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Abstract. A new family of exact solutions of the Einstein-Maxwell equations
for static axially symmetric spacetimes is presented. The metric functions
of the solutions are explicitly computed and are simply written in terms of
the oblate spheroidal coordinates. The solutions, obtained by applying the
Ernst method of complex potentials, describe an infinite family of static
charged dust disks with an inner edge. The energy density, pressure and
charge density of all the disks of the family are everywhere well behaved,
in such a way that the energy-momentum tensor fully agrees with all the
energy conditions.

1. Introduction

The study of axially symmetric solutions of the Einstein and Einstein-Maxwell field

equations corresponding to disklike configurations of matter, apart from its purely math-

ematical interest, has a clear astrophysical relevance. Now, although normally it is con-

sidered that disks with electric fields do not have clear astrophysical importance, there

exists the possibility that some galaxies be positively charged [1], so the study of charged

disks may be of interest not only in the context of exact solutions. On the other hand,
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the observational data supporting the existence of black holes at the nucleus of some

galaxies is today so abundant, with the strongest dynamical evidence coming from the

center of the Milky Way, that there is no doubt about the relevance of the study of binary

systems composed by a thin disk surrounding a central black hole (see [2, 3] for recent

reviews on the observational evidence).

Now, as was shown by Lemos and Letelier [4, 5, 6], it is clear that the obtainment of

exact solutions that properly describe thin disklike sources with an inner edge has a clear

relevance in the study of binary systems that involve a central black hole. Indeed, as

was pointed in [7], the main properties of these annular disks strongly depend on their

specific density profiles. Therefore, it is worth to have other solutions, in addition to

those obtained previously, in such a way that a thoroughly study of such systems can

be made. Also, the obtainment of static solutions can be considered as the first step

in obtaining of the more realistic stationary solutions, which can be obtained from the

previous ones by means of well known methods of solutions generation.

In agreement with the above considerations, in this paper we present an infinite family

of new exact solutions of the Einstein-Maxwell equations for static axially symmetric

spacetimes. These solutions describe a family of relativistic charged thin disks with

an inner edge, the charged version of the family of relativistic thin dust disks with an

inner edge recently presented in [8, 9]. The solutions were obtained by applying the

Ernst method of complex potentials [10, 11], which generates a solution of the Einstein-

Maxwell equations starting from a solution of the vacuum Einstein equations. The paper

is organized as follows. First, in Section 2, we present the formalism to describe thin

disks. Then, in Section 3, we present a family of charged thin disks with an inner edge,

while in Section 4 we analyze the behavior of the solutions. Finally, in Section 5, we

conclude by summarizing our main results.

2. Einstein-Maxwell equations and thin disks

The vacuum Einstein-Maxwell equations, in geometrized units such that c = 8πG =

µ0 = ǫ0 = 1, can be written as

Gab = Tab, (1)

F ab
;b = 0, (2)
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with the electromagnetic energy-momentum tensor given by

Tab = FacF
c

b − 1

4
gabFcdF

cd, (3)

where

Fab = Ab,a −Aa,b (4)

is the electromagnetic field tensor and Aa is the electromagnetic four potential.

Now, for a static axially symmetric spacetime the line element can be written in cylin-

drical coordinates xa = (t, ϕ, r, z) as [12]

ds2 = −e2Φdt2 + e−2Φ[r2dϕ2 + e2Λ(dr2 + dz2)], (5)

where the metric functions Φ and Λ depend on r and z only. We take the electromagnetic

potential as

Aa = (ψ, 0, 0, 0), (6)

where it is assumed that the electric potential ψ also depends on r and z only.

The solutions of the Einstein-Maxwell equations corresponding to a disklike source are

even functions of the z coordinate. Therefore, they are everywhere continuous functions

but with their first z-derivatives discontinuous at the disk surface. Accordingly, in order

to obtain the energy-momentum tensor and the current density of the source, we will

express the jump across the disk of the first z-derivatives of the metric tensor as

bab = [gab,z] = 2gab,z|
z=0+

, (7)

and the jump across the disk of the electromagnetic field tensor as

[Fza] = [Aa,z ] = 2Aa,z|
z=0+

, (8)

where the reflection symmetry of the functions with respect to z = 0 has been used.

