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Abstract. The fatigue life distribution proposed by Birnbaum and Saun-
ders has been used quite effectively to model times to failure for materials
subject to fatigue. In this article, we introduce an extension of the classical
Birnbaum-Saunders distribution substituting the normal distribution by the
power Student t distribution. The new distribution is more flexible than the
classical Birnbaum-Saunders distribution in terms of asymmetry and kurto-
sis. We discuss maximum likelihood estimation of the model parameters and
associated regression model. Two real data set are analysed and the results
reveal that the proposed model better some other models proposed in the
literature.
Keywords: Birnbaum-Saunders distribution, alpha-power distribution, power
Student t distribution.
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Distribución Birnbaum-Saunders Potencia t

de Student

Resumen. La distribución de probabilidad propuesta por Birnbaum y Saun-
ders se ha usado con bastante eficacia para modelar tiempos de falla de ma-
teriales sujetos a la fátiga. En este artículo definimos una extensión de la
distribución Birnbaum-Saunders clásica sustituyendo la distribución normal
por la distribución potencia t de Student. La nueva distribución es más flexi-
ble que la distribución Birnbaum-Saunders clásica en términos de asimetría
y curtosis. Presentamos los estimadores de máxima verosimilitud de los pa-
rámetros del modelo y su modelo de regresión asociado. El análisis de dos
aplicaciones con datos reales revelan una superioridad del nuevo modelo con

0∗E-mail: gmorenoa@uis.edu.co

Received: 02 November 2015, Accepted: 26 May 2017.
To cite this article: G. Moreno-Arenas, G. Martínez-Flórez, H. Bolfarine, Power Birnbaum-Saunders Stu-
dent t distribution, Rev. Integr. Temas Mat. 35 (2017), No. 1, 51–70.

51



52 G. Moreno-Arenas, G. Martínez-Flórez & H. Bolfarine

relación a otros modelos existentes en la literatura.
Palabras clave: Distribución Birnbaum-Saunders, distribución alfa potencia,
distribución potencia t de Student.

1. Introduction

Motivated by problems of vibration in commercial airplanes that caused fatigue in the
materials, Birnbaum and Saunders introduced in [3] a new probabilistic model for mod-
elling the lifetime of certain structures under dynamic load. The probability density
function (pdf) of a Birnbaum-Saunders random variable T depending on parameters λ
and β is given by

fT (t) =
1√
2π

exp

[
− 1

2λ2

(
t

β
+

β

t
− 2

)]
t−3/2(t+ β)

2λ
√
β

, t > 0, (1)

where λ > 0 is the shape parameter that controls asymmetry and β is a scale parameter.
The parameter β is also the median of the distribution. The pdf (1) is right skewed as
λ increases and symmetric around β as λ gets close to zero. We shall use the notation
T ∼ BS(λ, β). We have kT ∼ BS(λ, kβ), for any k > 0, that is, the BS distribution is
closed under scale transformations. It is also of interest to mention that if T ∼ BS(λ, β),
then T−1 ∼ BS(λ, β−1). It implies that the BS distribution also belongs to the family
of random variables closed under reciprocation; see [25].

The pdf defined in (1) can be obtained as the distribution of the random variable

T = β


λ
2
U +

√(
λ

2
U

)2

+ 1



2

, (2)

where U is a random variable with standard normal distribution, i.e. U ∼ N(0, 1). The
expected value and variance of T are, respectively,

E(T ) = β

(
1 +

λ2

2

)
and V(T ) = (λβ)2

(
1 +

5

4
λ2

)
.

Notice that both mean and variance increase as λ increases. Furthermore, the skewness
and kurtosis of T are, respectively,

skew(T ) =
16λ2(11λ2 + 6)

(5λ2 + 4)3
and kurt(T ) = 3 +

6λ2(93λ2 + 41)

(5λ2 + 4)2
.

Sometimes, the kurtosis and skewness of the fatigue lifetimes data are not completely
explained by the classical BS distribution. To address these two problems, Moreno-
Arenas et al. [20] propose a generalization of the Birnbaum-Saunders distribution referred
to as the proportional hazard Birnbaum-Saunders distribution, which includes a new
parameter that provides more flexibility in terms of skewness and kurtosis.

