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Abstract. We consider a p-system of conservation laws that emerges in one
dimensional elasticity theory. Such system is determined by a functionW . We
consider four forms of W . These are St.Venant-Kirchhoff, Ogden, Kirchhoff
modified, Blatz-Ko-Ogden forms. In each of those cases we determine the
conditions for the parameters µ, λ and f , under which the corresponding
system is hyperbolic and genuinely nonlinear. We also establish what it means
a weak solution of an initial and boundary value problem. Finally we ask if
such solutions satisfy the entropy condition. For a standard entropy function
we provide a complete answer, except of the Blatz-Ko-Ogden case. For a
general strictly convex entropy function the result is that for the initial value
of velocity function near zero these solutions satisfy the entropy condition,
under the assumption of hyperbolicity and genuine nonlinearity.
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Condiciones de hiperbolicidad y no linealidad genuina

para ciertos p-sistemas de leyes de conservación,

soluciones débiles y condición de entropía

Resumen. Consideramos un p-sistema de leyes de conservación que surge de
la teoría de elasticidad unidimensional. Tal sistema es determinado por una
función W . Consideramos cuatro formas de W . Estas son los modelos de St.
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Venant-Kirchhoff, Ogden, Kirchhoff modificado y Blatz-Ko-Ogden. En cada
uno de estos casos determinamos las condiciones de los parámetros µ, λ y
f bajo las cuales el correspondiente sistema es hiperbólico y genuinamente
no lineal. Establecemos qué significa una solución débil de un problema de
valor inicial y de frontera. Finalmente nos preguntamos si tales soluciones
satisfacen la condición de entropía. Para una función de entropía estándar
damos una respuesta completa, excepto del caso de Blatz-Ko-Ogden. Para
una función de entropía general estrictamente convexa, el resultado es que
para el valor inicial de la función velocidad cerca de cero estas soluciones
satisfacen la condición de entropía, bajo la restricción de hiperbolicidad y no
linealidad genuina.
Palabras clave: Solución débil, condición de entropía, leyes de conservación,
genuinamente no lineal, p-sistema.

1. Introduction

The mathematical theory of hyperbolic systems of conservation laws was started by
Eberhardt Hopf in 1950, followed in a series of studies by Olga Oleinik, Peter D. Lax
and James Glimm [8] . The class of conservation laws is a very important class of partial
differential equations because as their name indicates, they include those equations that
model conservation laws of physics (mass, momentum, energy, etc).

As important examples of hyperbolic systems of balance laws arising in continuum physics
we have: Euler’s equations for compressible gas flow, the one dimensional shallow wa-
ter equations [5], Maxwell’s equations in nonlinear dielectrics, Lundquist’s equations of
magnetohydrodynamics and Boltzmann equation in thermodynamics [3] and equations
of elasticity [9].

One of the main motivations of the theory of hyperbolic systems is that they describe
for the most part real physical problems, because they are consistent with the fact that
the physical signals have a finite propagation speed [9]. Such systems, even with smooth
initial conditions, may fail to have a solution for all time; in such cases we have to extend
the concept of classical solutions to the concept of a weak solution or generalized solution
[5].

In the case of hyperbolic systems, the notion of weak solution based on distributions
does not guarantee uniqueness, and it is necessary to devise admissibility criteria that
will hopefully single out a unique weak solution. Several such criteria have indeed been
proposed, motivated by physical and/or mathematical considerations. It seems that a
consensus has been reached on this issue for such solutions, they are called entropy con-
ditions [3]. Nevertheless, to the question about existence and uniqueness of generalized
solutions subject to the entropy conditions, the answer is, in general, open. For the scalar
conservation law, the questions existence and uniqueness are basically settled [5]. For
genuinely nonlinear systems, existence (but not uniqueness) is known for initial data of
small total variation [12]. Some of the main contributors to the field are: Lax, Glimm,
Dafermos, Bressan, Marsden and Ogden [1], [2], [3], [4], [7], [9], and [10].

All of this motivates us to study systems of conservation laws that emerge in the theory
of elasticity. These systems are determined by constitutive relations between the stress
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Hyperbolicity and genuine nonlinearity conditions for certain p-systems of conservation laws 13

and strain. For hyperelastic materials, the constitutive relations can be written in a
simpler form. Now the stress is determined by a scalar function of the strain called the
strain-energy function W . A further simplification of a stress-strain relation is obtained
for isotropic materials.

In applications some specific strain-energy functions are used; in our work we consider
four different forms of W . In all our studies we restrict ourselves to the case of one
dimensional elasticity.

The first important question that arises is the following: given the function W , is the
corresponding system of PDE’s hyperbolic? By answering it, we can assess how good
the model corresponding to that particular W is.

There exists also another important condition called genuine nonlinearity condition,
which is related to the entropy condition [12]. According to our previous remarks the en-
tropy condition can be considered a physical one. This implies an importance of genuine
nonlinearity condition as well. For that reason our second question is about the validity
of that particular condition for the models under study.

Our third important question is how manageable is the entropy condition, that is: given a
weak solution of the elasticity system, can we conclude if it is or not an entropy solution?
In general, except of the linear case, it is not easy to answer that question, because in the
entropy condition there appear two functions: entropy and entropy-flux, which satisfy
a given nonlinear system of PDE’s, the first of them is convex and otherwise they are
arbitrary.

For this reason we restrict ourselves to study the entropy condition for a relatively simple
weak solutions, which correspond to a well understood physical situation of what can be
called a compression shock. Such solutions are obtained easily in linear case by means of
D’Alembert’s formula and by analogy in nonlinear case, employing the Rankine-Hugoniot
conditions. If for a given model (W function) such solution does not satisfy the entropy
condition, we can consider the model as inadequate to describe the compression shock.

In this work we give answers to all mentioned above questions. The obtained results do
not appear in the reviewed literature.

It has to be added also that the concept of a weak solution is well known in the literature.
For example in [5] one can find a definition of a weak solution of an initial value problem
for a system of conservation laws in two variables. Using a general idea of that concept
we define what it means to be a weak solution of an initial and boundary value problem
for p-systems. This definition does not appear explicitly in the reviewed literature.

The paper is organized as follows: In Section 2 the main notation and concepts are intro-
duced: conservation laws, hyperbolic system, weak solution, Rankine-Hugoniot condition,
genuine nonlinearity, entropy/entropy-flux pair. Next, we give a brief presentation of ba-
sic concepts of the theory of elasticity, such as, deformation gradient, deformation tensor,
second Piola-Kirchhoff stress tensor and first Piola-tensor. We also present four forms of
W (strain-energy function) appearing in the theory of elasticity, to model a behavior of
certain materials. We refer to them as: St.Venant-Kirchhoff, Kirchhoff modified, Ogden
and Blatz-Ko-Ogden functions.

In Section 3 we consider one dimensional reduction of the system of partial differential
equations for elasticity, which depends on the strain-energy function W and results in a
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p-system. Also, we introduce the notions of hyperbolicity, no interpenetration of matter
and genuine nonlinearity.

In Section 4 we provide the concept of weak solutions for various versions of an IBVP
(initial and boundary value problem) for a p-system, including a particular case of IBVP,
IBV PV0

, and we find its solutions employing the Rankine-Hugoniot conditions; we denote
such solution by S(V0).

In Section 5 we discuss the notions of an entropy/entropy-flux pair for a p-system, entropy
condition, entropy condition for a solution of IBV PV0

and standard entropy function.
We also establish the importance of the requirements of hyperbolicity (strict) and genuine
nonlinearity, as being essential in proving if a weak solution is an entropy solution.

In Section 6 we show the results concerning to hyperbolicity and genuine nonlinearity for
the models under consideration and the entropy condition corresponding to a standard
entropy function for a solution of IBV PV0

.