Then, by using the distributional approach [13, 14, 15] or the junction conditions on

the extrinsic curvature of thin shells [16, 17, 18], the Einstein-Maxwell equations yield

an energy-momentum tensor as

T ab = T ab
+ θ(z) + T ab

− [1− θ(z)] +Qabδ(z), (9)

and a current density as

Ja = Iaδ(z), (10)
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where θ(z) and δ(z) are, respectively, the Heaviside and Dirac distributions with support

on z = 0. Here T ab
± are the electromagnetic energy-momentum tensors as defined by (3)

for the z ≥ 0 and z ≤ 0 regions, respectively, whereas

Qa
b =

1

2
{bazδzb − bzzδab + gazbzb − gzzbab + bcc(g

zzδab − gazδzb )} (11)

gives the part of the energy-momentum tensor corresponding to the disk source, and

Ia = [F az] (12)

is the contribution of the disk source to the current density. Now, the surface energy-

momentum tensor of the disk, Sab, and the surface current density, ja, can be obtained

through the relations

Sab =

∫
Qab δ(z) dsn = eΛ−Φ Qab, (13)

ja =

∫
Ia δ(z) dsn = eΛ−ΦIa, (14)

where dsn =
√
gzz dz is the physical measurement of length in the direction normal to

the disk.

For the metric (5), the only non-zero components of Sa
b and j0 are

S0
0 = 2eΦ−Λ {Λ,z − 2Φ,z } , (15)

S1
1 = 2eΦ−ΛΛ,z , (16)

j0 = −2eΦ−Λψ,z, (17)

where all the quantities are evaluated at z = 0+. Therefore, the surface energy-

momentum tensor of the disk and the surface current density of the disk can be written

as

Sab = εV aV b, (18)

ja = σV a, (19)

where

V a = e−Φ(1, 0, 0, 0) (20)

is the velocity vector of the matter distribution.
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3. Charged dust disks with a central inner edge

In this section we consider a family of static axially symmetric solutions of the vacuum

Einstein-Maxwell equations given, for n = 1, 2, . . . , by

eΦn =
2βeφn

(1 + β)− e2φn(1 − β)
, (21)

ψn =

√
1− β2(e2φn − 1)

e2φn(1− β)− (1 + β)
, (22)

φn =
αyFn(x, y)

an(x2 + y2)2n−1
, (23)

Λn =
α2(2n− 2)!(y2 − 1)An(x, y)

4na2n(x2 + y2)4n
, (24)

where α is an arbitrary constant and β =
√
1− q2, where q2 ≤ 1. The functions are all

expressed in terms of the oblate spheroidal coordinates, connected with the cylindrical

coordinates via the transformation formulas

r2 = a2(1 + x2)(1 − y2), z = axy, (25)

where x ∈ (−∞,∞) and y ∈ [0, 1]. This solution was obtained, by means of the Ernst

method of complex potentials [10, 11], from the solutions describing a family of relativistic

static thin dust disks with an inner edge recently presented in [8, 9].

In the above expressions, the functions Fn(x, y) and An(x, y) can be easily obtained

by means of the procedure described in [8]. So, the functions Fn(x, y) are polynomial

functions with highest degree 4n− 4, the first two of them being

F1 = 1, (26)

F2 = x4 + 3x2(1− y2)− y2, (27)

while the An(x, y) are polynomial functions off highest degree 8n− 2, of which the first

two are

A1 = x4(9y2 − 1) + 2x2y2(y2 + 3) + y4(y2 − 1),

A2 = 2x12(9y2 − 1)− 4x10(51y4 − 41y2 + 2)

+ x8(735y6 − 1241y4 + 419y2 − 9)− x6y2(132y6

− 1644y4 + 1604y2 − 252) + x4y4(84y6 − 384y4

+ 1266y2 − 630) + 4x2y6(6y6 + 6y4 − 39y2 + 63)

+ 3y8(y6 + y4 + y2 − 3),
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all of them easily obtained as described in [8].

