DOI:  http://dx.doi.org/10.18273/revint.v35n1-2017003

Original article

A recursive condition for the symmetric nonnegative inverse  eigenvalue  problema

Una condición recursiva para el problema inverso del autovalor para matrices  simétricas no negativas

 

ELVIS RONALD VALERO1

EXEQUIEL MALLEA-ZEPEDA1

EBER LENES2

 

1Universidad de Tarapacá, Departamento de Matemática, Arica, Chile.

2Universidad del Sinú. Elías Bechara Zainum, Departamento de Matemática, Cartagena, Colombia

 

E-mail: evalero@uta.cl 

 

Abstract:

In this paper we present a sufficient condition and a  necessary condition for Symmetric Nonnegative Inverse Eigenvalue Problem. This condition is independent of the existing realizability criteria. This  Criterion is recursive, that is, it determines whether a list A = {Al, ... , An, An+d is realizable by a nonnegative symmetric matrix, if the list M = {MI, ... , Mn} associated to A is realizable. This result is easy to program and improves sorne existing criteria.

Keywords: Inverse problems, eigenvalues, orthogonal matrices, symmetric matrix.

 

Resumen:

En este artículo presentamos una condición suficiente y una condición necesaria para el Problema Inverso de Autovalores para Matrices  Simétricas no Negativas. Esta condición es independiente de los criterios de realizabilidad existentes. Este criterio es recursivo, es decir determina si una lista A = {Al, ... , An, An+d es realizable por una matriz simétrica no negativa, si la lista M = {MI, ... , Mn} asociada a A es realizable. Este resultado es fácil de programar y mejora algunos criterios existentes.

Palabras clave: Problemas inversos, autovalores, matrices ortogonales, matrices simétricas.

 

Received: 9 March 2017,

Accepted: 24 May 2017.

 

Texto completo disponible en PDF

 

 

References

1. Ellard R. and Smigoc H., "Connecting sufficient conditions for the Symmetric Nonnegative Inverse Eigenvalues Problem", Linear Algebra Appl. 498 (2016), 521-552.

2. Fiedler M., "Eigenvalues of Nonnegative Symmetric Matrices", Linear Algebra Appl. 9 (1974),119-142.

3. Guo W., "An Inverse Eigenvalues Problem for Nonnegative Matrices", Linear Algebra Appl. 249 (1996), No. 1-3, 67- 78.

4. Horn A. and Johnson C.R. , Matrix analysis, Cambridge University Press, Cambridge, 1990. Corrected reprint of the 1985 original.

5. Johnson C.R., Laffey T.J. and Loewy R., "The real and the symmetric nonnegative inverse eigenvalue problems are different", Proc. Amer. Math. Soco 124 (1996), No. 12, 3647- 3651.

6. Johnson C.R., Marijuán C. and Pisonero M. , "Ruling out certain 5-spectra for the symmetric nonnegative inverse eigenvalue problem", Linear Algebra Appl. 512 (2017) , 129-135.

7. Loewy R. and London D. , "A note on an inverse problem for nonnegative matrices", Linear Multilinear Algebra 6 (1978) , No. 1, 83- 90.50

8. Loewy R. and McDonald J .J. , "The symmetric nonnegative inverse eigenvalue problem for 5 x 5 matrices", Linear Algebm Appl. 393 (2004) , 275- 298.

9. Meehan M.E. , "Some results on the matrix spectra", Thesis (Ph.D.) , National University of Ireland, Dublin, 1998.

10. McDonald J.J. and Neumann M. , "The Soules approach to the inverse eigenvalues problema for nonnegative symmetric matrices of order n ::; 5", in Contemp. Math. 259, Amer. Math.

Soc.(2000), 387- 407.

11. Radwan N., "An Inverse eigenvalue problem for symmetric and normal matrices", Linear Algebm Appl. 248 (1996) , 101- 109.

12. Soto R.L., "A family of realizability criteria for the real and symmetric nonnegative inverse eigenvalue problem", Numer. Linear Algebm Appl. 20 (2013), No. 2, 336-348.

13. Soto R.L., "Realizability criterion for the symmetric nonnegative inverse eigenvalue problem", Linear Algebm Appl. 416 (2006), No. 2-3, 783- 794.

14. Soto R.L. and Valero E. , "On Symmetric Nonnegative matrices with Prescribed Spectrum", International Mathematical Forum 9 (2014), No. 24, 1161- 1176.

15. Soules G.,"Constructing symmetric nonnegative matrices", Linear Multilinear Algebm 13 (1983), No. 3, 241- 251.

16. Spector O., "A characterization of trace zero symmetric nonnegative 5 x 5 matrices", Linear Algebm Appl. 434 (2011) , No. 4,1000-1017.

17. Torre-Mayo J ., Abril-Raymundo M.R. , Alarcia-Estévez E., Marijuán C., and Pisonero M., "The nonnegative inverse eigenvalue problem from the coefficients of the characteristic polynomial. ELE digraphs", Linear Algebm Appl. 426 (2007) , No. 2-3, 729- 773.

 

To cite this article: E.R. Valero, E. Mallea-Zepeda, E. Lenes, A recursive condition for the symmetric nonnegative inverse eigenvalue problem, Rev. Integr. Temas Mat. 35 (2017), No. 1,37- 50.