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When is R[x] a principal ideal ring?
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Abstract. Because of its interesting applications in coding theory, crypto-
graphy, and algebraic combinatorics, in recent decades a lot of attention has
been paid to the algebraic structure of the ring of polynomials R[x], where R
is a finite commutative ring with identity. Motivated by this popularity, in
this paper we determine when R[x] is a principal ideal ring. In fact, we prove
that R[x] is a principal ideal ring if and only if R is a finite direct product of
finite fields.
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¿Cuándo R[x] es un anillo de ideales principales?

Resumen. Debido a sus interesantes aplicaciones en teoría de códigos, cripto-
grafía y combinatoria algebraica, en décadas recientes se ha incrementado la
atención en la estructura algebraica del anillo de polinomios R[x], donde R es
un anillo conmutativo finito con identidad. Motivados por esta popularidad,
en este artículo determinamos cuándo R[x] es un anillo de ideales principales.
De hecho, demostramos que R[x] es un anillo de ideales principales, si y sólo
si, R es un producto directo finito de campos finitos.
Palabras clave: Anillo de ideales principales, anillo de polinomios, anillos
finitos.

1. Introduction and preliminaries

Polynomials with coefficients in a finite commutative ring R with identity arise naturally,
for instance, in practical applications dealing with coding theory, cryptography and al-
gebraic combinatorics, e. g. [1], [2], [3], [4], [6]. For some of these applications, it is
important to know the algebraic structure of either the ring of polynomials R[x] or the
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quotient ring R[x]/A, where A is an ideal of R[x]. In particular, often one wants to know
when such rings are principal ideal rings (PIR’s). Motivated by this question, in this
paper we examine when R[x] is a PIR. We prove that R[x] is a principal ideal ring if and
only if R is a finite direct product of finite fields. To this end, let us start remembering
some facts about commutative finite rings with identity.

The most familiar example of a finite commutative ring with identity is the ring Zm

of integers modulo m ≥ 2. When m is a composite number, the Chinese Remainder
Theorem assures that

Zm
∼= Zp

α1

1

× · · · × Zp
α
k

k

,

where m = pα1

1 · · · pαk

k is the prime factorization of m, and Zp
α1

1

×· · ·×Zp
α
k

k

is the direct

product of the rings Zp
αi

i

, 1 ≤ i ≤ n. Remember that for each i (1 ≤ i ≤ k), Zp
αi

i

is a

finite local ring with maximal ideal 〈pi〉 (see [5]). In particular, note that if α = 1, then
Zp is a finite field (see [4]). Consequently, the Chinese Remainder Theorem establishes
that Zm is isomorphic to a direct product of finite local rings. This is the simplest case
of the following result.

Theorem 1.1 (Structure of Finite Commutative Rings, [5], Theorem VI.2). Every finite

commutative ring with identity is isomorphic to a direct product of finite commutative

local rings with identity. This decomposition is unique up to the order of the factors.

In view of the previous theorem, if R is a finite commutative ring with identity and
R1 × · · · × Rn is the unique decomposition of R as a direct product of local rings, then
there exists a ring isomorphism ϕ : R → R1 × · · · ×Rn which maps each element r ∈ R
into a unique n-tuple ϕ(r) = (r1, . . . , rn) ∈ R1 × · · · × Rn. This map extends to a ring
isomorphism

Φ : R[x] → R1[x]× · · · ×Rn[x],

defined by

p(x) 7→
(

p
(0)
1 + p

(1)
1 x+ · · ·+ p

(k)
1 xk, . . . , p(0)n + p(1)n x+ · · ·+ p(k)n xk

)

, (1)

where p(x) = p0 + p1x+ · · ·+ pkx
k and ϕ(pi) =

(

p
(i)
1 , . . . , p

(i)
n

)

, 0 ≤ i ≤ k.

Proposition 1.2. Let R1, . . . , Rn be commutative rings with identity. Then their direct

product R = R1 × · · · ×Rn is a PIR if and only if Ri is a PIR for each i, 1 ≤ i ≤ n.