To address the problem of kurtosis, Díaz-García and Leiva-Sánchez presents in [8] a gen-
eralized Birnbaum-Saunders (GBS) generated from an elliptically contoured distribution
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based on the search for faster-growing life distributions, with a greater or lesser kurtosis
and/or with left tails that are more or less weighted than those of the Birnbaum-Saunders
distribution based on the normal distribution. A GBS distribution is obtained as the dis-
tribution of the random variable T defined in equation (2) where U ∼ EC(0, 1; g), i.e.
U is a random variable following the g-distribution in the family of elliptical contour
densities or simply elliptical distributions. As a special case of the GBS distribution,
we find the Birnbaum-Saunders Student t (GBSt) distribution, this model is more ro-
bust than the classical BS distribution when the data contain a high kurtosis. Gómez
et al. present in [11] an extension of the GBS distribution called the generalized slash
Birnbaum-Saunders (GSBS) model with a view to make it even more flexible in terms
of its kurtosis coefficient. Lemonte in [16] introduced a new extension for the Birnbaum-
Saunders distribution called the Marshall-Olkin extended Birnbaum-Saunders distribu-
tion.

Asymmetric extensions of the classical Birnbaum-Saunders distribution were defined by
Vilca-Labra and Leiva-Sánchez in [27] based on the family of skew-elliptical distribu-
tions; Castillo et al. considered in [5] the asymmetric epsilon-Birnbaum-Saunders dis-
tribution; Cordeiro and Lemonte [6] propose an exponentiated generalized Birnbaum-
Saunders (EGBS) distribution where the EGBS density function can take various forms
depending on its shape parameters. Also, Martínez-Flórez et al. proposed in [18] the
alpha-power Birnbaum-Saunders distribution based in the fractional order statistics dis-
tribution of Durrans (see [9]) as defined in equation (3). The probability density function
of an alpha-power random variable Z depending on α, F and f is given by

ϕf (z;α) = αf(z){F (z)}α−1, z ∈ R, α ∈ R
+, (3)

where F is an absolutely continuous and differentiable distribution function with density
function dF = f . We use the notation Z ∼ PF (α). The parameter α is a shape
parameter that controls the amount of asymmetry in the distribution. When F = Φ and
f = φ are the density and distribution functions of the standard normal, respectively,
then the ϕφ(z;α) is called the power normal distribution, when α = 1 is the normal
distribution. Important properties of this distribution were studied in [12]. For the case
F = Tν , the distribution function of the Student t with ν degrees of freedom, we have
the power Student t family and denoted by Z ∼ PTν(α).

The importance of the PTν distribution lies in the fact that it models the asymmetry
and high kurtosis present in the data, thus the power Student t distribution is more
robust than the power normal distribution and normal distribution. As can be seen from
Figure 1, parameter α controls kurtosis as well as asymmetry. Moreover, note that for
α > 1, the distribution kurtosis is greater than the kurtosis for the Student t distribution
and, for α < 1, the opposite occurs. On the other hand, the PTν(α) is asymmetric for
α > 1 and symmetric otherwise.

An extension of the BS distribution to regression models has been considered in [24]
which became known as the log-linear BS regression model and Martínez-Flórez et al. in
[19] generalized this model for the log-linear BS power model. In this paper, in addition
to the existing BS models available in the statistical literature, we propose a power
Birnbaum-Saunders Student t distribution and the log-linear power Birnbaum-Saunders
Student t regression model. We expect that by replacing the normal distribution by
such more general family, a more flexible BS is obtained. Asymmetry in the alpha-power
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Figure 1. Density PTν(α) with ν = 10 and α = 5, (solid line), α = 2 (dashed line), α = 1 (dotted line)
and α = 0.5 (dotted dashed line).

family is controlled by a parameter, which will also control asymmetry in the extended
BS family. The flexibility of the proposed family is demonstrated by plotting the density
for different parameters combinations. Model flexibility make it adequate for fitting data
with asymmetry as well as outlying observations. Such aspects of the proposed model
are seen in the application studied for which the proposed model outperforms previous
competitors in terms of fitting.

The paper is outlined as follows. In Section 2, we introduce the power Birnbaum-Saunders
Student t distribution and some general properties are presented. In Section 3 maxi-
mum likelihood estimation is discussed. In Section 4, we introduce the log-linear power
Birnbaum-Saunders Student t regression model. The potentiality of the new models is
illustrated by means of applications in three real data sets in Section 5. Finally, Section 6
ends the paper with some concluding remarks.

2. Power Birnbaum-Saunders Student t distribution

Suppose that we have a system with α independent components and that the system fails
if all individual components fail. Suppose that T1, . . . , Tα represent the survival times of
the individual components, which for λ > 0 and β > 0 can be represented by using the
random variables

aTj
=

1

λ

(√
Tj

β
−
√

β

Tj

)
, (4)
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which are independent and identically distributed (iid) with Student t distribution with
ν degrees of freedom. Therefore, if T denotes the system failure time, and since the Tj

are iid with Student t distribution, then its distribution function is given by:

FT (t) = P [T ≤ t] = P [T1 ≤ t, T2 ≤ t, . . . , Tα ≤ t] =

α∏

i=1

Tν(ati) = {Tν(at)}α .

