DOI: http://dx.doi.org/10.18273/revint.v35n1-2017008
Original article
A model of competing species that exhibits zip
bifurcation
Un modelo de
especies en competencia que exhibe bifurcación zip
Luis F. Echeverri1
Óscar I. Giraldo2,
Edwin Zarrazola1
1Universidad de Antioquia, Instituto de
Matemáticas, Medellín, Colombia
2Universidad Nacional de Colombia, Escuela de
Matemáticas, Medellín, Colombia
E-mail:
lfecheve@mat.ucm.es
Abstract:
The purpose of this
paper is to present a concrete model of competing population species that
exhibits a phenomenon called zip bifurcation. The Zip Bifurcation was
introduced by Farkas in 1984 for a three dimensional
ODE prey-predator system describing a chemostat. We
will study a three dimensional system of ordinary differential equations that
model the competition of two predators species for one single prey species. The
system is based on concrete trigonometric functions modeling the growth rate of
the prey and the functional response of the predator. The model exhibits
different kinds of behavior and shows examples of the so called “competitive exclusión principle,” and the competition of one
“r-strategist” and one “K-strategist.” Additionally, in order to illustrate the
zip bifurcation, we will present some numerical simulations for our model.
Keywords: Predator prey model,
Zip bifurcation, r-strategist, K-strategist
Resumen:
El objetivo de este trabajo es presentar un modelo concreto de
poblaciones de especies en competición que exhibe la bifurcación Zip. La
bifurcación zip fue introducida por Farkas en 1984 para un sistema tridimensional de ecuaciones
diferenciales ordinarias que describe un quimiostato.
Estudiaremos un sistema tridimensional de ecuaciones diferenciales ordinarias
que modela la competición de dos poblaciones distintas de predadores por una
única población presa. El sistema usa funciones trigonométricas concretas para
representar la tasa de crecimiento de la presa y la respuesta funcional del
predador. El modelo exhibe diferentes clases de comportamientos y muestra
ejemplos de los llamados principio de exclusión competitiva y la competición
Palabras clave: Modelo depredador-presa, Bifurcación Zip, r-estratega, K-estratega
Received: 20 June 2016,
Accepted: 22 June 2017.
Texto complete disponible en PDF
References
1. Angulo F., Olivar G., Osorio G.A., Escobar C.M., Ferreira J.D. and
Redondo J.M., “Bifurcations of non-smooth systems”, Commun. Nonlinear Sci. Numer. Simul.
17 (2012), No. 12, 4683–4689.
2. Bocsó
A. and Farkas M.,“Political
and economic rationality leads to velcro
bifurcation”, Appl. Math. Comput. 140 (2003), No. 2–3, 381–389.
3. Butler G.J. and Waltman P., “Bifurcation from a limit cycle in a two
predator one prey ecosystem modeled in a chemostat”, J. Math. Biol. 12 (1981), No. 3,
295–310.
4. Butler G.J., Hsu S.B.
and Waltman P., “Coexistence of competing predators
on a chemostat”, J. Math. Biol. 17 (1983), No. 2, 133–151.
5. Butler G.J.,
“Competitive predator-prey systems and coexistence”, in: Population Biology
Proceedings, Edmonton 1982, Lecture Notes in Biomath.
52, Springer-Verlag
(1983), 210– 217.
6. Escobar-Callejas C.M., Gonzalez-Granada
J.R. and Posso-Agudelo A.E., “Atractividad
local en la bifurcación zip”, Ingeniería y Ciencia 6 (2010), No. 12, 11–41.
7. Farkas
M., “Zip Bifurcation in a competition model”, Nonlinear Anal. 8 (1984), No. 11, 1295–1309.
8. Farkas
M., “Competitive exclusion by zip bifurcation”, in: Dynamical systems, IIASAWorkshop,
Sopron, Lecture Notes in Econom. and
Math. Systems 287, Springer-Verlag (1987), 165–178.
9. Farkas
M., Periodic Motions, Springer, New York,
1994.
10. Farkas
M., Dynamical Models in
Biology, Academic Press, San
Diego, 2001.
11. FarkasM.,
Sáez E. and Szántó I., “Velcro
bifurcation in competition models with generalized Holling
functional response”, Miskolc Math. Notes 6 (2005), No. 2, 185–195.
12. Farkas
M. and Ferreira J.D., “Zip bifurcation in a reaction-diffusion system”, Differ. Equ. Dyn. Syst. 15 (2007), No. 3-4,
169–183.
13. Ferreira J.D., “Zip
bifurcation in an ample class of competitive systems”, Miskolc Math. Notes 8 (2007), No. 2, 147–156.
14. Ferreira J.D. and De
Oliveira L.A.F., “Zip bifurcation in a competitive system with diffusion”, Differ. Equ. Dyn. Syst. 17 (2009), No. 1–2,
37–53.
15. Ferreira J.D., and Sree Hari Rao V., “Unsustainable
zip-bifurcation in a predator-prey model involving discrete delay”, Proc. Roy. Soc.
Edinburgh Sect. A 143
(2013), No. 6, 1209–1236.
16. Hardin G., “The
competitive exclusion principle”, Science 131 (1960), No. 3409, 1292–1297.
17. Kalmykov
L. and Kalmykov V., “Verification and reformulation
of the competitive exclusión principle”, Chaos Solitons Fractals 56 (2013), 124–131.
18. May R.M. and McLean
A.R., Theoretical ecology.
Principles and applications, Oxford University Press, Oxford, 2007.
19. Sáez
E., Stange E. and Szántó
I., “Simultaneous zip bifurcation and limit cycles in three dimensional
competition models”, SIAM J. Appl. Dyn. Syst. 5 (2006), No. 1, 1–11.
20. Smith H.L. and Waltman P., The theory of the chemostat. Dynamics of
microbial competition, Cambridge Studies in Mathematical Biology 13, Cambridge University
Press, Cambridge, 1995.
21. Waltman
P., Hsu S.H. and Hubbell S.P., “Theoretical and experimental investigations of
microbial competition in continuous cultures. Modelling and differentiel
equations in Biology”, in Lecture Notes in Pure and Applied Mathematics 58, Dekker (1980), 107–152.
Para citar este artículo: L.F. Echeverri, Ó.I. Giraldo, E. Zarrazola, A model of competing species that exhibits zip
bifurcation, Rev. Integr.
Temas Mat. 35 (2017),
No. 1, 127–141.