Proof. Let A be an ideal of R and for each i, 1 ≤ i ≤ n, define Ai = {ai ∈ Ri :
(a1, . . . , ai, . . . , an) ∈ A}. Then Ai is an ideal of Ri and we claim that A = A1×· · ·×An.
The inclusion A ⊆ A1 × · · · × An is clear. To prove the reverse inclusion, let a =
(a1, . . . , an) be an element in A1 × · · · × An. It follows from the definition of Ai that
there exist α1, . . . , αn ∈ A such that a = α1e1+ · · ·+αnen, where ei denotes the element
of R with a 1 in the ith coordinate and 0’s elsewhere. Hence, using that A is an ideal of
R1×· · ·×Rn, we have that a ∈ A. Therefore A = A1×· · ·×An, and so A = 〈(a1, · · · , an)〉
if and only if Ai = 〈ai〉 for every i, 1 ≤ i ≤ n. �XXX

In light of Proposition 1.2 and the isomorphism Φ given in (1), R[x] is a PIR if and only
if Ri[x] is a PIR for each i, 1 ≤ i ≤ n. Hence, in order to determine whenever R[x] is
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a PIR, it is natural to ask when Ri[x] is a PIR. This is the purpose of the next section.
To illustrate the results of Section 2, we present in Section 3 three families of finite rings
with identity that are relevant in the theory of finite commutative rings.

2. Ideals of R[x]

First of all, by a ring R we will always mean a commutative ring with identity 1 6= 0, and
remember that a ring R is called local if it has a unique maximal ideal, or equivalently,
R is a local ring with maximal ideal M if and only if M = R\U(R), where U(R) denotes
the group of units of R. We usually write (R,M) or (R,M,F ) to denote a local ring R,
its maximal ideal M and its residue field F = R/M (using that M is a maximal ideal of
R, the quotient ring R/M is indeed a field).

The simplest case of a finite local ring R is when R is a finite field. In this case the
ring R[x] of polynomials with coefficients in R is a PIR. In fact, R[x] is a principal ideal
domain (PID). Therefore, in what follows we focus our attention on a finite local ring R
which is not a field.

Let (R,M,F ) be a finite local ring which is not a field. Note that the natural
surjective homomorphism − : R → F induces a surjective polynomial ring homomor-
phism µ : R[x] → F [x] given by

f0 + f1x+ · · ·+ fnx
n 7→ f0 + f1 x+ · · ·+ fn x

n.

This ring homomorphism lets us deduce some facts about polynomials
f(x) =

∑n

i=0 fix
i ∈ R[x] by using the structure of F [x]. In particular, note that

µ(f(x)) = 0 if and only if fi ∈ M for all i, 0 ≤ i ≤ n and so, it follows that kerµ is a
proper ideal of R[x]

(

indeed, kerµ is a prime ideal of R[x] because R[x]/ kerµ ∼= F [x] is

an integral domain
)

.

On the other hand, remember that an element r of a ring R is called irreducible if it
is neither 0 nor a unit in R and the condition r = ab, for some a, b ∈ R, implies that
a ∈ U(R) or b ∈ U(R).

Having remembered the above, if f(x) ∈ R[x] is such that µ(f(x)) is irreducible in
F [x], then f(x) is also irreducible in R[x]. Since for every finite field K and every
positive integer n there exists an irreducible polynomial in K[x] of degree n (see [4]),
we conclude that irreducible polynomials in R[x] of degree n exist for every positive
integer n. It is worth to mention that the converse of this fact does not hold in gen-
eral. That is, if f(x) is an irreducible polynomial in R[x] then µ(f(x)) is not necessar-
ily irreducible in F [x]. For instance, if p ≥ 2 is a prime number, then p ∈ Zp2 [x] is
irreducible in Zp2 [x] but µ(p) = 0 ∈

(

Zp2/〈p〉
)

[x] is not irreducible by definition. Fur-
thermore, if f(x) = x2 + 2x + 3 ∈ Z4[x] then f(x) is irreducible in Z4[x]; whereas
µ(f(x)) = x2 + 1 = (x + 1)2 ∈ (Z4/〈2〉) [x] is not irreducible.

Lemma 2.1. Let (R,M) be a local ring which is not a field, p(x) an irreducible polynomial

in R[x] and θ ∈ M \ {0}. Then 〈p(x), θ〉 is a proper ideal of R[x].

Proof. If µ(p(x)) = 0, then p(x) ∈ kerµ, so that 〈p(x), θ〉 ⊆ kerµ $ R[x]. If µ(p(x)) 6=
0, then we proceed by contradiction. Assume then the existence of some polynomials
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f(x), g(x) ∈ R[x] such that 1 = f(x)θ + g(x)p(x). This implies that 1 = µ(g(x))µ(p(x)),
which contradicts the irreducibility of p(x). Hence, for every irreducible polynomial p(x)
in R[x] and θ ∈ M \ {0}, 〈p(x), θ〉 is a proper ideal of R[x]. �XXX

If p(x) = p0 + p1x + · · · + pnx
n ∈ R[x] is an irreducible polynomial in R[x] such

that µ(p(x)) 6= 0, then deg(µ(p(x))) = k ≥ 1, since µ(p(x)) can not be a unit
in F [x]. This implies that pk ∈ U(R) and pk+1, . . . , pn ∈ M and so, for each
nonzero polynomial a(x) ∈ R[x] we have that deg(p(x)a(x)) ≥ k ≥ 1. Consequently,
every nonzero polynomial in 〈p(x)〉 ⊂ R[x] is not a constant polynomial, and so
M * 〈p(x)〉.