Therefore, the probability density function of T is given by the expression

ϕT (t;λ, β, α) = αtν(at){Tν(at)}α−1 t
−3/2[t+ β]

2λβ1/2
, (5)

where

at = at(λ, β) =
1

λ

(√
t

β
−
√

β

t

)
,

which is an expression similar to the probability density function of the random variable
PTν(α). Hence, following [9] approach, we propose to generalize the BS distribution con-
sidering an α-fractionary order statistics for α ∈ R

+. The new BS model is an alternative
to the classical BS distribution adequate to situations where the fatigue process presents
high degree of asymmetry and kurtosis that are outside the ranges allowed by the clas-
sical BS distribution. Note that in the particular case when α = 1, the pdf (5) coincides
with the Generalized BS Student t distribution proposed in [8]. Moreover, for α = 2,
we obtain the asymmetric GBSt model with asymmetry parameter equal to 1, studied
in [27]. The inclusion of the shape parameter α makes more flexible the asymmetry of
the distribution. Moreover, the inclusion of the degrees of freedom ν of the Student t
distribution makes it possible to have more flexibility with the kurtosis.

Definition 2.1. It is said that a random variable T follows a power Birnbaum-Saunders
Student t distribution, if T can be written as

T = β


λ
2
Z +

√(
λ

2
Z

)2

+ 1



2

, (6)

where Z ∼ PTν(α), λ and α are parameters that control distributional shape and β > 0
is a scale parameter. We denote T ∼ PBSTν(λ, β, α).

Properties:

Property 1. Let T ∼ PBSTν(λ, β, α). Then, the probability density function for
T is given by

ϕ(t; θ) = αtν(at){Tν(at)}α−1 t
−3/2[t+ β]

2λβ1/2

=
αΓ(v+1

2 )

(vπ)1/2Γ(v2 )

[
1 +

1

vλ2

(
t

β
+

β

t
− 2

)]− v+1

2

{Tν(at)}α−1 t
−3/2[t+ β]

2λβ1/2
,

where θ = (λ, β, α).
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Property 2. Let T ∼ PBSTν(λ, β, α). Then, the cumulative distribution function
of T is given by

F(t;λ, β, α) = {Tν(at)}α.

Hence, the inversion approach can be used to generate random numbers with dis-
tribution T ∼ PBSTν(λ, β, α) from the standard PTν(α).

Property 3. Let T ∼ PBSTν(λ, β, α). If ν → ∞, then

PBSTν(λ, β, α) → PNBS(λ, β, α),

where PNBS means the power normal Birnbaum-Saunders distribution defined by
[18].

Property 4. Let T ∼ PBSTν(λ, β, α). If ν = 1 then, we obtain the power Cauchy
Birnbaum-Saunders distribution with probability density function given by

ϕ(t;λ, β, α) = α

[
1
2 + 1

π arctan(at)
]α−1

[
1 + 1

vλ2

(
t
β + β

t − 2
)] t

−3/2[t+ β]

2λβ1/2
.

Property 5. The p-th percentile of the PBSTν(λ, β, α), tp = T−1
ν (p;λ, β, α), is

given by

tp = β


λ
2
zp,ν +

√(
λ

2
zp,ν

)2

+ 1



2

,

where zp,ν is the p-th percentile of the distribution PTν(α), given by zp,ν =
T−1
ν (p1/α).

Property 6. Let T ∼ PBSTν(λ, β, α). Then, kT ∼ PBSTν(λ, kβ, α) for k > 0.

Property 7. The survivor function, cumulative risk function, risk and inverted
risk functions for model PBSTν are given, respectively, by

S(t) = 1− {Tν(at(λ, β))}α, H(t) = − log[S(t)],

r(t) = rGBSt(t)
α{Tν(at)}α−1 − {Tν(at)}α

1− {Tν(at)}α
and R(t) = αRGBSt(t),

where rGBSt(t) and RGBSt(t) are the indices for the risk and inverted risk for the
GBSt model, that is, the inverse risk rate is proportional to the risk rate for the
GBSt distribution. Hence, the intervals where R(t) is decreasing or increasing, are
the same intervals where RGBSt(t) is decreasing or increasing.

The properties 1–7 follow from the definition of the distribution PBST in Equation 6
upon using suitable transformations. The details of the calculations can be obtained
from the authors upon request.

Figure 2 depicts PBSTν with 5 degrees of freedom and with α equal to 0.8, 1, 2 and 3.
From these figures, note that as λ changes also changes the asymmetry and kurtosis for
the distribution. Increasing λ makes the distribution more platykurtic. Differences can
be noticed with the GBSt with α = 1, depicted with dotted line.
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Figure 2. Plots for density function PBSTν=5(t; λ, β, α), for β = 1 and with α = 0.8 (dashed and
dotted line), α = 1 (dotted line), α = 2 (dashed line) and α = 3 (solid line).