Finally, in Section 7 we present a summary of the main conclusions of our research.

We should remark that the results of this paper are substantially contained in [11], the
MSc Thesis of E. Pérez.

2. Preliminaries

2.1. Conservation laws and related concepts

We begin this section with some essential definitions, that we will use in the course of
this work.

A conservation law asserts that the change in the total amount of a physical entity
contained in any bounded region G ⊂ R

n of space is due to the flux of that entity across
the boundary of G. In particular, the rate of change is

d

dt

∫

G

udX = −
∫

∂G

F(u)ndS, (1)

where u = u(X, t) = (u1(X, t), . . . , um(X, t)) (X ∈ R
n, t ≥ 0) measures the density of

the physical entity under discussion, the vector F : Rm → M
m×n describes its flux and

n is the outward normal to the boundary ∂G of G. Here u and F are C1 functions.
Rewriting (1), we deduce

∫

G

utdX = −
∫

∂G

F(u)ndS = −
∫

G

divF(u)dX. (2)

As the region G ⊂ R
n was arbitrary, we derive from (2) this initial-value problem for a

general system of conservation laws:

{
ut + divF(u) = 0 in R

n × (0,∞),

u = g on R
n × {t = 0}, (3)
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Hyperbolicity and genuine nonlinearity conditions for certain p-systems of conservation laws 15

where g = (g1, . . . , gm) is a given function describing the initial distribution of u =
(u1, . . . , um). In particular, the initial-value problem for a system of conservation laws in
one-dimensional space, takes the form

ut + F(u)X = 0 in R× (0,∞), (4)

with initial condition given by

u(X, t) = g on R× {t = 0}, (5)

where F : Rm → R
m and g : R → R

m are given and u : R× [0,∞) → R
m is the unknown,

u = u(X, t) [5].

For C1 functions the conservation law (4) is equivalent to

ut +B(u)uX = 0 in R× (0,∞), (6)

where B : Rm → M
m×m is given by B(z) = DF (z), for z = (z1, . . . , zm) ∈ R

m, where

DF(z) =




F 1
z1 · · · F 1

zm
...

. . .
...

Fm
z1 · · · Fm

zm


 . (7)

If for each z ∈ R
m the eigenvalues of B(z) are real and distinct, we call the system (6)

strictly hyperbolic [5].

A system of conservation laws (6) is said to be genuinely nonlinear in a region Ω ⊆ R
n

if

∇λk · rk 6= 0,

for k = 1, 2, . . . , n at all points in Ω, where λk(z) are the eigenvalues of B(z), with
corresponding eigenvectors rk(z) [12].

Definition 2.1. The p-system is a conservation law, being this a collection of two equa-
tions: {

u2t − p(u1)X = 0 (Newton’s law),

u1t − u2X = 0 (compatibility condition),
(8)

in R× (0,∞), where p : R → R is given. Here F (z) = (−p(z1),−z2) for z = (z1, z2) [5].

Definition 2.2. A weak solution of (4) is a function u ∈ L∞(R× (0,∞);Rm) such that

∫ ∞

0

∫ ∞

−∞
(u · φt + F(u) · φX)dXdt+

∫ ∞

−∞
(g · φ)|t=0 dX = 0

for every smooth φ : R× [0,∞) → R
m, with compact support [5].
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2.2. Basic notions of Elasticity Theory

We consider a continuous body which occupies a connected open subset of a three-
dimensional Euclidean point space, and we refer to such a subset as a configuration of the
body. We identify an arbitrary configuration as a reference configuration and denote this
by B0. Let points in B0 be labelled by their position vectors X = (X1, X2, X3), where
X1, X2 and X3 are coordinates relative to an arbitrary chosen Cartesian orthogonal
coordinate system. Now, suppose that the body is deformed from B0 so that it occupies
a new configuration, which is denoted by Bt.We refer to Bt as the deformed configuration
of the body. The deformation is represented by the mapping φt : B0 → Bt which takes
points X in B0 to points x = (x1, x2, x3) in Bt, where x1, x2 and x3 are coordinates
relative to the same Cartesian orthogonal coordinate system as X1, X2 and X3. Thus,
the position vector of the point X in Bt, which is denoted by x, is

x = φ(X, t) ≡ φt(X).

The mapping φ is called the deformation from B0 to Bt. We require φt to be sufficiently
smooth, orientation preserving and invertible. The last two requirements mean physically,
that no interpenetration of matter occurs.

Deformation gradient, deformation tensor, strain-energy function and time evolution

of an elastic body

Now, we introduce some basic definitions of Elasticity theory, namely: deformation gra-
dient, deformation tensor, second Piola-Kirchhoff stress tensor, first Piola-tensor [9]. We
restrict our discussion to hyperelastic, homogeneous and isotropic materials.

F a
A(X, t) =

∂φa

∂XA (deformation gradient ), a,A ∈ {1, 2, 3}.

C = FTF or componentwise by CAB = δijF
i
AF

j
B, A,B ∈ {1, 2, 3} (deformation

tensor).

Principal invariants of C:

I1 = tr(C), I2 = (det(C))tr(C−1), I3(C) = det(C).

Second Piola-Kirchhoff stress tensor:

SAB = 2

{
∂W

∂I1
GAB +

(
∂W

∂I2
I2 +

∂W

∂I3
I3

)
C−1 − ∂W

∂I2
I3C

−2

}
,

where GAB is Kronecker’s delta and W is the strain-energy function.

The first Piola-tensor:

P iA = F i
BS

BA = F i
1S

1A + F i
2S

2A + F i
3S

3A, where i, A,B ∈ {1, 2, 3}.

We consider the following four forms of W, [9]:
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Hyperbolicity and genuine nonlinearity conditions for certain p-systems of conservation laws 17

1. St.Venant-Kirchhoff:

W =
λ

8
(I1 − 3)2 +

µ

4
(I21 − 2I2 − 2I1 + 3). (9)

2. Kirchhoff modified:

W =
λ

8
(ln I3)

2 +
µ

4
(I21 − 2I2 − 2I1 + 3). (10)

3. Ogden:

W =
µ

2

(
I1 − 3− 2 ln(

√
I3)
)
+
λ

2
(
√
I3 − 1)2. (11)

4. Blatz-Ko-Ogden:

W = f · µ
2
[(I1 − 3) +

1

β
(I−β

3 − 1)] + (1− f)
µ

2

[
I2
I3

− 3 +
1

β
(Iβ3 − 1)

]
. (12)

We can see that the functions (9)-(11) depend on two parameters: Lamé moduli λ and
µ, where λ, µ > 0. In (12) β = λ

2µ and this W depends also on a parameter f restricted
by 0 < f < 1.

Finally, the components of the mapping

φ(X, t) = (φ1(X, t), φ2(X, t), φ3(X, t))

are subject to the following system of PDE’s, describing the evolution of an elastic body:

ρ0
∂2φi

∂t2
=
∂P iA

∂XA
. (13)

Here ρ0 = ρ0(X) is the mass density in reference configuration assumed further to be
constant.

3. One-dimensional reduction for certain models of elastic materials

In this section we present the reduction to the one-dimensional case, which we will
maintain in all the paper. Also, we rewrite the requirements of hyperbolicity, no inter-
penetration of matter and genuine nonlinearity, to the one-dimensional case.

We assume that there is a motion of particles only in the direction of X1-axis, that is:





φ1(X, t) = X1 + U(X1, t),

φ2(X, t) = X2,

φ3(X, t) = X3.