Now, the expressions for the surface energy density ε and the surface charge density σ

of the disks can be written as

εn = 4eΦn−Λn {1− rΦn,r}Φn,z, (28)

σn = −2eΦn−Λnψn,z, (29)

where all of the quantities are evaluated at z = 0+. Accordingly, by using the expressions

(21) - (24), we obtain for the energy density and the charge density the expressions

εn =
ǫn
β
, (30)

σn =
qǫn
2β

, (31)

where

ǫn(x) =
4αEn(x)

an+1x2n+1
exp

{
−α2(2n− 2)!Bn(x)

22na2nx4n

}
(32)

is the surface energy density of the static thin dust disks, without charge, as presented

in [8, 9].

In the above expression, the En(x) are positive definite polynomials of degree 2k, with

k = (n − 1)/2 for odd n and k = n/2 for even n, of which we only will write below the

first three,

E1(x) = 1, (33)

E2(x) = x2 + 3, (34)

E3(x) = 3(x2 + 5), (35)

and the Bn(x) are positive definite polynomials of degree 4k, with k = (n− 1)/2 for odd

n and k = n/2 for even n, being

B1(x) = 1, (36)

B2(x) = 2x4 + 8x2 + 9, (37)

B3(x) = 27x4 + 72x2 + 50, (38)

the first three of them.
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4. Behavior of the solutions

From the expressions in the previous section we can see that, by taking α > 0, the

energy density of the disks will be everywhere positive,

εn(x) ≥ 0, (39)

so that, as the azimuthal pressure is zero, we have an infinite family of dust disks that

are in fully agreement with all the energy conditions. Also is easy to see that, for any

value of n,

εn(0) = 0, (40)

lim
x→∞

εn(x) = 0. (41)

That is, the energy density of the disks is zero at their inner edge and vanishes at infinite.

Furthermore, the surface mass density of the disks reduces to their energy density,

µn = εn, (42)

so that its behavior is the same as of the energy density. Finally, by using equation (30)

and (31) we can write

σn =
q

2
εn, (43)

so that the charge density of the disks is equal, except by a constant, to their energy

density. Accordingly, the electric and gravitational forces are in exact balance, as in the

configurations of ‘electrically counterpoised dust’.

Now, in order to show the behavior of the energy densities, we plot the dimensionless

surface energy densities ε̃n = aεn as functions of the dimensionless radial coordinate

r̃ = r/a. So, in Figure 1, we plot ǫ̃n as a function of r̃ for the first three disks of the

family, with n = 1, 2 and 3, for different values of the parameter α̃n = α/an. Then,

for each value of n, we take α̃n = 0.5, 1 and 1.5. The first curve on left corresponds to

α̃n = 0.5, while the last curve on right corresponds to α̃n = 1.5. The curves with greatest

maximum corresponds to β = 0.2, whereas the curves with least maximum corresponds

to β = 1, the disks without charge. As we can see, in all the cases the surface energy

density is positive everywhere, having a maximum near the inner edge of the disks, and

then rapidly decreasing as r̃ increases. We can also see that, for a fixed value of n, as the

value of α̃n increases, the value of the maximum diminishes and moves towards increasing
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Figure 1. Energy density ε̃n as a function of r̃ for the first three disks of the family, with

α̃n = 0.5, 1, 1.5 and β = 1, 0.4 and 0.2. For each value of n, the first curve on left corresponds

to α̃ = 0.5, whereas the last curve on right corresponds to α̃ = 4. Also, for each value of n the

curves with greatest maximum corresponds to β = 0.2, whereas the curves with least maximum

corresponds to β = 1, the disks without charge
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values of r̃. Also, as there is a direct relationship between β and the electric field, the

maximum of the curves increases as the electric field increases. The same behavior is

observed for a fixed value of α̃n and increasing values of n.

5. Concluding remarks

We presented an infinite family of new exact solutions of the vacuum Einstein-Maxwell

equations for static and axially symmetric spacetimes. The solutions describe an infinite

family of charged thin dust disks with a central inner edge, the charged version of the

family of relativistic thin dust disks with an inner edge recently presented in [8, 9]. Now,

although the strange behavior of the Newtonian potentials may suggest that the disks do

not correspond to reasonable astrophysical sources, their energy densities are everywhere

positive and well behaved, in such a way that their energy-momentum tensor are in fully

agreement with all the energy conditions.

