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Una Introducción a la Teoría de las Funciones Zeta

Locales para principiantes

Resumen. En este artículo panorámico brindamos una introducción a la
teoría de las funciones zeta locales p-ádicas para principiantes. También se
presenta una revisión extensiva a la literatura especializada sobre funciones
zeta locales y sus conexiones con otros campos de las matemáticas y la física.
Palabras clave: Funciones zeta locales, análisis p-ádico, cuerpos locales, fór-
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1. Introduction

In these notes we provide an introduction to the theory of local zeta functions from
scratch. We assume essentially a basic knowledge of algebra, metric spaces and basic
analysis, mainly measure theory. Let K be a local field, for instance R,C,Qp, the field of
p-adic numbers, or Fp((t)) the field of formal Laurent series with coefficients in a finite
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field with p elements. Let h(x) ∈ K[x1, . . . , xn] be a non-constant polynomial and let ϕ
be a test function. The local zeta function attached to the pair (h, ϕ) is defined as

Zϕ(s, h) =

∫

Kn\h−1(0)

ϕ(x) |h(x)|sK dnx, Re(s) > 0,

where | · |K denotes the absolute value of K, s ∈ C, and dnx denotes a normalized
Haar measure of the topological group (Kn,+). These integrals give rise to holomorphic
functions of s in the half-plane Re(s) > 0. If K has characteristic zero, then Zϕ(s, h)
admits a meromorphic continuation to the whole complex plane. The p-adic local zeta
functions (also called Igusa’s local zeta functions) are connected with the number of
solutions of polynomial congruences mod pm and with exponential sums mod pm (see
e.g., [14], [28], [31]).

In the Archimedean case, K = R or C, the study of local zeta functions was initiated
by Gel’fand and Shilov [21]. The meromorphic continuation of the local zeta functions
was established, independently, by Atiyah [4] and Bernstein [6] (see also [31, Theorem
5.5.1 and Corollary 5.5.1]). The main motivation was that the meromorphic continuation
of Archimedean local zeta functions implies the existence of fundamental solutions (i.e.
Green functions) for differential operators with constant coefficients. It is important to
mention here, that in the p-adic framework, the existence of fundamental solutions for
pseudodifferential operators is also a consequence of the fact that the Igusa local zeta
functions admit a meromorphic continuation (see [33, Chapter 10] and [62, Chapter 5]).

On the other hand, in the middle 60s, Weil initiated the study of local zeta functions, in
the Archimedean and non-Archimedean settings, in connection with the Poisson-Siegel
formula [59]. In the 70s, Igusa developed a uniform theory for local zeta functions over
local fields of characteristic zero [28], [30]. More recently, Denef and Loeser introduced in
[15] the topological zeta functions, and in [16] they introduce the motivic zeta functions,
which constitute a vast generalization of the p-adic local zeta functions.

In the last thirty-five years there has been a strong interest on p-adic models of quantum
field theory, which is motivated by the fact that these models are exactly solvable. There
is a large list of p-adic type Feynman and string amplitudes that are related with local
zeta functions of Igusa-type, and it is interesting to mention that it seems that the
mathematical community working on local zeta functions is not aware of this fact (see e.g.
[2], [5], [7], [10]-[13], [18]-[20], [22]-[24], [27], [38], [39], [42], [48]-[52], and the references
therein).

The connections between Feynman amplitudes and local zeta functions are very old
and deep. Let us mention that the works of Speer [50] and Bollini, Giambiagi and
González Domínguez [11] on regularization of Feynman amplitudes in quantum field
theory are based on the analytic continuation of distributions attached to complex powers
of polynomial functions in the sense of Gel’fand and Shilov [21] (see also [5], [7], [10]
and [42], among others). This analogy turns out to be very important in the rigorous
construction of quantum scalar fields in the p-adic setting (see [43] and the references
therein).