(14)

Then F i
A, CAB , C

−1
AB, I1, I2 and I3 become
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18 E. Pérez & K. Rózga

F i
A =




∂φ1

∂X1

∂φ1

∂X2

∂φ1

∂X3

∂φ2

∂X1

∂φ2

∂X2

∂φ2

∂X3

∂φ3

∂X1

∂φ3

∂X2

∂φ3

∂X3




=




∂φ1

∂X1 0 0

0 1 0

0 0 1



, (15)

CAB =




(F 1
1 )

2 0 0
0 1 0
0 0 1


 , C−1

AB =




1/(F 1
1 )

2 0 0
0 1 0
0 0 1


 , (16)

I1 = 2 + (F 1
1 )

2, I2 = 2(F 1
1 )

2 + 1, I3 = (F 1
1 )

2.

Therefore the system (13) becomes

ρ0
∂2φi

∂t2
=
∂(P iA)

∂XA
.

More specifically,

ρ0
∂2φ1

∂t
= P ,111 + P ,122 + P ,133 ,

ρ0
∂2φ2

∂t
= P ,211 + P ,222 + P ,233 ,

ρ0
∂2φ3

∂t
= P ,311 + P ,322 + P ,333 .

(17)

Notice that P 11 = F 1
1 S

11 + F 1
2 S

21 + F 1
3 S

31 = F 1
1 S

11, P 12 = P 21 = P 13 = P 31 = P 23 =

P 32 = 0, P 22 = S22, P 33 = S33, and ∂φ1

∂t = ∂U
∂t ,

∂φ2

∂t = 0 = ∂φ3

∂t . Consequently, (17) is

reduced to one equation, which after denoting X1 by X and putting P = P 11

ρ0
, reads

∂2U

∂t2
=
∂P

∂X
. (18)

Setting V = ∂U
∂t and Γ = ∂U

∂X , one obtains a p-system of first order PDE’s:

{
Vt − (P (Γ))X = 0,
Γt − VX = 0.

(19)

Remark 3.1. Under the assumption (14) the requirement of no interpenetration of matter
means that φX > 0, i.e., 1 +UX > 0.

Notice that, the p-system (19) can be rewritten as

ut +B(u)uX = 0, (20)
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Hyperbolicity and genuine nonlinearity conditions for certain p-systems of conservation laws 19

where u = (V,Γ) and B =

(
0 −P ′(Γ)
−1 0

)
. The eigenvalues of B are λ1 =

−
√
P ′(Γ) and λ2 =

√
P ′(Γ) with corresponding eigenvectors r1 = (

√
P ′(Γ), 1) and

r2 = (−
√
P ′(Γ), 1).

Remark 3.2. Note that for our case of a p-system, no interpenetration of matter condi-
tion, φX > 0, is equivalent to Γ > −1, since φX = 1 + UX .

Remark 3.3. The p-system (20) is strictly hyperbolic if P ′ > 0, everywhere in
the domain of P (Γ).

The p-system (20) is genuinely nonlinear in a region Ω of the domain of P (Γ) if
P ′′ 6= 0 everywhere in Ω.

Indeed, it is so since −∇λ1 · r1 = ∇λ2 · r2 = P ′′(Γ)

2
√

P ′(Γ)
.

By continuity of P ′′(Γ), genuine nonlinearity means that P ′′(Γ) is of constant sign
in Ω. However, we will call a p-system (20) genuinely nonlinear if P ′′ < 0, since
this requirement plays an important role in studying entropy inequality.

We remark also that hyperbolicity condition is an essential physical requirement, since it
guarantees that particles have a finite propagation speed. Now, we obtain explicit forms
of the function P for the models under consideration. Indeed,

St.Venant-Kirchhoff: P (Γ) =
(
λ+2µ
2ρ0

)
(1 + Γ)(2 + Γ)Γ.

Modified Kirchhoff: P (Γ) = 1
ρ0

(
µ(1 + Γ)3 − µ(1 + Γ) + λ ln(1+Γ)

(1+Γ)

)
.

Ogden: P (Γ) = 1
ρ0

(
λΓ + µ (2+Γ)Γ

Γ+1

)
.

Blatz-Ko and Ogden:

P (Γ) =
µ(1 + Γ)

ρ0

{
f

[
1− (1 + Γ)−2β−2

]
+

(1 − f)

(1 + Γ)4

[
(1 + Γ)2β+2 − 1

]}
. (21)

Definition 3.4. If P (Γ) = (λ+2µ)
ρ0

Γ, the model is called linear model.

4. Weak solution of an IBVP for a p-system

In this section we give the concept of weak solutions for various versions of an IBVP
(initial and boundary value problem), for a p-system, including a particular case of
IBVP, IBV PV0

. We also provide notions of an entropy/entropy-flux pair and entropy
condition for a solution of IBV PV0

.

Our aim is to give an answer to the question about a weak solution for an IVBP for (19)
with these initial and boundary conditions:





V (X, 0) = f(X),

Γ(X, 0) = g(X),

P (Γ(0, t)) + a(t)V (0, t) = c(t),

(22)
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20 E. Pérez & K. Rózga

or 



V (X, 0) = f(X),

Γ(X, 0) = g(X),

V (0, t) + b(t)P (Γ(0, t)) = c(t).

(23)

To define a weak solution of such IBVP in the first quadrant of the Xt-plane, we use
arbitrary C1 functions ϕ, ψ and χ,

ϕ, ψ, χ : [0,∞)× [0,∞) → R

of compact supports. We refer to those functions as test functions.

Proposition 4.1. Let f, g, a and c be C1 functions on [0,∞), and let V (X, t), Γ(X, t) be
C1 functions on [0,∞)2, such that P (Γ(X, t)) is C1 on ([0,∞)2). Then the pair (V,Γ) is
a classical solution of IBVP (19), (22), if and only if for all ϕ and ψ, with ψ satisfying
the condition ψ(0, t) = 0, it holds

−
∫ ∞

0

g(X)ψ(X, 0)dX −
∫ ∞

0

∫ ∞

0

ΓψtdtdX +

∫ ∞

0

∫ ∞

0

V ψXdXdt = 0 (24)

and

−
∫ ∞

0

f(X)ϕ(X, 0)dX −
∫ ∞

0

∫ ∞

0

V ϕtdtdX +

∫ ∞

0

c(t)ϕ(0, t)dt

+

∫ ∞

0

∫ ∞

0

P (Γ)ϕXdXdt−
∫ ∞

0

g(X)a(0)ϕ(X, 0)dX

−
∫ ∞

0

∫ ∞

0

(a(t)ϕ(X, t))tΓdtdX +

∫ ∞

0

∫ ∞

0

a(t)ϕX(X, t)V dXdt = 0. (25)

Proof. Indeed, assuming that (V,Γ) is a classical solution of IBVP (19),(22), we multiply
the first equation in (19) by ϕ; integrating by parts and using the initial and boundary
conditions (22) we obtain

−
∫ ∞

0

f(X)ϕ(X, 0)dX −
∫ ∞

0

∫ ∞

0

V (X, t)ϕt(X, t)dtdX +

∫ ∞

0

c(t)ϕ(0, t)dt

−
∫ ∞

0

a(t)V (0, t)ϕ(0, t)dt+

∫ ∞

0

∫ ∞

0

P (Γ)ϕX(X, t)dXdt = 0.

