
∮

Revista Integración
Escuela de Matemáticas
Universidad Industrial de Santander
Vol. 20, Nos. 1 y 2, 2002, pág. 13–17

Rotating Relativistic Thin Disks as

Sources of the Taub-NUT Solution

Guillermo A. González∗

Abstract. Rotating disks with nonzero radial pressure and finite radius

are studied. The models are based in the Taub-NUT metric and cons-

tructed using the well-known “displace, cut and reflect” method. We find

that the disks are made of perfect fluids with constant energy density

and pressure. The energy density is negative, but the effective Newto-

nian density is possitive as the strong energy condition requires. We also

find that the disks are not stable under radial perturbations and that

there are regions of the disks where the particles move with superluminal

velocities.

1. Introduction

An important problem in general relativity is the obtention of exact solutions
of Einstein equations corresponding to physically acceptable configurations of
matter. Although exact solutions has been obtained only in simple, highly
symmetric, cases, in the last twenty years several generation techniques to obtain
solutions of Einstein equations from a given solution have been developed with
success [1]. However, one of the shortcomings of these methods is that they do
not give significant information about the physical or geometrical meaning of
the generated solutions.

As recently has been shown [2, 3], many vacuum Weyl solutions can be in-
terpreted as the metrics of static thin disks, constructed using the well-known
“displace, cut and reflect” method. The idea of the method is simple. Given a
solution of the vacuum Einstein equations, a cut is maked above all singularities
or sources. The identification of this solution with its mirror image yields rela-
tivistic models of disks as a consequence of the jump in the normal derivative
of the metric tensor. The disk model can also be used for the interpretation of
vacuum stationary solutions.
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In the last years, disks models with radial pressure or tension [4], electric fields
[5], magnetic fields [6] and magnetic and electric fields [7] have been studied.
(See also the references [8, 9, 10].) In this work we apply the above method
to study rotating disks with nonzero radial pressure and of finite radius. The
models are based in the Taub-NUT (Newman-Unti-Tamburino) metric, which
is one of the simplest axially symmetric stationary solutions of vacuum Einstein
equations [1].

2. The Taub-NUT Solution

We can write the metric as the Weyl-Lewis-Papapetrou line element [1]:

ds2 = e−2Φ[R2dϕ2 + e2Λ(dr2 + dz2)] − e2Φ(dt + Wdϕ)2, (1)

where Φ, Λ, W and R are functions of r and z only. In order to obtain finite
thin disks with nonzero radial pressure, we take a solution of vacuum Einstein
equations defined by the following relations [4].

Let be w = r + iz and F(w) = w + α
√

w2 − 1, with α ≥ 1. Then

R(r, z) = Re F(w) , (2)

Z(r, z) = Im F(w) , (3)

Φ(r, z) = Ψ(R,Z) , (4)

Λ(r, z) = Π(R,Z) + ln |F ′(w)| , (5)

W(r, z) = M(R,Z) . (6)

Now we take Ψ, Π and M as given by the Taub-NUT solution, that can be
written in prolate spheroidal coordinates as in [11]:

Ψ =
1

2
ln

[

x2 − 1

x2 + 2ux + 1

]

, (7)

Π =
1

2
ln

[

x2 − 1

x2 − y2

]

, (8)

M = 2kvy. (9)

The possitive constants u and v can be written as u = m/k and v = l/k,
with k2 = m2 + l2, where m is the mass and l is the NUT parameter [1], and
thus u2 + v2 = 1. The relation between (x, y) and (R,Z) is given by

R2 = k2(x2 − 1)(1 − y2), Z = kxy, (10)

where 1 ≤ x ≤ ∞, 0 ≤ y ≤ 1 and k =
√

α2 − 1.
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3. The Energy-Momentum Tensor

The energy-momentum tensor of the disks can be computed by using the
distributional approach (see [4, 10]), and can be written as

S0
0 =

eΦ−Λ

R2
{2R2(Λ,z − 2Φ,z ) + 2RR,z − e4ΦWW,z }, (11)

S0
1 =

eΦ−Λ

R2
{2RW(R,z − 2RΦ,z ) − (R2 + W2e4Φ)W,z }, (12)

S1
0 =

eΦ−Λ

R2
{e4ΦW,z }, (13)

S1
1 =

eΦ−Λ

R2
{2R2Λ,z + e4ΦWW,z }, (14)

S2
2 =

eΦ−Λ

R2
{2RR,z }, (15)

where all the quantities are evaluated at z = 0+, 0 ≤ r ≤ 1. Is easy to see that,
using (2) – (10), the energy-momentum tensor can be cast as

Sab = (σ + p)VaVb + p hab , (16)

where

σ = −2p

α

[

α + ku

α2 + 2uαk + k2

]

, (17)

p =
2α√

α2 + 2uαk + k2
. (18)

V a is the velocity vector of the disk, with components

V a = e−Φ(1, 0, 0, 0) , (19)

and hab is the metric of the z = 0 hypersurface. The disks so are made of perfect
fluids with constant energy density and pressure. As we can see, σ ≤ 0, and so
the disks do not agree with the weak energy condition [12]. On the other hand,
the effective Newtonian density, defined as ̺ = σ + 2p, is

̺ =
2kp

α

[

uα2 + 2αk + uk2

α2 + 2uαk + k2

]

, (20)

so that ̺ ≥ 0, as the strong energy condition requires.
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4. The Motion of the Disks

In order to analize the motion of the disks we compute its tangential velocity
with respect to the locally nonrotating frames [13, 14],

V =
g11(Ω − ω)

√

g2
01 − g00g11

, (21)

were ω = −g01/g11 and Ω = V 1/V 0. By using (2)–(10) we obtain

V = −
[

kvp2

2α2

]

√
1 − r2

r
. (22)

As we can see from the above expression, the particles of the disks move with
superluminal velocities for r < r0, where

r0 =
kvp2

√

4α2 + k2v2p4
. (23)

The specific angular momentum of a particle of the disk, with mass µ, is given
by h = pϕ/µ = gϕaV a. Thus we have

h2 =

[

k2p2

1 + k2

]

(1 − r2), (24)

and is easy to see that
d(h2)

dr
< 0 . (25)

That is, the disks are not stable under radial perturbations, as can be concluded
by an extension of Rayleigh criteria of stability of a fluid in rest in a gravitational
field; see, for instance, [15].

5. Concluding Remarks

We do not know of any exact axially symmetric stationary solution of Einstein
equations with the kind of physical properties of the above model. We find that
the disks are made of perfect fluids with constant energy density and pressure.
The energy density is negative, but the effective Newotnian density is possitive
as the strong energy condition requires. We also find that the disks are not
stable under radial perturbationsand that there are regions of the disks where
the particles move with superluminal velocities.

We are now working in rotating disks models with nonzero radial pressure
based in the Kerr metric. In this case the energy-momentum tensor of the disks
may be not so simple and we can have zones with heat flow. The inclusion of
electric or magnetic fields to these models is also under consideration in order
to obtain “hot” rotaing disks, with or without radial pressure.
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