The local zeta functions are also deeply connected with p-adic string amplitudes. In [8],
the authors proved that the p-adic Koba-Nielsen type string amplitudes are bona fide
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integrals. They attached to these amplitudes Igusa-type integrals depending on several
complex parameters and show that these integrals admit meromorphic continuations
as rational functions. Then they used these functions to regularize the Koba-Nielsen
amplitudes. In [9], the authors discussed the limit p approaches to one of tree-level
p-adic open string amplitudes and its connections with the topological zeta functions.
There is empirical evidence that p-adic strings are related to the ordinary strings in the
limit p → 1. Denef and Loeser established that the limit p → 1 of a Igusa’s local zeta
function gives rise to an object called topological zeta function. By using Denef-Loeser’s
theory of topological zeta functions, it is showed in [9] that limit p → 1 of tree-level p-
adic string amplitudes give rise to certain amplitudes, that we have named Denef-Loeser
string amplitudes.

Finally, we want to mention about the remarkable connection between local zeta functions
and algebraic statistics (see [40], [58]). In [58] is presented an interesting connection with
machine learning.

This survey article is based on well-known references, mainly Igusa’s book [31]. The work
is organized as follows. In Section 2, we introduce the field of p-adic numbers, and we
devote Section 3 to the integration theory over Qp. Section 4 is dedicated to the implicit
function theorems on the p-adic field. In Section 5, we introduce the simplest type
of local zeta function and show its connection with number of solutions of polynomial
congruences mod pm. In Section 6, we introduce the stationary phase formula and
use it to establish the rationality of local zeta functions for several type of polynomials.
Finally, in Section 7, we state Hironaka’s resolution of singularities theorem, and we use
it to prove the rationality of the simplest type of local zeta functions in Section 8.

For an introduction to p-adic analysis the reader may consult [1], [25], [32], [35], [46],
[47], [53] and [56]. For an in-depth discussion of the classical aspects of the local zeta
functions, we recommend [3], [14], [21], [28], [30], [31], [41]. There are many excellent
surveys about local zeta functions and their generalizations. For an introduction to
Igusa’s zeta function, topological zeta functions and motivic integration we refer the
reader to [14], [16], [17], [44], [45] ,[55]. A good introduction to local zeta functions
for pre-homogeneous vector spaces can be found in [30], [31] and [34]. Some general
references for differential equations over non-Archimedean fields are [1], [33], [56], [62].
Finally, the reader interested in the relations between p-adic analysis and mathematical
physics may enjoy [12], [13], [19], [20], [22]-[24], [27], [33],[37]-[39],[43], [48], [49], [52],
[54], [56], [57] and [62].

2. p-adic Numbers- Essential Facts

2.1. Basic Facts

In this section we summarize the basic aspects of the field of p-adic numbers, for an
in-depth discussion the reader may consult [1], [25], [32], [35], [46], [47], [53] and [56].

Definition 2.1. Let F be a field. An absolute value on F is a real-valued function, | · |,
satisfying

(i) |x| = 0 ⇔ x = 0;
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(ii) |xy| = |x||y|;

(iii) |x+ y| ≤ |x|+ |y| (triangle inequality), for any x, y ∈ F .

Definition 2.2. An absolute value | · | is called non-Archimedean (or ultrametric), if it
satisfies

|x+ y| ≤ max{|x|, |y|}.

Example 2.3. The trivial absolute value is defined as

|x|trivial =

{
1, if x 6= 0,

0, if x = 0.

From now on we will work only with non trivial absolute values.

Definition 2.4. Given two absolute values | · |1, | · |2 defined on F , we say that they are
equivalent, if there exists a positive constant c such that

|x|1 = |x|c2

for any x ∈ F .

Definition 2.5. Let p be a fixed prime number, and let x be a nonzero rational number.
Then, x = pk a

b for some a, b, k ∈ Z, with p ∤ ab. The p-adic absolute value of x is defined
as

|x|p =

{
p−k, if x 6= 0,

0, if x = 0.

Lemma 2.6. The function | · |p is a non-Archimedean absolute value on Q.

The proof is left to the reader. In fact, we kindly invite the reader to prove all the results
labeled as Lemmas in these notes.

Theorem 2.7 (Ostrowski, [35]). Any non trivial absolute value on Q is equivalent to | · |p
or to the standard absolute value | · |∞.

An absolute value | · | on F allow us to define a distance d(x, y) := |x− y|, x, y ∈ F . We
now introduce a topology on F by giving a basis of open sets consisting of the open balls
Br(a) with center a and radius r > 0:

Br(a) = {x ∈ F : |x− a| < r}.

A sequence of points {xi}i∈N ⊂ F is called Cauchy if

|xm − xn| → 0, m, n→ ∞.