(26)

Similarly, multiplying the second equation in (19) by a test function χ and integrating
by parts results in

−
∫ ∞

0

g(X)χ(X, 0)dX −
∫ ∞

0

∫ ∞

0

Γ(X, t)χt(X, t)dtdX +

∫ ∞

0

V (0, t)χ(0, t)dt

+

∫ ∞

0

∫ ∞

0

V (X, t)χX(X, t)dXdt = 0. (27)
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For χ = ψ the equation (27) is equivalent to

−
∫ ∞

0

g(X)ψ(X, 0)dX −
∫ ∞

0

∫ ∞

0

Γ(X, t)ψt(X, t)dtdX

+

∫ ∞

0

∫ ∞

0

V (X, t)ψX(X, t)dXdt = 0,

which is (24). Next, assuming that χ(X, t) = a(t)ϕ(X, t), the equation (27) becomes

−
∫ ∞

0

g(X)a(0)ϕ(X, 0)dX −
∫ ∞

0

∫ ∞

0

Γ(X, t)(a(t)ϕ(X, t))tdtdX+

∫ ∞

0

a(t)V (0, t)ϕ(0, t)dt+

∫ ∞

0

∫ ∞

0

V (X, t)(a(t)ϕ(X, t))XdXdt = 0. (28)

Now, adding (26) to (28), we get

−
∫ ∞

0

f(X)ϕ(X, 0)dx−
∫ ∞

0

∫ ∞

0

V (X, t)ϕt(X, t)dtdX +

∫ ∞

0

c(t)ϕ(0, t)dt

+

∫ ∞

0

∫ ∞

0

P (Γ)ϕX(X, t)dXdt−
∫ ∞

0

g(X)a(0)ϕ(X, 0)dX

−
∫ ∞

0

∫ ∞

0

Γ(X, t)(a(t)ϕ(X, t))tdtdX +

∫ ∞

0

∫ ∞

0

V (X, t)(a(t)ϕ(X, t))XdXdt = 0,

which is (25). Next, it remains to verify that if (V,Γ) satisfies (24) and (25) for all ϕ and
ψ, then (V,Γ) is a classical solution of the IBVP (19), (22). Indeed, integrating by parts
the equation (24) we obtain

∫ ∞

0

ψ(X, 0)(Γ(X, 0)− g(X))dX+

∫ ∞

0

∫ ∞

0

ψ(X, t)(Γt(X, t)−VX(X, t))dXdt = 0. (29)

If in addition ψ has compact support in (0,∞)× (0,∞), we obtain

∫ ∞

0

∫ ∞

0

ψ(X, t)(Γt(X, t)− VX(X, t))dXdt = 0,

for all such test functions ψ. Therefore we conclude

Γt(X, t)− VX(X, t) = 0. (30)

Now, since Γt(X, t)− VX(X, t) = 0, then (29) reduces to

∫ ∞

0

ψ(X, 0)(Γ(X, 0)− g(X))dX = 0,

and this holds for all function ψ, with compact support in [0,∞) × [0,∞), containing
points on the X-axis, and subject to ψ(0, t) = 0. So, we get

Γ(X, 0) = g(X). (31)
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Similarly, integrating by parts the equation (25), we obtain

∫ ∞

0

ϕ(X, 0)(V (X, 0)− f(X))dX +

∫ ∞

0

ϕ(0, t)(c(t) − P (Γ(0, t))− V (0, t)a(t))dt

+

∫ ∞

0

∫ ∞

0

ϕ(X, t)(Vt(X, t)− (P (Γ))X)dXdt+

∫ ∞

0

a(0)ϕ(X, 0)(Γ(X, 0)− g(X))dX

+

∫ ∞

0

∫ ∞

0

a(t)ϕ(X, t)(Γt(X, t)− VX(X, t))dXdt = 0, (32)

which because of (30) and (31) becomes

∫ ∞

0

ϕ(X, 0)(V (X, 0)− f(X))dX +

∫ ∞

0

ϕ(0, t)(c(t) − P (Γ(0, t))− V (0, t)a(t))dt

+

∫ ∞

0

∫ ∞

0

ϕ(X, t)(Vt(X, t)− (P (Γ))X)dXdt = 0. (33)

If in addition ϕ has compact support in (0,∞)× (0,∞), we obtain

∫ ∞

0

∫ ∞

0

ϕ(X, t)(Vt(X, t)− (P (Γ))X)dXdt = 0

for all such test functions ϕ. Therefore we conclude that Vt(X, t) − (P (Γ))X = 0. Now,
if Vt(X, t)− (P (Γ))X = 0, then the equation (33) becomes

∫ ∞

0

ϕ(X, 0)(V (X, 0)−f(X))dX+

∫ ∞

0

ϕ(0, t)(c(t)−P (Γ(0, t))−V (0, t)a(t))dt = 0. (34)

Assuming that ϕ has compact support in [0,∞)× [0,∞) containing points on the X-axis,
but not on the t-axis, we get

∫∞
0 ϕ(X, 0)(V (X, 0)−f(X))dX = 0, thus V (X, 0)−f(X) =

0; then (34) reduces to

∫ ∞

0

ϕ(0, t)(c(t) − P (Γ(0, t))− V (0, t)a(t))dt = 0.

Since this holds for all function ϕ with compact support in [0,∞)×[0,∞), and containing
points on the t-axis, then it follows that

P (Γ(0, t)) + a(t)V (0, t) = c(t).

Therefore we conclude that (V,Γ) is a classical solution for the IVBP (19), (22). �XXX

Proposition 4.1 suggests the following definition:

Definition 4.2. Let f, g and c ∈ L∞([0,∞)), and a ∈ C1([0,∞)). We say that the pair
(V,Γ) ∈ L∞([0,∞)2), such that P (Γ(X, t)) ∈ L∞([0,∞)2), is a weak solution of IBVP
(19), (22), provided (24) and (25) hold for all test functions ϕ and ψ with ψ restricted
by ψ(0, t) = 0.
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Next, similarly we have an proposition analogous to the Proposition 4.1, for the IBVP
(19), (23).

Proposition 4.3. Let f, g, b and c be C1 functions on [0,∞), and let V (X, t), Γ(X, t) be
C1 functions on [0,∞)2, such that P (Γ(X, t)) is C1 on [0,∞)2. Then the pair (V,Γ) is
a classical solution of IBVP (19),(23), if and only if, for all ϕ and ψ, with ϕ satisfying
the condition ϕ(0, t) = 0, it holds

−
∫ ∞

0

f(X)ϕ(X, 0)dX −
∫ ∞

0

∫ ∞

0

V (X, t)ϕt(X, t)dtdX

+

∫ ∞

0

∫ ∞

0

P (Γ)ϕX(X, t)dXdt = 0 (35)

and

−
∫ ∞

0

g(X)ψ(X, 0)dX −
∫ ∞

0

∫ ∞

0

Γ(X, t)ψt(X, t)dtdX +

∫ ∞

0

c(t)ψ(0, t)dt

+

∫ ∞

0

∫ ∞

0

V (X, t)ψX(X, t)dXdt−
∫ ∞

0

f(X)b(0)ψ(X, 0)dX

−
∫ ∞

0

∫ ∞

0

(b(t)ψ(X, t))tV dtdX +

∫ ∞

0

∫ ∞

0

b(t)ψXP (Γ)dXdt = 0. (36)

Proposition 4.3, suggests the following definition:

Definition 4.4. Let f, g, c ∈ L∞([0,∞)), and b ∈ C1([0,∞)). We say that the pair
(V,Γ) ∈ L∞([0,∞)2), such that P (Γ(X, t)) ∈ L∞([0,∞)2), is a weak solution of the
IBVP (19), (23), provided (35) and (36) hold for all test functions ϕ and ψ with ϕ
restricted by ϕ(0, t) = 0.

Remark 4.5. Note that setting b(t) = 0 and c(t) = h(t) in (36) we obtain (39). This is
consistent with the fact that the initial and boundary conditions (23) are equivalent to
(37) for this choice of b and c.

Now, we consider a p-system (19), with the following initial and boundary conditions:





V (X, 0) = f(X),

Γ(X, 0) = g(X),

V (0, t) = h(t).

(37)

Notice that (37) is a particular case of the condition (23).