Moments of the PBSTν(λ, β, α) distribution

Moments of the random variable Z ∼ PTν(α) have no closed form, but they can be
generally represented as

E(Zn) = α

∫ 1

0

[T−1
ν (z)]nzα−1dz. (7)

Theorem 2.2. Let T ∼ PBSTν(λ, β, α) and Z ∼ PTν(α). Then, E(T n) exists if and

only if

E

[(
λZ

2

)k+l ((
λZ

2

)
+ 1

) k−l
2

]
(8)

exists for k = 1, 2, . . . , n with l = 0, 1, . . . , k.

Theorem 2.3. Let T ∼ PBSTν(λ, β, α) and Z ∼ PTν(α). If E[Zr] exists for r = 1, 2, . . . ,
then

µr = E(T r) = βr
∑

[0≤k≤r/2]

(
r

2k

)(
1

2

)2k 2k∑

j=0

(
2k

j

)
E[(λZ)4k−j(λ2Z2 + 4)j/2] (9)

+ βr
∑

[0≤k<r/2]

(
r

2k + 1

)(
1

2

)2k+1 2k+1∑

j=0

(
2k + 1

j

)
E[(λZ)4k+2−j(λ2Z2 + 4)j/2],

where [·] corresponds to the sum of the integer part of the subscripts.

Remark 2.4. The central moments, µ′
r = E(T − E(T ))r, for r = 2, 3, 4 can be obtained

using µ′
2 = µ2 − µ2

1, µ′
3 = µ3 − 3µ2µ1 + 2µ3

1 and µ′
4 = µ4 − 4µ3µ1 + 6µ2µ

2
1 − 3µ4

1.
Hence, variance, variation coefficient, asymmetry and kurtosis can be obtained by using:

σ2
T = V(T ) = µ′

2, cv =

√
σ2
T

µ1
,
√
β1 =

µ′
3

[µ′
2]

3/2
and β2 =

µ′
4

[µ′
2]

2
.
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3. Inference for the PBSTν(λ, β, α) distribution

We now address the process of estimating the parameters of the PBSTν(λ, β, α) model.
At this point it should be emphasized that being ν an unknown value in the model,
this should be estimated in this process. However, several authors have pointed out
the difficulty in estimating ν due to problems of unbounded and local maximum in the
likelihood function, see for example, [2], [10], [13], [22], [26], among others. In practical
situations, we can also establish different values of ν in an interval [n1, n2] with n1, n2 ∈ N.
This process, although a bit extensive in some cases is easy to carry out. The suggestion
given by [2] and [13] is to initially establish this value and find the maximum likelihood
estimators of the model as if ν was known. In this sense, suppose that ν is known and
let T = (t1, . . . , tn)

⊤ is a random sample of size n from the PBSTν(λ, β, α) distribution.
The log-likelihood function for θ = (λ, β, α)⊤ given T can be written as

ℓ(θ;T) = n
[
log(α) − log(2λ)− 1

2 log(β)− 1
2 log(2π)

]
+
∑n

i=1 log(ti + β)

− 3
2

∑n
i=1 log(ti) + n

[
log
(
Γ
(
ν+1
2

))
− 1

2 log(νπ)− log
(
Γ
(
ν
2

))]

− ν+1
2

∑n
i=1 log

[
1 +

ati

ν

]
+ (α− 1)

∑n
i=1 log(Tν(ati)). (10)

Formally, the partial derivative with respect to θ of the ℓ(θ;T) is called the score. The
score function is denoted by U(θ) = (U(λ), U(β), U(α))⊤ , so that the score equations
follow by equating scores to zero, leading to the following equations:

U(α) =
n

α
+

n∑

i=1

log (Tν(ati)) = 0,

U(λ) = −n

λ
+

1

λ

n∑

i=1

pia
2
ti −

α− 1

λ

n∑

i=1

atiwi = 0

and

U(β) = − n

2β
+

n∑

i=1

1

β + ti
+

1

2λ2

n∑

i=1

pi

[
ti
β2

− 1

ti

]
− α− 1

2λβ

n∑

i=1

[√
ti
β
+

√
β

ti

]
wi = 0,

where pi =
ν+1
ν+a2

ti

and wi =
tν(ati

)

Tν(ati
) . Numerical procedures are required for solving the

above equations.

If ℓ(θ;T) is twice differentiable with respect to θ, and under certain regularity conditions,
then the Fisher information may be written as

I(θ) = −E

[
∂2

∂θ2
ℓ(T; θ)

∣∣∣∣ θ
]
.