A field F with a non trivial absolute value | · | is said to be complete if any Cauchy
sequence {xi}i∈N has a limit point x∗ ∈ F , i.e. if |xn − x∗| → 0, n → ∞. This is
equivalent to the fact that (F, d), with d(x, y) = |x− y|, is a complete metric space.
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Remark 2.8. Let (X, d), (Y,D) be two metric spaces. A bijection ρ : X → Y satisfying

D(ρ(x), ρ(x′)) = d(x, x′),

is called an isometry.

The following fact is well-known (see e.g. [36]).

Theorem 2.9. Let (M,d) be a metric space. There exists a complete metric space (M̃, d̃),

such that M is isometric to a dense subset of M̃ .

The field of p-adic numbers Qp is defined as the completion of Q with respect to the
distance induced by | · |p. Any p-adic number x 6= 0 has a unique representation of the
form

x = pγ
∞∑

i=0

xip
i, (1)

where γ = γ(x) ∈ Z, xi ∈ {0, 1, . . . , p − 1}, x0 6= 0. The integer γ is called the p-adic
order of x, and it will be denoted as ord(x). By definition ord(0) = +∞.

Lemma 2.10. Let (F, | · |) be a valued field, where | · | is a non-Archimedean absolute
value. Assume that F is complete with respect to | · |. Then, the series

∑
k≥0 ak, ak ∈ F

converges if, and only if, limk→∞ |ak| = 0.

Since |xipi+r|p = p−i−r → 0, i → ∞, from Lemma 2.10 we conclude that series (1)
converges in | · |p.

Example 2.11.

−1 = (p− 1) + (p− 1)p+ (p− 1)p2 + · · ·

Indeed, set

z(n) := (p− 1) + (p− 1)p+ · · · (p− 1)pn

= (p− 1)
pn+1 − 1

p− 1
= pn+1 − 1.

Then limn→∞ z(n) = limn→∞ pn+1 − 1 = 0− 1 = −1, since |pn+1|p = p−n−1.

The unit ball

Zp = {x ∈ Qp : |x|p ≤ 1}

= {x ∈ Qp : x =
∞∑

i=i0

xip
i, i0 ≥ 0},

is a ring, more precisely, it is a domain of principal ideals. Any ideal of Zp has the form

pmZp = {x ∈ Zp : x =
∑

i≥m

xip
i}, m ∈ N.

Vol. 37, N◦ 1, 2019]



50 E. León-Cardenal & W.A. Zúñiga-Galindo

Indeed, let I ⊆ Zp be an ideal. Set m0 = minx∈I ord(x) ∈ N, and let x0 ∈ I such that
ord(x0) = m0. Then I = x0Zp.

From a geometric point of view, the ideals of the form pmZp, m ∈ Z, constitute a
fundamental system of neighborhoods around the origin in Qp. The residue field of Qp

is Zp/pZp
∼= Fp (the finite field with p elements).

The group of units of Zp is

Z×
p = {x ∈ Zp : |x|p = 1}.

Lemma 2.12. x = x0 + x1p + · · · ∈ Zp is a unit if, and only if, x0 6= 0. Moreover if
x ∈ Qp \ {0}, then x = pmu, m ∈ Z, u ∈ Z×

p .

2.2. Topology of Qp

As we already mentioned, Qp with d(x, y) = |x− y|p is a complete metric space. Define

Br(a) = {x ∈ Qp : |x− a|p ≤ pr}, r ∈ Z,

as the ball with center a and radius pr, and

Sr(a) = {x ∈ Qp : |x− a|p = pr}, r ∈ Z

as the sphere with center a and radius pr.

The topology of Qp is quite different from the usual topology of R. First of all, since
| · |p : Qp → {pm,m ∈ Z} ∪ {0}, the radii are always integer powers of p; for the sake of
brevity we just use the power in the notation Br(a) and Sr(a). On the other hand, since
the powers of p and zero form a discrete set in R, in the definition of Br(a) and Sr(a)
we can always use ‘≤’. Indeed,

{x ∈ Qp : |x− a|p < pr} = {x ∈ Qp : |x− a|p ≤ pr−1} = Br−1(a) ⊂ Br(a).

Remark 2.13.

Br(a) = a+ prZp,

Sr(a) = a+ prZ×
p .