Proposition 4.6. Let f, g and h be C1 functions on [0,∞), and let V (X, t), Γ(X, t) be
C1 functions on [0,∞)2, such that P (Γ(X, t)) is C1 on [0,∞)2. Then the pair (V,Γ) is
a classical solution of IBVP (19), (37), if and only if for all ϕ and ψ, with ϕ satisfying
the condition ϕ(0, t) = 0, it holds
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∫ ∞

0

∫ ∞

0

(V ϕt − P (Γ)ϕX)dtdX +

∫ ∞

0

f(X)ϕ(X, 0)dX = 0 (38)

and
∫ ∞

0

∫ ∞

0

(Γψt − V ψX)dtdX −
∫ ∞

0

h(t)ψ(0, t)dt+

∫ ∞

0

g(X)ψ(X, 0)dt = 0. (39)

Proposition 4.6, suggests the following definition:

Definition 4.7. Let f, g, h ∈ L∞([0,∞)). We say that the pair (V,Γ) ∈ L∞([0,∞)2),
such that P (Γ(X, t)) ∈ L∞([0,∞)2), is a weak solution of IBVP (19), (37), provided (38)
and (39) hold for all test functions ϕ and ψ, with ϕ restricted by ϕ(0, t) = 0.

Remark 4.8. An interesting question arises in what sense (V,Γ) satisfies (37). To answer
that question we need to prove that the traces, [5], [12], of (V,Γ) on the positive part
of the X axes and of V on the positive part of the t axes exist and are equal to f(X),
g(X) and h(t), respectively. That problem seems to be non trivial. Its solution does not
appear in the revised literature.

Remark 4.9. A similar argument shows that by replacing ϕ(0, t) = 0 by ψ(0, t) = 0,
in the Definition 4.7, we can arrive to an analogous definition of a weak solution of the
system (19), with the following initial and boundary conditions





V (X, 0) = f(X),

Γ(X, 0) = g(X),

P (Γ(0, t)) = h(t).

(40)

4.1. An initial and boundary value problem, IBV PV0
, for a p-system

We consider a particular case of an IBVP, (19), (37), denoted further by IBV PV0
:





V (X, 0) = −V0,
Γ(X, 0) = 0,

V (0, t) = 0.

(41)

Theorem 4.10. The pair (V,Γ), given by the equations (42) and (43), is a weak solution
of IBV PV0

(19), (41),

V (X, t) =

{
−V0, if X > σt,

0, if X < σt,
(42)

Γ(X, t) =

{
0, if X > σt,

Γl, if X < σt,
(43)

where Γl and σ are determined by the Rankine-Hugoniot conditions, that is:

ΓlP (Γl) = V 2
0 ,

σ = −V0
Γl
.

(44)

[Revista Integración, temas de matemáticas



Hyperbolicity and genuine nonlinearity conditions for certain p-systems of conservation laws 25

We observe that the system (44) has an unique solution (σ,Γl) provided the first equation
has an unique solution for Γl. We denote such solution by S(V0), and because of the
relation between V0 and Γl, by S(Γl) as well. Concerning solvability of the first equation,
we notice the following fact.

Lemma 4.11. Let P (0) = 0, lim
Γ→−1+

P (Γ) = −∞ and for all Γ ∈ (−1, 0), P ′(Γ) > 0.

Then, for each V0 > 0 there exists an unique Γl ∈ (−1, 0) such that ΓlP (Γl) = V 2
0 .

Proof. Let H(Γ) := ΓP (Γ). Then H ′(Γ) = P (Γ) + ΓP ′(Γ) < 0 for all Γ ∈ (−1, 0),
therefore H(Γ) is decreasing. Since H(0) = 0 and lim

Γ→−1+
P (Γ) = −∞, we conclude that

for each V0 > 0, there exists an unique Γl ∈ (−1, 0) such that ΓlP (Γl) = V 2
0 . �XXX

Proof of Theorem 4.10

We verify that S(Γl) is indeed a weak solution of IBV PV0
(19), (41), i.e., we verify

that S(Γl) satisfies the equations (38) and (39) for all test functions ϕ and ψ, with ϕ
restricted by the condition ϕ(0, t) = 0. We also assume that P (0) = 0. Here f(X) = −V0,
g(X) = 0, and h(t) = 0 in (37). We verify (38) first. Its left-hand side is:

∫ ∞

0

∫ ∞

0

(V ϕt − P (Γ)ϕX)dtdX +

∫ ∞

0

f(X)ϕ(X, 0)dX

=− V0

∫ ∞

0

∫ X/σ

0

ϕtdtdX +

∫ ∞

0

∫ ∞

X/σ

0 · ϕtdtdX − P (Γl)

∫ ∞

0

∫ σt

0

ϕXdXdt

− P (0)

∫ ∞

0

∫ ∞

σt

ϕXdXdt− V0

∫ ∞

0

ϕ(X, 0)dX

=− V0

∫ ∞

0

ϕ(X,X/σ)dX + V0

∫ ∞

0

ϕ(X, 0)dX − P (Γl)

∫ ∞

0

ϕ(σt, t)dt

+ P (Γl)

∫ ∞

0

ϕ(0, t)dt− V0

∫ ∞

0

ϕ(X, 0)dX

=− V0

∫ ∞

0

ϕ(X,X/σ)dX − P (Γl)

σ

∫ ∞

0

ϕ(X,X/σ)dX,

which is zero due to (44), so that (38) holds. Next, for the left-hand side of (39) we have:

∫ ∞

0

∫ ∞

0

(Γψt − V ψX)dtdX

=

∫ ∞

0

∫ X/σ

0

0 · ψtdtdX + Γl

∫ ∞

0

∫ ∞

X/σ

ψtdtdX −
∫ ∞

0

∫ σt

0

0 · ψXdXdt

+ V0

∫ ∞

0

∫ ∞

σt

ψXdXdt

=Γl

∫ ∞

0

∫ ∞

X/σ

ψtdtdX + V0

∫ ∞

0

∫ ∞

σt

ψXdXdt

=− Γl

∫ ∞

0

ψ(X,X/σ)dX − V0
σ

∫ ∞

0

ψ(X,X/σ)dX,
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which is zero due to (44), so that (39) holds.

5. Entropy condition and entropy solution for a p-system

The entropy/entropy-flux pair for a p-system is a pair of real valued C2(R2) functions
Φ(V,Γ) and Ψ(V,Γ), where Φ is convex, and such that

DΦ(V,Γ)DF (V,Γ) = DΨ(V,Γ), (45)

where F (V,Γ) = (−P (Γ),−V ). Working out that condition one obtains

ΨV = −ΦΓ,

ΨΓ = −P ′(Γ)ΦV .
(46)

Now, the integrability condition of the system (46) for Ψ is

ΦΓΓ − P ′(Γ)ΦV V = 0. (47)

Given a convex function Φ that fulfills this equation, we can obtain Ψ by solving the
system (46).

Definition 5.1. A weak solution V (X, t), Γ(X, t) of an IBVP is an entropy solution
provided for each nonnegative ϕ ∈ C∞

0 ((0,∞) × (0,∞)) and for each entropy/entropy-
flux pair Φ,Ψ it holds

∫ ∞

0

∫ ∞

0

[Φ(V,Γ)ϕt(X, t) + Ψ(V,Γ)ϕX(X, t)]dXdt ≥ 0. (48)

We refer to (48) as the entropy condition corresponding to (Φ,Ψ).

Remark 5.2. If a trivial solution (V,Γ) = (0, 0) is a solution of an IBVP, then it is an
entropy solution.

The following proposition translates the entropy condition (48) into a jump condition for
piecewise continuous weak solutions.

Proposition 5.3. Suppose that u = (V,Γ) is a piecewise continuous weak solution of
(4) that satisfies the entropy condition corresponding to (Φ,Ψ). Suppose u has a jump
discontinuity along a shock curve with slope σ. Then,

σ[Φ(u)] − [Ψ(u)] ≥ 0. (49)

We call (49) the entropy jump condition corresponding to (Φ,Ψ).