It can be shown that for α = 1 the rows (or columns) of the matrix I(θ) are linearly
independent. This guaranties existence of the inverse of the Fisher information matrix
when α = 1 so that ordinary large sample properties of the likelihood ratio and Wald
type statistics are satisfied. Thus, the hypothesis H0 : α = 1, versus H1 : α 6= 1 that
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compares the generalized Birnabum-Saunder Student t model against the PBSTν model
can be performed using the likelihood ratio statistics.

The rejection of the hypothesis H0 : α = 1, corroborates the presence of asymmetry in
the data and therefore a power Birnabum-Saunder Student t distribution can better fit
the data compared with the generalized Birnabum-Saunder Student t distribution.

4. Log-linear PBSTν regression model

Similarly as the sinh-normal distribution was defined by [24], now we define the power-
sinh-Student t (PSHT) distribution as the random variable with density function given
by

fY (y) = α

2
λ cosh

(
y−γ
η

)

η
tν

(
2

λ
sinh

(
y − γ

η

)){
Tν

(
2

λ
sinh

(
y − γ

η

))}α−1

. (11)

We denote by Y ∼ PSHTν(λ, γ, η, α). Figure 3 illustrates the behaviour of the density
(11), we call attention to the bimodal behaviour of the density for parameter values of
λ > 2, in (b) above. On the other hand, for values of λ < 2 in (a) the distribution is
unimodal and in some cases symmetric.
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(a) α = 0.5 and λ = 0.75 (dotted
line) α = 1.0 and λ = 1.5 (dashed
line) α = 5 and λ = 2 (solid line)
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(b) α = 0.5 and λ = 3.0 (dotted
line) α = 1.0 and λ = 4.5 (dashed
line) α = 5 and λ = 7.5 (solid line)

Figure 3. fY (y; γ, λ, η, α), for values ν = 5, γ = 0 and η = 1.

To develop the log-linear PBSTν regression model to follow, it is important to note that
Y = log(T ) ∼ PSHTν(λ, log(β), 2, α) when T ∼ PTBSν(λ, β, α).

Consider Ti ∼ PTBSν(λi, βi, αi) and βi = exp(x⊤
i θ) for i = 1, 2, . . . , n, where

θ⊤ = (θ1, θ2, . . . , θp) is a vector of unknown parameters to be estimated and xi =
(xi1, xi2, . . . , xip)

⊤ is a vector of explanatory variables independent of Ti. There-
fore, since cTi ∼ PTBSν(λi, cβi, αi), we may write Ti = exp(x⊤

i θ)δi, where δi ∼
PTBSν(λ, 1, α).
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Suppose now that Yi = log(Ti), so that we can define the following regression model:

yi = x⊤
i θ + log(δi) = x⊤

i θ + ǫi, i = 1, . . . , n, (12)

where yi is the log-survival (or log-censoring time) for the i-th individual and ǫi ∼
PSHTν(λ, 0, 2, α), i = 1, . . . , n.

We assume that the explanatory variables are independent of the shape parameters and
also assume independence between the observed survival and censoring time. We can
conclude that Yi ∼ PSHTν(λ, x

⊤
i θ, 2, α). It can be shown that E(Yi) 6= x⊤

i θ, so that
the intercept has to be corrected in order that Yi becomes unbiased for its expectation.
Straightforward algebraic manipulations yield E(ǫi) = µǫ and V(ǫi) = 4w2(λ, α) for i =
1, . . . , n. Moreover, since Y1, . . . , Yn are independent random variables, then cov(ǫi, ǫj) =
0. Therefore, making θ∗0 = θ0 + 2w1(λ, α), we have that E(yi) = x⊤

i θ
∗, so that a linear

estimator for θ∗ = (θ∗0 , θ
⊤
1 )

⊤ can be obtained using the ordinary least squares approach,
with solution given by

θ̂∗ = (X⊤X)−1X⊤Y

and covariance matrix

Cov(θ̂∗) = 4w2(λ, α)(X
⊤X)−1.

We then have that an unbiased estimator of w2(λ, α) is given by

ŵ2(λ, α) =
1

4Φ2(α)(n − p)

n∑

i=1

(yi − x⊤
i θ̂

∗)2,

where Φ2(α) is the variance of a standard power Student t random variable.

5. Application to real data

In what follows, we shall present three applications of the proposed models in this paper
to real data for illustrative purposes. We use two real data sets to compare the fit of
the PBST distribution with PNBS, BS and GBSt distributions and an illustration of the
PSHT regression model to compare with the SHN and SHT regression models.

