DOI: http://dx.doi.org/10.18273/revint.v35n1-2017003
Original article
A recursive condition for the symmetric nonnegative inverse eigenvalue problema
Una condición recursiva para el
problema inverso del autovalor para matrices simétricas no negativas
ELVIS
RONALD VALERO1
EXEQUIEL
MALLEA-ZEPEDA1
EBER
LENES2
1Universidad
de Tarapacá, Departamento de Matemática, Arica, Chile.
2Universidad
del Sinú. Elías Bechara Zainum,
Departamento de Matemática, Cartagena, Colombia
E-mail: evalero@uta.cl
Abstract:
In this paper we
present a sufficient condition and a necessary condition for Symmetric Nonnegative
Inverse Eigenvalue Problem. This condition is independent of the existing realizability criteria. This Criterion is recursive, that is, it
determines whether a list A = {Al, ... , An, An+d is realizable by a nonnegative symmetric matrix,
if the list M = {MI, ... , Mn} associated to A
is realizable. This result is easy to program and improves sorne
existing criteria.
Keywords:
Inverse
problems, eigenvalues, orthogonal matrices, symmetric matrix.
Resumen:
En este
artículo presentamos una condición suficiente y una condición necesaria para el
Problema Inverso de Autovalores para Matrices Simétricas no Negativas. Esta condición es independiente de los criterios de realizabilidad existentes. Este criterio es recursivo, es
decir determina si una lista A = {Al, ... , An, An+d es
realizable por una matriz simétrica no negativa, si la lista M = {MI, ... , Mn} asociada
a A es realizable. Este resultado es fácil de
programar y mejora algunos criterios existentes.
Palabras
clave: Problemas inversos, autovalores,
matrices ortogonales, matrices simétricas.
Received: 9 March 2017,
Accepted: 24 May 2017.
Texto completo disponible en PDF
References
1. Ellard
R. and Smigoc H., "Connecting sufficient
conditions for the Symmetric Nonnegative Inverse Eigenvalues Problem", Linear
Algebra Appl. 498 (2016), 521-552.
2. Fiedler M., "Eigenvalues of
Nonnegative Symmetric Matrices", Linear Algebra Appl. 9 (1974),119-142.
3. Guo W.,
"An Inverse Eigenvalues Problem for Nonnegative Matrices", Linear
Algebra Appl. 249 (1996), No. 1-3, 67- 78.
4. Horn A. and Johnson C.R. , Matrix analysis, Cambridge University Press,
Cambridge, 1990. Corrected reprint of the 1985 original.
5. Johnson C.R., Laffey
T.J. and Loewy R., "The real and the symmetric nonnegative inverse
eigenvalue problems are different", Proc. Amer. Math. Soco 124 (1996), No. 12, 3647- 3651.
6. Johnson C.R., Marijuán
C. and Pisonero M. ,
"Ruling out certain 5-spectra for the symmetric nonnegative inverse
eigenvalue problem", Linear Algebra Appl. 512 (2017) , 129-135.
7. Loewy R. and London D. , "A note on an inverse problem for nonnegative
matrices", Linear Multilinear Algebra 6
(1978) , No. 1, 83- 90.50
8. Loewy R. and McDonald J .J. , "The symmetric nonnegative inverse eigenvalue
problem for 5 x 5 matrices", Linear Algebm
Appl. 393 (2004) , 275- 298.
9. Meehan M.E. ,
"Some results on the matrix spectra", Thesis (Ph.D.) , National
University of Ireland, Dublin, 1998.
10. McDonald J.J. and Neumann M. , "The Soules approach to
the inverse eigenvalues problema for nonnegative
symmetric matrices of order n ::; 5", in Contemp. Math. 259, Amer. Math.
Soc.(2000),
387- 407.
11. Radwan
N., "An Inverse eigenvalue problem for symmetric and normal
matrices", Linear Algebm Appl. 248 (1996) , 101- 109.
12. Soto R.L., "A family of realizability criteria for the real and symmetric
nonnegative inverse eigenvalue problem", Numer.
Linear Algebm Appl. 20 (2013), No. 2, 336-348.
13. Soto R.L., "Realizability criterion for the symmetric nonnegative
inverse eigenvalue problem", Linear Algebm
Appl. 416 (2006), No. 2-3, 783- 794.
14. Soto R.L. and Valero E. , "On Symmetric Nonnegative matrices with Prescribed
Spectrum", International Mathematical Forum 9 (2014), No. 24, 1161-
1176.
15. Soules
G.,"Constructing symmetric nonnegative
matrices", Linear Multilinear Algebm 13 (1983), No. 3, 241- 251.
16. Spector O., "A
characterization of trace zero symmetric nonnegative 5 x 5 matrices", Linear
Algebm Appl. 434 (2011) ,
No. 4,1000-1017.
17. Torre-Mayo J .,
Abril-Raymundo M.R. , Alarcia-Estévez E., Marijuán C., and Pisonero M., "The nonnegative inverse
eigenvalue problem from the coefficients of the characteristic polynomial. ELE
digraphs", Linear Algebm Appl. 426 (2007) , No. 2-3, 729- 773.
To cite this
article: E.R. Valero,
E. Mallea-Zepeda, E. Lenes,
A recursive condition for the symmetric nonnegative inverse eigenvalue problem,
Rev. Integr. Temas
Mat. 35 (2017), No. 1,37- 50.