We declare Br(a), r ∈ Z, a ∈ Qp, are open subsets; in addition, these sets form a basis
for the topology of Qp.

Proposition 2.14. Sr(a), Br(a) are open and closed sets in the topology of Qp.

Proof. We first show that Sr(a) is open. Note that Z×
p = ⊔i∈{1,...,p−1}i+ pZp, then

Sr(a) =
⊔

i∈{1,...,p−1}

a+ pri+ pr+1Zp =
⊔

i

Br+1(a+ pri)

is an open set.
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In order to show that Sr(a) is closed, we take a sequence {xn}n∈N of points of Sr(a)
converging to x̃0 ∈ Qp. We must show that x̃0 ∈ Sr(a). Note that xn = a+ prun, un ∈
Z×
p . Since {xn} is a Cauchy sequence, we have

|xn − xm|p = p−r|un − um|p → 0, n,m→ ∞,

thus {un}n∈N is also Cauchy, and since Qp is complete, un → ũ0. Then xn → a+ prũ0,
so in order to conclude our proof we must verify that ũ0 ∈ Z×

p . Because um is arbitrarily
close to ũ0, their p-adic expansions must agree up to a big power of p, hence ũ0 ∈ Z×

p .

A similar argument shows that Br(a) is closed. �XXX

Proposition 2.15. If b ∈ Br(a) then Br(b) = Br(a), i.e., any point of the ball Br(a) is
its center.

Proof. Let x ∈ Br(b); then,

|x− a|p = |x− b+ b− a|p ≤ max{|x− b|p, |b− a|p} ≤ pr,

i.e., Br(b) ⊆ Br(a). Since a ∈ Br(b) (i.e. |b − a|p = |a − b|p ≤ pr), we can repeat the
previous argument to show that Br(a) ⊆ Br(b). �XXX

Lemma 2.16. The following assertions hold:

(i) any two balls in Qp are either disjoint or one is contained in another;

(ii) the boundary of any ball is the empty set.

Theorem 2.17 ([1, Sec. 1.8]). A set K ⊂ Qp is compact if, and only if, it is closed and
bounded in Qp.

2.3. The n−dimensional p-adic space

We extend the p-adic norm to Qn
p by taking

||x||p := max
1≤i≤d

|xi|p, for x = (x1, . . . , xn) ∈ Qn
p .

We define ord(x) = min1≤i≤n{ord(xi)}; then, ||x||p = p−ord(x). The metric space(
Qn

p , || · ||p
)

is a separable complete ultrametric space (here, separable means that Qn
p

contains a countable dense subset, which is Qn ).

For r ∈ Z, denote by Bn
r (a) = {x ∈ Qn

p : ||x − a||p ≤ pr} the ball of radius pr

with center at a = (a1, . . . , an) ∈ Qn
p , and take Bn

r (0) := Bn
r . Note that Bn

r (a) =
Br(a1) × · · · × Br(an), where Br(ai) := {xi ∈ Qp : |xi − ai|p ≤ pr} is the one-
dimensional ball of radius pr with center at ai ∈ Qp. The ball Bn

0 equals the product of
n copies of B0 = Zp. We also denote by Sn

r (a) = {x ∈ Qn
p : ||x − a||p = pr} the sphere

of radius pr with center at a = (a1, . . . , an) ∈ Qn
p , and take Sn

r (0) := Sn
r . We notice that

S1
0 = Z×

p (the group of units of Zp), but
(
Z×
p

)n
( Sn

0 , for n ≥ 2.

As a topological space
(
Qn

p , || · ||p
)

is totally disconnected, i.e., the only connected subsets
of Qn

p are the empty set and the points. Two balls in Qn
p are either disjoint or one is

contained in the other. As in the one dimensional case, a subset of Qn
p is compact if, and

only if, it is closed and bounded in Qn
p . Since the balls and spheres are both open and

closed subsets in Qn
p , one has that

(
Qn

p , || · ||p
)

is a locally compact topological space.
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3. Integration on Qp

For this section we assume a basic knowledge of measure theory (see e.g. [26]).

Theorem 3.1 ([26, Thm B. Sec. 58]). Let (G, ·) be a locally compact topological group.
There exists a Borel measure dx, unique up to multiplication by a positive constant, such
that

∫
U dx > 0 for every non empty Borel open set U , and

∫
x·E dx =

∫
E dx, for every

Borel set E.