5.1. Fatigue life of 6061-T6 aluminum coupons

We shall consider some actual data analysed previously by Birnbaum and Saunders [3],
related to the fatigue life of 6061-T6 aluminum coupons cut parallel to the direction of
rolling and oscillated at 18 cycles per second to the maximum pressure of 21,000 psi,
with a sample size of 101 units. Descriptive statistics results are summarized in Table 1.
There is indication of a slight asymmetry and that the kurtosis exceeds that of normality,
which might be an indication of a good fitting for the PBSTν model.

We adjust the Birnbaum-Saunders distribution (BS), the power normal Birnbaum-
Saunders distribution (PNBS), generalized Birnbaum-Saunders Student t distribution
(GBSt) and power Birnbaum-Saunders Student t distribution (PBST). The maximum
likelihood estimators were computed by maximizing likelihood using the function optim
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n t s2
√
b1 b2

101 1400.91 1529.10 0.142 2.81

Table 1. Descriptive statistics for data set.

in R program [23]. To begin the maximization process we use as initial points the es-
timates of λ and β from BS distribution obtained by the method of modified moments
(see [21]), and for α we use the method of elementary percentiles with known λ and β
parameters (see [4]). The degrees of freedom were taken as 6 for GBSt and 18 for PBST
models after having carried out multiple intents, from 1-30 degrees of freedom. Results
are presented in Table 2 with AIC (Akaike information criterion defined in [1]) values.

Parameters BS PNBS GBSt6 PBST18

λ 0.310(0.021) 0.099(0.000) 0.2577(0.021) 0.177(0.037)
β 1336.563(40.757) 2135.990(18.591) 1368.291(40.015) 1704.202(118.524)
α – 0.052(0.005) – 0.340(0.133)

AIC 1506.664 1501.092 1501.855 1497.781

Table 2. ML estimates for BS, PNBS, GBStν and PBSTν models.

We use two criteria with the purpose of verifying which model better fits the data. To
compare the performance of the nested models, we use a criterion of [1], namely

AIC = −2ℓ̂(·) + 2k,

where ℓ̂(·) is the maximized likelihood function and k is the number of parameters in
the model. According to this criterion the model with the smallest AIC value is the best
model for fitting data. Then, the AIC indicates a better fit for the PBST18 over GBSt6
model, given that these are nested models. Hence, it seems to pay off using the PBST18

model over GBSt6 model in spite of the fact that it involves an extra parameter.

We also compare the PNBS model with the PBSTν model. Then according to property 3
we can conclude using the AIC criterion that the model PBSTν fits better than the PNBS
model. In addition, it can be corroborated that this model presents better adjustment
than the BS and GBSt models, which justifies the use of a skew model to fit the data
set.

For non-nested models, we use a generalized LR statistic test defined by Vuong [28]. This
test was derived to compare competing models that are strictly non-nested. Being Fθ

and Gζ two non-nested models, f(yi|xi, θ) and g(yi|xi, ζ) two densities corresponding to
these non-nested models, the likelihood ratio statistics to compare both models is given
by

LR
(
θ̂, ζ̂
)
=





1√
n

n∑

i=1

log
f
(
yi|xi, θ̂

)

g
(
yi|xi, ζ̂

)



 ,

which does not follow a chi-square distribution. To overcome this problem, Vuong pro-
posed an alternative approach based on the Kullback-Liebler information criterion. Based
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on the distance between each model and the true process generating the data, namely
the model h0(y|x), he arrived at the statistics

TLR,NN =
1√
n

LR
(
θ̂, ζ̂
)

ŵ
, (13)

where

ŵ2 =
1

n

n∑

i=1


log

f
(
yi|xi, θ̂

)

g
(
yi|xi, ζ̂

)




2

−


 1

n

n∑

i=1

log
f
(
yi|xi, θ̂

)

g
(
yi|xi, ζ̂

)




2

.

For strictly non-nested models, the statistic (13) converges in distribution to a standard
normal distribution under the null hypothesis of equivalence of the models. Thus, the
null hypothesis is not rejected if |TLR,NN | ≤ zp/2. On the other hand, we reject at
significance level p the null hypothesis of equivalence of the models in favor of model Fθ

being better (or worse) than model Gζ if TLR,NN > zp (or TLR,NN < −zp).

We now use (13) for comparing the PBST18 versus BS models fitted to the data, since

they are two non-nested models. Let f
(
yi|xi, θ̂

)
the density corresponding to PBST18

distribution and g
(
yi|xi, ζ̂

)
the BS distribution. The generalized LR test statistic value

is TLR,NN = 2, 277 (p-value < 0,011) then the PBST18 model is significantly better than
the BS models.