Proof. We demonstrate (49), for our solution, (42) and (43).

Here u = (V,Γ) satisfies the inequality (48); therefore, we get

(

∫

∞

0

ϕ(X,X/σ)dX
)

(Φ(−V0, 0)− Φ(0,Γ)) +
(

∫

∞

0

ϕ(tσ, t)dt
)

(Ψ(0,Γ)−Ψ(−V0, 0)) ≥ 0.
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And after the substitution X = tσ, in the integral with respect to t, we obtain:

(

∫

∞

0

ϕ(X,X/σ)dX
)

[

(Φ(−V0, 0)− Φ(0,Γ)) +
1

σ
((Ψ(0,Γ)−Ψ(−V0, 0))

]

≥ 0.

Here ϕ ≥ 0, therefore this last inequality is equivalent to

Φ(−V0, 0)− Φ(0,Γ) ≥
Ψ(−V0, 0)−Ψ(0,Γ)

σ
, (50)

whose compact form is (49). �XXX

The following theorem states that in the case of genuine nonlinear systems, the entropy
condition is satisfied for Γ sufficiently close to zero.

Theorem 5.4. If P (0) = 0, P ′(0) > 0 and P ′′(0) < 0, then for each entropy/entropy-flux
pair (Φ,Ψ), where Φ is strictly convex, S(Γ) satisfies the entropy condition corresponding
to (Φ,Ψ), for all Γ sufficiently close to zero and Γ ≤ 0.

Proof. The proof is based on Taylor’s expansion formula. We notice that for Γ = 0,
S(0) = 0. Therefore by Remark 5.2 this solution is an entropy solution. Now, we consider
Γ < 0. Let ǫ = −V0; then ǫ = −

√
ΓP (Γ), and σ = ǫ

Γ . Define

E(Γ) =
ǫ

Γ
[Φ(0,Γ)− Φ(ǫ, 0)]− [Ψ(0,Γ)−Ψ(ǫ, 0)].

Consequently, the entropy jump condition, (49), holds if and only if E(Γ) ≤ 0. We now
let a “prime” indicate differentiation with respect to Γ . Notice that

lim
Γ→0−

( ǫ
Γ

)
=
√
P ′(0) and lim

Γ→0−

( ǫ
Γ

)′
=

P ′′(0)√
P ′(0)

.

Thus, lim
Γ→0−

E(Γ) = 0. Now, using (46) we obtain

E′(Γ) =
( ǫ
Γ

)′
[Φ(0,Γ)− Φ(ǫ, 0)] +

ǫ

Γ
[ΦΓ(0,Γ)− Φǫ(ǫ, 0)ǫ

′] + Φǫ(0,Γ)P
′(Γ)− ΦΓ(ǫ, 0)ǫ

′.

Thus,

lim
Γ→0−

E′(Γ) =
√
P ′(0)

(
ΦΓ(0, 0)− Φǫ(0, 0)

√
P ′(0)

)

+Φǫ(0, 0)P
′(0)− ΦΓ(0, 0)

√
P ′(0) = 0.

Furthermore,

E′′(Γ) =
( ǫ
Γ

)′′(
Φ(0,Γ)− Φ(ǫ, 0)

)
+ 2
( ǫ
Γ

)′(
ΦΓ(0,Γ)− Φǫ(ǫ, 0)ǫ

′
)

+
( ǫ
Γ

)(
ΦΓΓ(0,Γ)− ǫ′′Φǫ(ǫ, 0)− Φǫǫ(ǫ, 0)(ǫ

′)2
)
+ P ′′(Γ)Φǫ(0,Γ)

+ P ′(Γ)ΦǫΓ(0,Γ)− ǫ′′ΦΓ(ǫ, 0)− (ǫ′)2ΦΓǫ(ǫ, 0).
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Hence,

lim
Γ→0−

E′′(Γ) =2

(
P ′′(0)

4
√
P ′(0)

)[
ΦΓ(0, 0)− Φǫ(0, 0)

√
P ′(0)

]

+
√
P ′(0)

[
ΦΓΓ(0, 0)−

P ′′(0)

2
√
P ′(0)

Φǫ(0, 0)− Φǫǫ(0, 0)P
′(0)

]

+ P ′′(0)Φǫ(0, 0) + P ′(0)ΦǫΓ(0, 0)−
P ′′(0)

2
√
P ′(0)

ΦΓ(0, 0)− P ′(0)ΦΓǫ(0, 0) = 0.

Finally,

E′′′(Γ) =
( ǫ
Γ

)′′′(
Φ(0,Γ)− Φ(ǫ, 0)

)
+ 3
( ǫ
Γ

)′′(
ΦΓ(0,Γ)− Φǫ(ǫ, 0)ǫ

′
)
+

3
( ǫ
Γ

)′(
ΦΓΓ(0,Γ)− ǫ′′Φǫ(ǫ, 0)− (ǫ′)2Φǫǫ(ǫ, 0)

)
+

( ǫ
Γ

)[
ΦΓΓΓ(0,Γ)− ǫ′′′Φǫ(ǫ, 0)− 3ǫ′ǫ′′Φǫǫ(ǫ, 0)− (ǫ′)3Φǫǫǫ(ǫ, 0)

]
+

P ′′′(Γ)Φǫ(0,Γ) + 2P ′′(Γ)ΦǫΓ(0,Γ) + P ′(Γ)ΦǫΓΓ(0,Γ)− ǫ′′′ΦΓ(ǫ, 0)

− 3ǫ′ǫ′′ΦΓǫ(ǫ, 0)− (ǫ′)3ΦΓǫǫ(ǫ, 0).

Therefore,

lim
Γ→0−

E′′′(Γ) = −3

[
(1/4)(P ′′(0))2 − (2/3)P ′(0)P ′′′(0)

4
(√

P ′(0)
)3

][
ΦΓ(0, 0)− Φǫ(0, 0)

√
P ′(0)

]

+
3P ′′(0)

4
√
P ′(0)

[
ΦΓΓ(0, 0)−

P ′′(0)

2
√
P ′(0)

Φǫ(0, 0)− Φǫǫ(0, 0)P
′(0)

]

+
√
P ′(0)

[
ΦΓΓΓ(0, 0)−

(
4P ′(0)P ′′′(0)− (3/2)(P ′′(0))2

8(P ′(0))3/2

)
Φǫ(0, 0)

− 3
√
P ′(0)P ′′(0)

2
√
P ′(0)

Φǫǫ(0, 0)−
(√

P ′(0)
)3
Φǫǫǫ(0, 0)

]
+ P ′′′(0)Φǫ(0, 0)

+ 2P ′′(0)ΦǫΓ(0, 0) + P ′(0)ΦǫΓΓ(0, 0)−
(
4P ′(0)P ′′′(0)− (3/2)(P ′′(0))2

8(P ′(0))3/2

)
ΦΓ(0, 0)

− 3
√
P ′(0)P ′′(0)

2
√
P ′(0)

ΦΓǫ(0, 0)−
(√

P ′(0)
)3
ΦΓǫǫ(0, 0).

