DOI: http://dx.doi.org/10.18273/revint.v35n1-2017004
Original article
Power Birnbaum-Saunders Student t distribution
Distribución Birnbaum-Saunders Potencia t de Student
Germán Moreno-Arenas1
Guillermo Martínez-Flórez2
Heleno Bolfarin3
1Universidad
Industrial de Santander, Escuela de Matemáticas, Bucaramanga, Colombia.
2Universidad
de Córdoba, Departamento de Matemáticas y Estadística, Montería, Colombia.
3Universidade
de São Paulo, Departamento de Estatística, São Paulo, Brazil.
E-mail: gmorenoa@uis.edu.co
Abstract:
The fatigue life
distribution proposed by Birnbaum and Saunders has been used quite effectively
to model times to failure for materials subject to fatigue. In this article, we
introduce an extension of the classical Birnbaum-Saunders distribution
substituting the normal distribution by the power Student t distribution. The new distribution is more flexible
than the classical Birnbaum-Saunders distribution in terms of asymmetry and
kurtosis. We discuss maximum likelihood estimation of the model parameters and
associated regression model. Two real data set are analysed and the results
reveal that the proposed model better some other models proposed in the
literature.
Keywords: Birnbaum-Saunders distribution, alpha-power distribution, power Student
t distribution.
Resumen.
La distribución de probabilidad propuesta por Birnbaum
y Saunders se ha usado con bastante eficacia para modelar tiempos de falla de
materiales sujetos a la fátiga. En este artículo definimos una extensión de la
distribución Birnbaum-Saunders clásica sustituyendo la distribución normal por
la distribución potencia t de
Student. La nueva distribución es más flexible que la distribución
Birnbaum-Saunders clásica en términos de asimetría y curtosis. Presentamos los
estimadores de máxima verosimilitud de los parámetros del modelo y su modelo de
regresión asociado. El análisis de dos aplicaciones con datos reales revelan
una superioridad del nuevo modelo con
relación a otros modelos existentes en la literatura
Palabras
clave: Distribución Birnbaum-Saunders, distribución alfa
potencia, distribución potencia t de
Student
Received:
02 November 2015
Accepted:
26 May 2017.
Texto complete disponible
en PDF
References
1. Akaike H., “A new look at statistical model
identification”, IEEE Trans. Automat. Control 19 (1974), No. 6, 716–723.
2.
Berkane M., Kano Y. and Bentler P.M., “Pseudo maximum likelihood estimation in
elliptical theory: effects of misspecification”, Comput. Statist. Data Anal. 18
(1994), No. 2, 255–267.
3. Birnbaum Z.W. and Saunders S.C., “A new family of
life distributions”, J. Appl. Probab. 6 (1969), 319–327.
4. Castillo E. and Hadi A., “A method for estimating
parameters and quantiles of distributions of continuous random variables”,
Comput. Statist. Data Anal. 20 (1995), No. 4, 421–439.
5. Castillo N.O., Gómez H.W. and Bolfarine H.,
“Epsilon Birnbaum-Saunders distribution family: properties and inference”,
Statist. Papers 52 (2011), No. 4, 871–883.
6. Cordeiro G.M. and Lemonte A.J., “The exponentiated
generalized Birnbaum-Saunders distribution”, Appl. Math. Comput. 247 (2014),
762–779.
7. Chan P.S., Ng H.K.T., Balakrishnan N. and Zhou Q.,
“Point and interval estimation for extreme-value regression model under Type-II
censoring”, Comput. Statist. Data Anal. 52 (2008), No. 8, 4040–4058.
8. Díaz-García J.A. and Leiva-Sánchez V., “A new
family of life distributions based on the elliptically contoured
distributions”, J. Statist. Plann. Inference 128 (2005), No. 2, 445–457.
9. Durrans S.R., “Distributions of fractional order
statistics in hydrology”, Water Resources Research 28 (1992), No. 6, 1649–1655.
10. Fernández C. and Steel M., “Multivariate Student t
regression models: Pitfalls and inference”, Biometrika 86 (1999), No. 1,
153–167.
11. Gómez H., Olivares J. and Bolfarine H., “An
extension of the generalized BirnbaumSaunders distribution”, Statist. Probab.
Lett. 79 (2009), 331–338.
12. Gupta R.D. and Gupta R.C., “Analyzing skewed data
by power normal model”, TEST 17 (2008), No. 1, 197–210.
13. Lange K.L., Little R.J.A. and Taylor J.M.G.,
“Robust statistical modeling using the t distribution”, J. Amer. Statist. Assoc.
84 (1989), No. 408, 881–896.
14. Leiva V., Ponce G., Marchant C. and Bustos O.,
“Fatigue statistical distributions useful for modeling diameter and mortality
of trees”, Rev. Colombiana Estadíst. 35 (2012), No. 3, 349–370.
15. Lemonte A.J., “A log-Birnbaum-Saunders regression
model with asymmetric errors”, J. Stat. Comput. Simul. 82 (2012), 1775–1787.
16. Lemonte A.J., “A new extension of the
Birnbaum-Saunders distribution”, Braz. J. Probab. Stat. 27 (2013), 133–149.
17. McCool J.I., “Confidence limits for Weibull
regression with censored data”, IEEE Trans. on Reliability 29 (1980), 145–150.
18. Martínez-Flórez G., Bolfarine H. and Gómez H.W.,
“An alpha-power extension for the Birnbaum-Saunders distribution”, Statistics
48 (2014), No. 4, 896–912.
19. Martínez-Flórez G., Bolfarine H. and Gómez H.W.,
“The log-linear Birnbaum-Saunders power model”, Methodol. Comput. Appl. Probab.
(2016), 1–21.
20. Moreno-Arenas G., Martínez-Flórez G. and
Barrera-Causil C., “Proportional hazard Birnbaum-Saunders distribution with
application to the survival data analysis”, Rev. Colombiana Estadíst. 39
(2016), No. 1, 129–147.
21. Ng H., Kundu D. and Balakrishnan N., “Modified
moment estimation for the two-parameter Birnbaum-Saunders distribution”,
Comput. Statist. Data Anal. 43 (2003), No. 3, 283–298.
22. Paula G., Leiva V., Barros M. and Liu S., “Robust
statistical modeling using the BirnbaumSaunders t distribution applied to
insurance”, Appl. Stoch. Models Bus. Ind. 28 (2012), No. 1, 16–34.
23. R Development Core Team, R: A Language and
Environment for Statistical Computing, R Foundation for Statistical Computing,
Vienna, Austria, 2015.
24. Rieck J.R. and Nedelman J.R., “A log-linear model
for the Birnbaum-Saunders distribution”, Technometrics 33 (1991), No. 1, 51–60.
25. Saunders S.C., “A family of random variables
closed under reciprocation”, J. Amer. Statist. Assoc. 69 (1974), No. 346,
533–539.
26. Taylor J. and Verbyla A., “Joint modelling of
location and scale parameters of the t distribution”, Stat. Model. 4 (2004),
No. 2, 91–112.
27. Vilca-Labra F. and Leiva-Sánchez V., “A new
fatigue life model based on the family of skew-elliptical distributions”, Comm.
Statist. Theory Methods 35 (2006), No. 2, 229–244.
28. Vuong Q., “Likelihood ratio tests for model
selection and non-nested hypotheses”, Econometrica 57 (1989), No. 2, 307–333.
To cite this article: G.
Moreno-Arenas, G. Martínez-Flórez, H.
Bolfarine, Power Birnbaum-Saunders Student t distribution,
Rev.
Integr. Temas Mat. 35 (2017), No. 1, 51–70.