Theorem 2.2. Let (R,M) be a local ring which is not a field. Then R[x] is not a PIR.

Proof. Let p(x) ∈ R[x] be an irreducible polynomial in R[x] such that µ(p(x)) 6= 0,
and let θ ∈ M \ {0}. Then we claim that 〈p(x), θ〉 is not a principal ideal of R[x].
Assume the contrary; that is, suppose that there is a polynomial h(x) ∈ R[x] such
that 〈p(x), θ〉 = 〈h(x)〉. Then there exists f(x) ∈ R[x] such that p(x) = f(x)h(x).
Using that p(x) is irreducible, we have that f(x) ∈ U(R[x]) or h(x) ∈ U(R[x]). It
follows immediately from Lemma 2.1 that h(x) /∈ U(R[x]), and so f(x) ∈ U(R[x]). This
implies that 〈p(x), θ〉 = 〈h(x)〉 = 〈p(x) · f(x)−1〉 = 〈p(x)〉, which is a contradiction since
θ /∈ 〈p(x)〉. In consequence, 〈p(x), θ〉 is not a principal ideal in R[x]. �XXX

Note that we have proved implicitly in Theorem 2.2 that for every local ring
(R,M,F ) which is not a field, the family of ideals 〈p(x), θ〉, where p(x) is an
irreducible element in R[x] such that µ(p(x)) 6= 0, and θ is a nonzero element in M ,
consists entirely of non-principal ideals of R[x]. This family contains an infinite number
of elements since irreducible polynomials of degree n in R[x] exist for every integer n ≥ 1.

Theorem 2.3. Let R be a finite ring. The following statements are equivalent:

1. R[x] is a PIR.

2. R is isomorphic to a direct product of finite fields.

Proof. It follows immediately from Proposition 1.2 and Theorems 1.1, 2.2. �XXX

An equivalent way to state Theorem 2.3 is as follows: R[x] is a not a PIR if and only if
R is isomorphic to a direct product R1×· · ·×Ri×· · ·×Rn of finite local rings such that
at least one of them is not a finite field, say (Ri,Mi, Fi). In this case, for all θ ∈ Mi \ {0}
and for all irreducible polynomials p(x) ∈ Ri[x] with µi(p(x)) 6= 0 in Fi[x] we have
that 〈p(x), θi〉 ⊂ Ri[x] is not a principal ideal in Ri[x]. In consequence, by using the ring
isomorphism Φ defined in (1), one can easily show that 〈Φ−1(pi(x)·ei), Φ

−1(θi ·ei)〉 ⊂ R[x]
is not a principal ideal in R[x].

Another equivalent way to state Theorem 2.3 is derived from the structure theorem for
commutative PIR’s due to Zariski-Samuel (see [7, Theorem 33]). This result states that
every commutative PIR is (isomorphic to) a direct sum of PID’s and of special PIR’s.
Therefore, Theorem 2.3 shows that Zariski-Samuel theorem can be expressed for the
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ring of polynomials over a finite ring R as follows: R[x] is a PIR if and only if R[x]
is isomorphic to a direct product of PID’s. Moreover, the isomorphism Φ given in (1)
presents one decomposition of R[x] as a direct product of PID’s. In addition, Theorem
2.2 also implies that for a local ring (R,M) which is not a field, the ring of polynomials
R[x] cannot be a special PIR.

3. Examples

As a first example we present the one that we used to motivate Theorem 1.1. Let m ≥ 2
be an integer. Then

Zm
∼= Zp

α1

1

× · · · × Zp
α
k

k

,

where m = pα1

1 · · · pαk

k is the prime factorization of m. Since Zp
αi

i

is a finite field if

and only if αi = 1, it follows from Theorem 2.3 that Zm[x] is a PIR if and only if
α1 = · · · = αk = 1.