However, from (47) it follows that

ΦΓΓ(ǫ,Γ)− Φǫǫ(ǫ,Γ)P
′(Γ) = 0,

ΦΓΓǫ(ǫ,Γ)− Φǫǫǫ(ǫ,Γ)P
′(Γ) = 0,

and
ΦΓΓΓ(ǫ,Γ)− P ′′(Γ)Φǫǫ(ǫ,Γ)− ΦǫǫΓ(ǫ,Γ)P

′(Γ) = 0.
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Consequently,

lim
Γ→0−

E′′′(Γ) = −1

2
P ′′(0)[

√
P ′(0)Φǫǫ(0, 0)− ΦΓǫ(0, 0)]. (51)

On the other hand, since Φ is strictly convex, we know that for all nonzero (a, b) ∈ R
2

Φǫǫ(0, 0)a
2 + 2ΦǫΓ(0, 0)ab+ΦΓΓ(0, 0)b

2 > 0. (52)

Now, we demonstrate that the expression
√
P ′(0)Φǫǫ(0, 0) − ΦΓǫ(0, 0) in (51) can be

rewritten in a form of the left hand side of (52) with a and b appropriately chosen. To
prove that, we modify this expression by an additive, equal to zero term αΦΓΓ(0, 0) −
αΦǫǫ(0, 0)P

′(0), with α to be determined. Thus a and b have to be chosen so that

(
√
P ′(0)− αP ′(0))Φǫǫ − ΦΓǫ + αΦΓΓ = Φǫǫa

2 + 2ΦǫΓab+ΦΓΓb
2 (53)

holds, where the derivatives of Φ are at (0, 0). Consequently, we require that

a2 =
√
P ′(0)− αP ′(0),

2ab = −1,

α = b2.

Solving the system for a, b and α, we get a = ±
4
√

P ′(0)
√
2

, b = ∓ 1√
2 4
√

P ′(0)
, and α = 1

2
√

P ′(0)
.

In this way, we conclude from (51) that lim
Γ→0−

E′′′(Γ) > 0. Now, to conclude the proof,

we use the following two lemmas, whose proofs are straightforward.

Lemma 5.5. Let f and f ′ be continuous functions for Γ < 0. If lim
Γ→0−

f(Γ) = 0 and

lim
Γ→0−

f ′(Γ) > 0, then there exists Γ0 ∈ (−1, 0) such that f(Γ) < 0 for Γ0 < Γ < 0.

Lemma 5.6. Let f and f ′ be continuous functions for Γ < 0. If lim
Γ→0−

f(Γ) = 0 and

lim
Γ→0−

f ′(Γ) < 0, then, f(Γ) > 0 for Γ1 < Γ < 0, where Γ1 ∈ (−1, 0).

Applying Lemma 5.5 with f(Γ) = E′′(Γ), we conclude that E′′(Γ) < 0 for Γ close to
zero and, using Lemma 5.6, with f(Γ) = E′(Γ), we infer that E′(Γ) > 0 near zero.
Thus, using Lemma 5.5 again, now, with f(Γ) = E(Γ), we conclude that E(Γ) < 0 near
zero. �XXX

5.1. Entropy condition for a solution of IBV PV0

It is difficult to describe explicitly all entropy functions Φ. Nevertheless, employing
separation of variables, we can figure out one of them, which we shall call a standard
entropy function. For this purpose we set Φ(V,Γ) = a(V ) + b(Γ), where a and b are
functions to be determined. Substituting it in (47), we obtain

a′′(V ) = b′′(Γ)
P ′(Γ) . Since V and Γ are independent variables, therefore there exists a constant

denoted by c such that a′′(V ) = b′′(Γ)
P ′(Γ) = c, which implies that:

a(V ) = c
V 2

2
+ c1V + c2; with c1, c2 ∈ R,
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and

b(Γ) = c

∫ Γ

0

P (w)dw + c3Γ + c4; c3, c4 ∈ R.

Thus, putting c1 = c2 = c3 = c4 = 0, we get Φ(V,Γ) = cV
2

2 + c
∫ Γ

0
P (w)dw. Substituting

Φ into (46), it results in

ΨV = −cP (Γ),
ΨΓ = −cV P ′(Γ).

(54)

A solution of the system (54) is Ψ(V,Γ) = −cV P (Γ). Notice that, strict convexity of Φ
implies that c > 0 and P ′(Γ) > 0. Thus, without loss of generality, we may put c = 1,
thereby we obtain

Φ(V,Γ) =
V 2

2
+

∫ Γ

0

P (w)dw (55)

and
Ψ(V,Γ) = −P (Γ)V. (56)

The function (55) is well known entropy function for a p-system [5], which we call a stan-
dard entropy function. For the solution S(Γl), (44), the condition (48) can be simplified

into (49). Here, P (0) = 0, Φ(−V0, 0) = V 2
0

2 , Φ(Γ, 0) =
∫ Γ

0 P (w)dw, Ψ(−V0, 0) = 0, and
Ψ(0,Γ) = 0, so that (49) becomes

2

∫ Γl

0

P (w)dw ≤ ΓlP (Γl). (57)

This is the entropy condition for S(Γl) corresponding to a standard entropy function,
(55), and Ψ given by (56).

Remark 5.7. The assertion of Theorem 5.4 does not say how far from 0 the inequality still
holds or it already does not hold. It is rather difficult, except for a linear case, to answer
this question without having more particular information about the entropy functions.
That is why we concentrate ourselves on studying the inequality (57) for previously listed
models of elastic materials.

We notice the following facts, which clarify the importance of genuine nonlinearity con-
dition in studying the entropy condition (57).

Lemma 5.8. If P (0) = 0 and P
′′

(Γ) < 0 for all Γ ∈ (−1, 0), then S(Γl) satisfies (57) for
all Γl ∈ (−1, 0].

Proof. Consider the function G(Γl) = 2
∫ Γl

0 P (w)dw−ΓlP (Γl); so, G′′ = −ΓlP
′′. There-

fore G′ is decreasing for −1 < Γl < 0. Since G′(0) = 0, we obtain that G′(Γl) > 0 for
−1 < Γl < 0. Consequently, G(Γl) < 0 for Γl ∈ (−1, 0). �XXX

Similarly we have the following proposition:

Lemma 5.9. If P (0) = 0 and P
′′

(Γl) > 0 for Γ < Γl < 0, where Γ ∈ (−1, 0), then
S(Γl) does not satisfy (57). Therefore S(Γl) does not satisfy the entropy condition for
Γ < Γl < 0.
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6. Results on hyperbolicity, genuine nonlinearity and entropy condi-
tion with a standard entropy function

In this section we present the results about the conditions of hyperbolicity (P ′(Γ) > 0),
genuine nonlinearity (P ′′(Γ) < 0) and the entropy condition (see equation (57)) for the
models under consideration. To attain this goal, we use basic techniques of differential
calculus and the Maple software to perform symbolic computation and to study the
graphs of functions.

In some cases it is convenient to use instead of Γ a variable s = Γ+1, restricted by s > 0,
since Γ is subject to Γ > −1.

1. St.Venant-Kirchhoff:

a) It is hyperbolic for all Γ > −1 + 1/
√
3.

b) The condition of genuine nonlinearity is satisfied for all Γ > −1.

c) For all s ∈ (0, 1), S(Γl) do not satisfy the entropy condition.

2. Kirchhoff modified:

a) It is hyperbolic for all Γ > −1 provided a parameter λ
µ satisfies α1 < α < α2,

where α1 and α2 are two positive solutions of the equation

6(5 + 4 log 6)α = 1 + 12α log(3 + 3
√
1 + 12α) +

√
1 + 12α.

An approximate inequality for α is

0.0446567295< α < 1732.05696.

b) P ′′(Γ) < 0 holds only for all s ∈ (0, Sα), where

Sα =

[
α

2
LambertW

(
12e6

α

)]1/4
,

and where LambertW is the inverse of the function wew. Consequently,
P ′′(s) < 0 holds for all s ∈ (0, 1] iff sα > 1, what is equivalent to α > 2.

c) If α ≥ 2, then S(Γl) satisfies the entropy condition for all s ∈ (0, 1).

If 0 < α < 2, then S(Γl) satisfies the entropy condition for all s ∈ (0, se]
and does not for s ∈ (se, 1), where se is a unique solution in (0, 1) of the
equation

s(s+ 1)(1− s)3

2(s− 1− s ln s) ln s
= α.

