Gτ : C0 → C0
. Thus, (6) is a fun
tional refor-

mulation of problem (5); in parti
ular, periodi
 solutions of (5) 
orrespond to zeroes of

Gτ .

Re
all that the existen
e of a solution forG1 in U via Leray-S
hauder degree is guaranteed

if deg(G0, U) 6= 0 and Gτ is an admissible homotopy, i.e., 0 /∈ Gτ (∂U), ∀τ ∈ [0, 1]. The

next result says that Gτ is admissible.
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Lemma 2.3. If R0 > 1 + kΛ/d and 0 < r < 1 is su
h that

1
R0

< r
1+kΛ/d < 1, then for

any τ ∈ [0, 1] there are no solutions (S, I) of (5) on ∂U .

Proof. First note that (S0, I0) is the only solution of (5) on ∂D for any τ ∈ [0, 1]. If

(S, I) ∈ ∂U , then (S, I) /∈ ∂D, so

(S, I) ∈ D and S(t) ≥ r(Λ/d), ∀t. (7)

The following inequality in D is valid:

(d+ ǫ+ µ+ γ)(1 + kΛ/d) ≥

[

(d+ ǫ+ µ) +
γ

1 + ταIn

]

(1 + τkI). (8)

Multiplying by (1 + τkI)/I and integrating the se
ond equation in (5) on the interval

[0, T ], we have that

∫ T

0

I ′(1 + τkI)

I
dt+

∫ T

0

([

(d+ ǫ+ µ) +
γ

1 + ταIn

]

(1 + τkI)

)

dt =

∫ T

0

βSdt;

but

∫ T

0
I′(1+τkI)

I dt = 0 be
ause I is T -periodi
; and using the inequalities (7) and (8)

one gets

(d+ ǫ+ µ+ γ)(1 + kΛ/d) ≥
1

T

∫ T

0

βSdt ≥ r(Λ/d)β.

Now, from our hypothesis

d+ ǫ + µ+ γ ≥ β
r(Λ/d)

(1 + kΛ/d)
> β(Λ/d)

1

R0
= d+ ǫ+ µ+ γ, (9)

whi
h is a 
ontradi
tion. �XXX

Proof of Theorem 2.1. First by Lemma 2.3 the homotopy (5) is admissible.

On the other hand, note that the initial system of our homotopy G0 is the same as the

ending system of the homotopy F1 in (3) . Thus, using the 
on
lusions developed in [5℄

and our Proposition 2.2 we 
on
lude that the degree of the system where τ = 0 in the

�xed domain U is nonzero, i.e., deg(G0, U) 6= 0.

Using the invarian
e of the Leray-S
hauder degree under homotopy by Lemma 2.3, we

obtain that deg(G1, U) 6= 0.

Therefore the system (2) admits a non-trivial periodi
 solution, whi
h proves Theorem

2.1. �XXX

Vol. 34, No. 2, 2016℄
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Example 2.4. In order to testify the validity of our results we 
onsider an example whose

form is as equation (1); to model the transmission rate of this infe
tion the term β(t)

an be approximated by

β(t) = b0[1 + b1 cos(2π(t+ a))],

where b0 is the baseline transmission rate, b1 is the relative seasonal for
ing and a a
-


ounts for the time when the transmission rate is maximal [10℄. This transmission rate

assumes that the period of transmission is one year. We take b0 = 60, b1=0.16 and

a=0.15. We also set Λ=0.2, d=0.041, k = 1, µ=0.01, ǫ=0.001, γ = 10, n = 10 and

α = 2 in system (1). We based some of these 
hoi
es of parameters on the parameter

ranges developed in [10℄, for the 
ity of Gambia.

Numeri
al simulation are shown in the next �gure whi
h exhibits an os
illatory behavior

for the sus
eptible and infe
ted population a

ording to the Theorem 2.1.
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Figure 1. Existen
e of a periodi
 solution. The initial 
onditions are S0 =0.5, I0=0.1 and R0=0.0.

A
knowledgements

The authors would like to thank the anonymous referees for their helpful 
omments.

Referen
es

[1℄ Brown R.F., A topologi
al introdu
tion to nonlinear analysis, Se
ond ed., Birkhäuser

Boston, In
., Boston, MA, 2004.

[2℄ Capasso V. and Serio G., �A generalization of the Kerma
k-M
Kendri
k deterministi
 epi-

demi
 model�, Math. Bios
i. 42 (1978), No. 1-2, 43�61.

[3℄ Gaines R.E. and Mawhin J.L., Coin
iden
e degree and nonlinear di�erential equations,

Springer-Verlag, Berlin-New York, 1977.

[Revista Integración



Os
illations in seasonal SIR models with saturated treatment 131

[4℄ González-Ramírez L.R., Osuna O. and Santaella-Forero R., �Periodi
 orbits for seasonal

SIRS models with non-linear in
iden
e rates�, Ele
tron. J. Di�erential Equations 2015

(2015), No. 300, 1�10.

[5℄ Katriel G., �Existen
e of periodi
 solutions for periodi
ally for
ed SIR model�, J. Math.

S
i. (N.Y) 201 (2014), No. 3, 335�342.

[6℄ Li L., Bai Y. and Jin Z., �Periodi
 solutions of an epidemi
 model with saturated treatment�,

Nonlinear Dynam. 76 (2014), No. 2, 1099�1108.

[7℄ Liu W.M., Levin S.A. and Iwasa Y., �In�uen
e of nonlinear in
iden
e rates upon the be-

haviour of SIRS epidemiologi
al models�, J. Math. Biol. 23 (1986), No. 2, 187�204.

[8℄ Song B., Du W. and Lou J., �Di�erent types of ba
kward bifur
ations due to density-

dependent treatments�, Math. Bios
i. Eng. 10 (2013), No. 5-6, 1651�1668.

[9℄ van den Driess
he P. and Watmough J., �Reprodu
tion numbers and sub-threshold endemi


equilibria for 
ompartmental models of disease transmission�, Math. Bios
i. 180 (2002), 29�

48.

[10℄ Weber A., Weber M. and Milligan P., �Modeling epidemi
s 
aused by respiratory syn
tial

virus (RSV)�, Math. Bios
i. 172 (2001), No. 2, 95�113.

[11℄ Xiao D. and Ruan S., �Global analysis of an epidemi
 model with non monotone in
iden
e

rate�, Math. Bios
i. 208 (2007), No. 2, 419�429.

[12℄ Zhang X. and Liu X., �Ba
kward bifur
ation of an epidemi
 model with saturated treatment

fun
tion�, J. Math. Anal. Appl. 348 (2008), No. 1, 433�443.

Vol. 34, No. 2, 2016℄