In order to generalize the previous example, let us to consider the ring Zpα , where p is
a prime number and α is a positive integer. Let f(u) be a monic polynomial of degree
r ≥ 1 in Zpα [u] such that µ(f(u)) is irreducible in (Zpα/〈p〉) [u]. Then the Galois ring of
characteristic pα and cardinality pαr is definied as the quotient ring

GR(pα, r) = Zpα [u]/〈f(u)〉

= {a0 + a1u+ · · ·+ ar−1u
r−1 + 〈f(u)〉 : ai ∈ Zpα}.

This ring is a finite local ring with maximal ideal 〈p+〈f(u)〉〉, and residue field isomorphic
to Zp[u]/〈µ(f(u))〉 (see [5] for more details). Note that if r = 1 then

GR(pα, 1) = Zpα [u]/〈a+ u〉 = {a0 + 〈a+ u〉 : a0 ∈ Zpα} ∼= Zpα .

Consequently, GR(p, 1) ∼= Zp is a finite field, and for any integer α ≥ 2, GR(pα, 1)
is a finite local ring which is not a field. Furtheremore, if r ≥ 2 and α = 1, then
GR(p, r) = Zp[u]/〈f(u)〉 is a finite field with pr elements (see [4]). Hereof it follows from
Theorem 2.2 that

GR(pα, r)[x] is

{

a PIR if α = 1,

not a PIR if α ≥ 2.
(2)

Let p1, p2, . . . , pk be prime numbers, αi, ri positive integers for 1 ≤ i ≤ k, and consider
the following ring which is a natural generalization of Zm:

R = GR(pα1

k , r1)× · · · ×GR(pαk

k , rk).

In analogy with Zm, we deduce from (2) and Theorem 2.3 that R[x] is a PIR if and only
if α1 = · · · = αk = 1. On the other hand, R[x] is not a PIR if and only if αi ≥ 2 for
some i, 1 ≤ i ≤ k.

In the examples given above we have presented infinite families of finite rings for which
the ring of polynomials with coefficients in these rings are not PIR. The common ground
in both families of rings is that they are finite products of local rings whose ideals are
principal and they are linearly ordered by inclusion. Any local ring satisfying these

Vol. 35, No. 2, 2017]



148 H. Chimal-Dzul & C.A. López-Andrade

conditions is called a finite chain ring (see [1]). In general, if R is a finite chain ring that
is not a field, then R[x] is not a PIR by Theorem 2.2, and so for every finite ring R such
that it is isomorphic to a direct product of finite chain rings (of which at least one is not
a field), the ring R[x] is not a PIR by Theorem 2.3.

In the following lines, we are going to present a family of finite local rings which was
introduced in [2].

Let p be a prime number, α a positive integer and denote by Fq the unique finite field
with q = pα elements (see [5]). Then for every integer k ≥ 1, the quotient ring Rk =
Fq[u1, u2, . . . , uk]/〈u

2
1, u

2
2, . . . , u

2
k〉 is a commutative ring with identity. Furthermore, it is

proved in [2] that Rk is a finite local ring with maximal ideal M = 〈[u1], [u2], . . . , [uk]〉
and residue field Rk/M ∼= F2. In consequence, Theorem 2.3 shows that Rk[x] is not a
PIR for any integer k ≥ 1.

Since k ≥ 2, the ring Rk described above is neither a PIR nor a chain ring in view of
M is not a principal ideal and 〈[ui]〉 and 〈[uj ]〉 are not linearly ordered by inclusion for
i 6= j. However, it was pointed out in [2] that Rk is a finite Frobenius ring.

Acknowledgement

We would like to thank the anonymous referee for his/her useful comments and sugges-
tions that significantly contributed to improve the quality of our manuscript.

References

[1] Dinh H.Q. and López-Permouth S.R., “Cyclic and negacyclic codes over finite chain rings”,
IEEE Trans. Inform. Theory 50 (2004), No. 8, 1728–1744.

[2] Dougherty S.T., Yildiz B. and Karadeniz S., “Codes over Rk, Gray maps and their binary
images”, Finite Fields Appl. 17 (2011), No. 3, 205–219.

[3] Gómez-Calderón J. and Mullen G. L., “Galois rings and algebraic cryptography”, Acta

Arith. 59 (1991), No. 4, 317–328.

[4] Lidl R. and Niederreiter H., Finite Fields, Cambridge University Press, Cambridge, 1997.

[5] McDonald B., Finite rings with identity, Marcel Dekker, New York, 1974.

[6] Xiang-dong H.A. and Nechaev A.A., “A construction of finite Frobenius Rings and its
application to partial difference sets”, J. Algebra 309 (2007), No. 1, 1–9.

[7] Zariski O. and Samuel P., Commutative Algebra I, Springer-Verlag, New York, 1975.

[Revista Integración, temas de matemáticas