3. Ogden:

a) It is hyperbolic for all Γ > −1.

b) Satisfies that P ′′(s) < 0 for all s > 0.

c) S(Γl) satisfies the entropy condition, for all s ∈ (0, 1].
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4. Blatz-Ko-Ogden:

a) There are two parameters involved, β = λ
2µ and f ∈ (0, 1).

If β ≥ 1/2, it is hyperbolic for all Γ > −1.

If 0 < β < 1/2, the hyperbolicity condition requires a restriction for f
of the form f > fβ, where fβ is a certain number in (0, 1) determined
according to fβ = maxs>sβ Q(s, β), where

Q(s, β) =
s2β [(1− 2β)s2β+2 − 3]

s2[(1 + 2β) + s2β+2] + s2β [(1− 2β)s2β+2 − 3]

and

sβ =
( 3

1− 2β

) 1
2β+2 ;

here fβ ≤ 1−2β

1−2β+s2−2β

β

.

b) If β ∈ [1/2, 1], then P ′′(s) < 0 for all s > 0.

If β ∈ (0, 1/2) ∪ (1,∞), then for all s ≤ s0, where

s0 =

[
6

(2β − 1)(β − 1)

] 1
2β+2

,

it holds P ′′(s) < 0.

If β ∈ (0, 1/2)∪(1,∞) and s > s0, then there exists s2 such that P ′′(s) < 0
up to s2 and then it changes its sign.

c) If 0 < β ≤ 5/2, then P ′′(s) < 0 for all s ∈ (0, 1].

An experimentation with plots indicates that for a given value of β > 5/2
there exists fβ ∈ (0, 1) such that S(Γl) satisfies the entropy condition,
for all s ∈ (0, 1], provided f ≥ fβ . If however f < fβ, then there exists
sβ ∈ (0, 1] such that the condition holds for all s ∈ (0, sβ) and does not for
s ∈ (sβ , 1), while at s = 1 it holds again. We have been able to confirm
theoretically such behavior of the condition only for β = n/2 , where n is
an integer and n > 5.
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7. Conclusions

1. A definition of a weak solution of an initial and boundary problem for a p-system, in
the first quadrant of the Xt-plane, is provided. There are two unknown functions
V (X, t) and Γ (X, t). Consequently, there are two initial conditions (at t = 0)
and only one boundary condition (at X = 0). There are four types of boundary
conditions considered: the first, (37), for V (0, t); the second, (40), for Γ (0, t) and
the other two are mixed boundary conditions involving V (0, t) and Γ (0, t), (22)
and (23), respectively. The first two types of boundary conditions are particular
cases of the other two. All of that is consistent with what is known in case of
classical solutions of linear systems [5].

2. A particular weak solution of a p-system, called a compression shock, is constructed.
It satisfies the initial and boundary conditions given by (41), which is a particular
case of (37). This solution, denoted by S (Γl), can be interpreted as an impact
velocity. S (Γl) is constant by parts, having jump discontinuities of V and Γ along
the line X = σt; (V,Γ) = (−V0, 0), for X > σt and (V,Γ) = (0,Γl), X < σt, where
the constants σ > 0 and Γl < 0 are solutions of the Rankine-Hugoniot conditions.

3. For the St.Venant-Kirchhoff model, S(Γl) does not satisfy the entropy condition.
Consequently, we can consider this model as inadequate to describe the compression
shock. For the Kirchhoff modified, Ogden and Blatz-Ogden models we can verify
that they satisfy, under certain restrictions on the parameters, the hypothesis of
the Theorem 5.4. Therefore, for those models S(Γl) satisfies the entropy condition,
for Γl sufficiently close to zero.

4. The Theorem 5.4 does not provide an exact information about the interval for Γl

in which the entropy condition holds. That is why we concentrate on the entropy
condition with a well known in literature [5] entropy/entropy-flux pair (Φ,Ψ), which
we call a standard entropy/entropy-flux pair. We provide the conditions for the
parameters µ,λ, f and for Γl, under which S(Γl) fulfills the entropy condition with
this standard entropy function. This discussion is complete, except of the Blazt-Ko
and Ogden model for β > 5

2 . In this case we clarify the validity of the entropy
condition only for β = n

2 , where n is an integer number greater than 5.

5. An open question remains about the entropy condition with a general entropy
function.

Vol. 35, No. 1, 2017]



34 E. Pérez & K. Rózga

Appendix A: Numerical comparison of the compression shocks for
various models

In this section we obtain numerical values of Γl for the compression shock corresponding

to given values of V0; more specifically, we use Ṽ0 =
ρ0V

2
0

µ . We do this for the following
models: Modified Krchhoff, Ogden and Blatz-Ko-Ogden.

Here Γl is determined by the first equation in (44), which after substituting λ = 2µβ can

be rewritten in the form Q(Γ) = Ṽ0, where

Q(Γ) = Γ
(
µ(1 + Γ)3 − (1 + Γ) + 2β

ln(1 + Γ)

(1 + Γ)

)
(Modified Kirchhoff),

Q(Γ) = Γ
(
2βΓ +

(2 + Γ)Γ

Γ + 1

)
(Ogden model),

Q(Γ) = Γ(1+Γ)
{
f
[
1−(1+Γ)−2β−2

]
+ (1−f)

(1+Γ)4

[
(1+Γ)2β+2−1

]}
(Blatz-Ko-Ogden model).

Ṽ0Γ Ogden M.Kirchhoff Blatz-Ko (f = 0.25) Blat-Ko (f = 0.5)

0.1 -0.1912 -0.217420 -0.373581 -0.447296
0.25 -0.2929 -0.351888 -0.386761 -0.457802
0.5 -0.3978 -0.486632 -0.407276 -0.474264
2 -0.6667 -0.733399 -0.495098 -0.547908
4 -0.7938 -0.818724 -0.559164 -0.604841
10 -0.9063 -0.897073 -0.646584 -0.684415
40 -0.9753 -0.960995 -0.760038 -0.787456

Table 1. β = 0.25

Ṽ0Γ Ogden M.Kirchhoff Blatz-Ko (f = 0.25) Blat-Ko (f = 0.5)

0.1 -0.1764 -0.187793 -0.396762 -0.467705
0.25 -0.2722 -0.294512 -0.406156 -0.475495
0.5 -0.3729 -0.401976 -0.42134 -0.488051
2 -0.6446 -0.638674 -0.495152 -0.550033
4 -0.7808 -0.739561 -0.556282 -0.603611
10 -0.9027 -0.842347 -0.643929 -0.682669
40 -0.9678 -0.9357075 -0.759011 -0.786753

Table 2. β = 0.5
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Ṽ0Γ Ogden M.Kirchhoff Blatz-Ko (f = 0.25) Blat-Ko (f = 0.5)

0.1 -0.1276 -0.123866 -0.516574 -0.571569
0.25 -0.2 -0.189781 -0.518832 -0.573691
0.5 -0.2798 -0.257764 -0.522632 -0.577243
2 -0.5298 -0.440641 -0.546019 -0.598641
4 -0.6951 -0.546173 -0.576544 -0.625725
10 -0.8757 -0.681674 -0.645033 -0.685736
40 -0.9731 -0.843239 -0.758247 -0.786419

Table 3. β = 2

Ṽ0Γ Ogden M.Kirchhoff Blatz-Ko (f = 0.25) Blat-Ko (f = 0.5)

0.1 -0.0909 -0.145165 -0.646008 -0.68264
0.25 -0.1433 -0.223122 -0.646471 -0.683109
0.5 -0.2020 -0.302771 -0.647248 -0.683894
2 -0.3975 -0.506407 -0.652028 -0.688701
4 -0.5501 -0.614488 -0.658692 -0.695328
10 -0.7941 -0.743021 -0.680005 -0.715904
40 -0.9684 -0.881932 -0.759992 -0.788159

Table 4. β = 5
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