On the other hand, since all the metric functions of the solutions were explicitly com-

puted, these are the first fully integrated exact solutions for such kind of thin disk sources.

Moreover, the method used here to obtain these explicit solutions may serve as a guide-

line to find more physical solutions in future works. Now, besides their importance as

a new family of exact solutions of the Einstein-Maxwell vacuum equations, the main

importance of this family of solutions is that they can be easily superposed with the

Schwarzschild solution in order to describe binary systems composed by a thin disk sur-

rounding a charged central black hole, as was be done in [19] with the first member of

the family of relativistic thin dust disks presented in [8, 9].
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Figure 1. Energy density ε̃n as a function of r̃ for the first three disks of the family, with

α̃n = 0.5, 1, 1.5 and β = 1, 0.4 and 0.2. For each value of n, the first curve on left corresponds

to α̃ = 0.5, whereas the last curve on right corresponds to α̃ = 4. Also, for each value of n the

curves with greatest maximum corresponds to β = 0.2, whereas the curves with least maximum

corresponds to β = 1, the disks without charge
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values of r̃. Also, as there is a direct relationship between β and the electric field, the
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although the strange behavior of the Newtonian potentials may suggest that the disks do

not correspond to reasonable astrophysical sources, their energy densities are everywhere

positive and well behaved, in such a way that their energy-momentum tensor are in fully

agreement with all the energy conditions.

On the other hand, since all the metric functions of the solutions were explicitly com-

puted, these are the first fully integrated exact solutions for such kind of thin disk sources.

Moreover, the method used here to obtain these explicit solutions may serve as a guide-

line to find more physical solutions in future works. Now, besides their importance as

a new family of exact solutions of the Einstein-Maxwell vacuum equations, the main

importance of this family of solutions is that they can be easily superposed with the

Schwarzschild solution in order to describe binary systems composed by a thin disk sur-

rounding a charged central black hole, as was be done in [19] with the first member of

the family of relativistic thin dust disks presented in [8, 9].
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Imágenes débilmente confluentes de la curva

sinusoidal del topólogo

Sergio Macías∗

Resumen. En el presente trabajo se caracterizan las imágenes débilmente
confluentes de la curva del topólogo. Se demuestra que si G es la curva
sinusoidal del topólogo y f : S → Y es una función débilmente confluente,
donde Y es un continuo, entonces Y es o un arco, o una curva cerrada
simple, o una compactación de [0,∞) cuyo residuo es un arco o una curva
cerrada simple. Más aún, si Y es alguno de estos continuos y f : S → Y
es una función continua y sobreyectiva, se dan condiciones para que f sea
débilmente confluente.

1. Introducción

Este trabajo está basado en la tesis de maestría de Jeffrey A. Brooks [2]. Las funciones

confluentes fueron definidas por J. J. Charatonik en [3]. Posteriormente, A. Lelek gene-

ralizó este concepto y definió las funciones débilmente confluentes [8]. Para responder a

una pregunta de J. J. Charatonik, S. B. Nadler Jr. caracterizó las imágenes confluentes

de la curva sinusoidal del topólogo [15].

El objetivo de este trabajo es caracterizar las imágenes débilmente confluentes de la

curva sinusoidal del topólogo de la siguiente manera: Si S es la curva sinusoidal del

topólogo y f : S → Y es una función débilmente confluente, donde Y es un continuo,

entonces Y es un arco, una curva cerrada simple o una compactación de [0,∞) cuyo

residuo es un arco o una curva cerrada simple. Más aún, si Y es alguno de estos continuos

y f : S → Y es una función continua y sobreyectiva, daremos condiciones para que f sea

débilmente confluente.

0Palabras y frases claves: Continuo, curva sinusoidal del topólogo, función débilmente confluente,
rayo.

0MSC2000: 54E40; 54B15.
0∗ Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad
Universitaria, México D.F., C.P. 04510, México. e-mail : macias@servidor.unam.mx
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