To compare the PBST18 versus GBSt6 models fitted to the data, now let g
(
yi|xi, ζ̂

)
the

density corresponding to GBSt6 distribution. The generalized LR test statistic value is
TLR,NN = 14.590 (p-value ≈ 0), then again the PBST18 model is significantly better
than the GBSt6 model. Thus, the PBST18 model is the better model compared with BS
and GBSt models.

More information is provided by a visual comparison of the histogram of the data with the
adjusted density functions. It can be seen in Figure 4 that the BS and GBSt models fail to
adjust the asymmetry in the data. Instead, the PBST18 model captures the asymmetry
and fits the entire kurtosis of the data. Clearly, the new distribution provides a closer fit
to the histogram.

Figure 5-(a) and 5-(b) depicts the qq-plot calculated with the estimates of the parameters
in BS and PNBS models, respectively, note that the adjustment is very poor. Figure 5-(c)
and 5-(d) depicts the qq-plot calculated with the estimates of the parameters in GBSt6
and PBST18 models, respectively. Note that qq-plot for PBST18 model provides better
fit for the data set than the BS, GBSt or GBSt6 models.

5.2. Diameter at breast height of trees

The following application is associated with the distribution of the diameter at breast
height (DBH) of trees. Leiva et al. in [14] consider that the trees die due to several
factors caused by stress according to a phenomenon similar to material fatigue. The
authors consider that the force (rate) of mortality of trees quickly increases at a first
stage and then reaches a maximum. In that moment, this rate slowly decreases until
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Figure 4. Histogram and adjusted models: PBST18 (solid line), PNBS (dashed line), BS (doted line)
and GBSt6 (doted and dashed line).

stabilizing at a constant value in the long term establishing a second stage of such a
rate. BS models have their genesis from a problem of material fatigue and present a
failure or hazard rate (equivalent to the force of mortality) that has the same behaviour
as that of the DBH of trees. This linkage has been possible because the hazard rate of
this distribution has two clearly marked phases that coincide with the force of mortality
of trees. This mortality is related to the diameter at breast height of trees. For its part,
the basal area allows the volume of a tree to be determinate setting thus the production
of a forest. In [14] the data are presented and a statistical methodology is applied based
on the Birnbaum-Saunders and Birnbaum-Saunders Student t distributions.

Median Mean SD CV CS CK Minimum Maximum n
13.70 14.54 3.61 24.84% 2.88 13.97 10.50 39.30 160

Table 3. Descriptive statistics for the DBH data.

After making a descriptive analysis (see Table 3) we adjust the BS, GBStν , PNBS and
PBSTν distributions, the results are presented in Table 4.

In Figure 6 shows the histogram of the data with the adjusted density functions. The
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Figure 5. qq-plots of the adjusted models for fatigue life of 6061-T6 aluminum coupons data.
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Parameters BS PNBS GBSt4 PBST4

λ 0.208(0.011) 0.363(0.033) 0.150(0.011) 0.202(0.015)
β 14.229(0.233) 7.795(0.787) 13.817(0.195) 9.618(0.428)
α – 13.139(4.436) – 8.238(1.981)

AIC 803.552 783.760 782.876 769.088

Table 4. ML estimates for BS, GBSt4, PNBS and PBST4 models.

BS, PNBS and GBSt models fail to adjust the asymmetry in the data and instead, the
PBST4 model captures the asymmetry and fits the entire kurtosis of the data. Clearly,
the new distribution provides a closer fit to the histogram.
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Figure 6. Histogram and adjusted models: BS (dotted and dashed line), PNBS (dashed line), GBSt4
(dotted line) and PBST4 (solid line).

Figure 7 depicts the qq-plot for BS, PNBS, GBSt4 and PBST4 models show clearly that
the PBST4 model fits well the data.

We justify the use of the PBSTν model, this justification is carried out by means of the
hypothesis test

H0 : α = 1 versus H1 : α 6= 1

which compares the GBStν distribution against the PBSTν distribution. Using the like-
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Figure 7. qq-plot of the adjusted models for diameter at breast height of trees data.

lihood ratio statistics, based on

Λ =
LGBSt4(λ̂, β̂)

LPBST4
(λ̂, β̂, α̂)

,

which upon replacing by the corresponding MLEs leads to −2 log(Λ) = 15.788, being
then greater than the corresponding chi-square 5% critical value which is given by 3.84,
so that null hypothesis is rejected and we conclude that the PBST4 model fits the data
better than the GBSt4 model. These results agree with AIC values calculated for these
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two models.

We use (13) again for comparing the BS, PNBS, GBSt4 and PBST4 non-nested models
fitted to the data. For the PBST4 versus BS model, TLR,NN = 6.766 (p-value < 6, 62×
10−12), for the PBST4 versus GBSt4 model, TLR,NN = 5.473 (p-value < 2.21×10−8) and
for the PBST4 versus PNBS model, TLR,NN = 2.254 (p-value < 0,012). Therefore, the
PBST4 model is significantly better than the BS, GBSt4 and PNBS models according
to the generalized LR statistic. Furthermore, the AIC criterion indicates that PBST4

model is significantly better than the GBSt4 model. Consequently, the PBST4 model is
the better model.

5.3. Times to failure in rolling contact fatigue

Lemonte considers in [15] the data set consisting of times to failure (T ) in rolling contact
fatigue of ten hardened steel specimens tested at each of four values of four contact
stress points (X). The data were obtained using a 4-ball rolling contact test rig at the
Princeton Laboratories of Mobil Research and Development Co. The data set was given
initially in [17] and reported in [7]. These data set was also analyzed in [15], who like [7]
considered the regression model

yi = β0 + β1 log(xi) + ǫi, i = 1, . . . , 40,

where yi = log(Ti) and ǫi ∼ SSN(α,−c(α, λ), 2, λ), i = 1, . . . , 40, with

c(α, λ) = 4

∫ ∞

−∞

{sinh(αz/2)}−1
φ(z)Φ(λz)dz.

For this model we have that the MLE and asymptotic standard errors (SE) of the model

parameters are β̂0 = 0.1657(0.1759), β̂1 = −13.8710(1.5887), α̂ = 2.0119(0.3487) and

λ̂ = 1.6423(0.5679) with AIC = 125.36. For more details, properties and uses of the
SSN model, see [15].

For the regression model described above we adjust the sinh-normal (SHN) distribution,
sinh-Student t (SHTν) distribution and alpha-power sinh-Student t (PSHTν) distribution
for ǫi, i = 1, 2, . . . , n. The SHTν model can be obtained as a special case of the PSHTν

model when α = 1. The estimates for the parameters of these models are presented in
Table 5.

Parameters SHN SHT12 PSHT12

β0 0.0978(0.1707) 0.2067(0.1661) -2.3444(0.7924)
β1 -14.1164(1.5714) -13.2759(1.4704) -13.6774(1.3864)
λ 1.2791(0.1438) 1.1193(0.1428) 2.9624(1.0410)
α 5.5156(1.6616)

AIC 129.2352 125.9024 121.3212

Table 5. MLE estimators for models, SHN, SHTν and PSHTν .

Making the correction in the intercept of the PSHTν model we find that β̂∗
0 = 0.1979,

so we estimate the vector θ̂∗ = (0.1979,−13.6774)⊤. It is noteworthy that there are
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no important differences in the adjustment of regression models with SSN and PSHT12

distributed errors, but we can conclude that the regression model with PSHT12 error
distribution provides a better fit than the regression model with SSN error distribution,
because the PSHT12 model yields the smallest values of the AIC statistics and should be
preferred.

We consider now the problem of testing the null hypothesis of no difference between the
SHT12 model and the PSHT12 model, that is,

H0 : α = 1 versus H1 : α 6= 1,

using the likelihood ratio statistics

Λ =
LSHT12

(θ̂)

LPSHT12
(θ̂)

.

Numerical evaluations indicate that

−2 log(Λ) = −2(−59.9512+ 56.6606) = 6.5812,

which is greater than the 5% critical value 3.84. Hence, the null hypothesis is rejected
and we conclude that the PSHT12 model (which involves an extra parameter, making
it more flexible in terms of asymmetry and kurtosis) fits the data better (in fact, much
better) than the SHT12 model.
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Figure 8. Probability histograms for the scaled residuals Z from (a) SHN and (b) SHTν models.

To confirm the good fit of the distributions used for the error term, we plotted the
transformed standardized residual scale Zi = (2/λ) sinh(Yi−x⊤β)/2 for the distribution
of the estimated errors. Under this scale, the distribution of Zi is normal for the SHN
model, while for the SHTν model, Zi is the Student t distribution with ν = 12 degrees
of freedom and for the PSHT12 model, Zi is the PT12 distribution. Figure 8 shows the
scaled residuals Z for the set of models with the indicated theoretical distributions. One
can see the good fit of the model with errors PSHT12. Thus, this model is presented as a
viable alternative to study censored data when the distribution of the response variable
is asymmetric.
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6. Main conclusions

In this paper we develop a new family of distributions which can be used in a variety
of practical situations which present flexible amounts of asymmetry and kurtosis. This
new family corresponds to a generalization of the Birnbaum-Saunders Student t family
of distributions. The density function for this new family is derived, and moments
are studied, particularly, the mean, variance and asymmetry and kurtosis coefficients.
Parameter estimation is considered by using the maximum likelihood approach and model
comparison is implemented by using the generalized likelihood ratio statistics. Real data
applications reveal good performances of the proposed model.
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