The measure dx is called a Haar measure of G. Since (Qp,+) is a locally compact
topological group, by Theorem 3.1 there exists a measure dx, which is invariant under
translations, i.e., d(x + a) = dx. If we normalize this measure by the condition

∫

Zp

dx = 1,

then dx is unique.

For the n-dimensional case we use that (Qn
p ,+) is a locally compact topological group.

We denote by dnx the product measure dx1 · · · dxn such that
∫

Zn
p

dnx = 1.

This measure also satisfies that dn(x + a) = dnx, for a ∈ Qn
p . The open compact balls

of Qn
p , e.g. a + pmZn

p , generate the Borel σ-algebra of Qn
p . The measure dnx assigns to

each open compact subset U a nonnegative real number
∫
U
dnx, which satisfies

∫

∪∞

k=1
Uk

dnx =

∞∑

k=1

∫

Uk

dnx (2)

for all compact open subsets Uk in Qn
p , which are pairwise disjoint, and verify ∪∞

k=1Uk is
still compact. In addition, ∫

a+U

dnx =

∫

U

dnx.

3.1. Integration of locally constant functions

A function ϕ : Qn
p → C is said to be locally constant if for every x ∈ Qn

p there exists an
open compact subset U , containing x, and such that f(x) = f(u) for all u ∈ U .

Lemma 3.2. Every locally constant function is continuous.

Remark 3.3. Set I = Qp/Zp; then I is countable. We fix a set of representatives for the
elements of I of the form

x−mp
−m + · · ·+ x−1p

−1.

If V is an open subset of Qp, then for any x ∈ V there exists a ball contained in V of
the form

pm(j + Zn
p ),

for some j ∈ In and m ∈ Z, containing x. Consequently, Qn
p is a second-countable space.
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Any locally constant function ϕ : Qn
p → C can be expressed as a linear combination of

characteristic functions of the form

ϕ (x) =
+∞∑

n=1

ck1Uk
(x) , (3)

where ck ∈ C,

1Uk
(x) =





1, if x ∈ Uk,

0, if x /∈ Uk,

and Uk ⊆ Qn
p is an open compact for every k. In the proof of this fact one may use

Remark 3.3.

Let ϕ : Qn
p → C be a locally constant function as in (3). Assume that A =

⊔k
i=1 Ui, with

Ui open compact. Then we define
∫

A

ϕ (x) dnx = c1

∫

U1

dnx+ · · ·+ cn

∫

Uk

dnx. (4)

We recall that, given a function ϕ : Qn
p → C, the support of ϕ is the set

Supp(ϕ) = {x ∈ Qn
p : ϕ(x) 6= 0}.

A locally constant function with compact support is called a p-adic test function or a
Bruhat-Schwartz function. These functions form a C-vector space denoted as D. From
(2) and (4) one has that the mapping

D −→ C
ϕ 7−→

∫
Qn

p
ϕ dnx, (5)

is a well-defined linear functional.

3.2. Integration of continuous functions with compact support

We now extend the integration to a larger class of functions. Let U be a open compact
subset of Qn

p . We denote by C(U,C) the space of all the complex-valued continuous
functions supported on U , endowed with the supremum norm. We denote by C0(Q

n
p ,C)

the space of all the complex-valued continuous functions vanishing at infinity, endowed
also with the supremum norm. The function ϕ vanishes at infinity, if given ε > 0, there
exists a compact subset K such that |ϕ(x)| < ε, if x /∈ K.

It is known that D is dense in C0(Q
n
p ,C) (see, e.g., [53, Prop. 1.3]). We identify C(U,C)

with a subspace of C0(Q
n
p ,C), therefore D is dense in C(U,C).

We fix an open compact subset U and consider the functional (5), since
∣∣∣∣∣

∫

Qn
p

ϕ dnx

∣∣∣∣∣ ≤ sup
x∈U

|ϕ(x)|

∫

U

dnx,

then functional (5) has a unique extension to C(U,C).
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This means that if f ∈ C(U,C) and {fm}m∈N is any sequence in D approaching f in the
supremum norm, then ∫

Qn
p

f dnx = lim
m→∞

∫

Qn
p

fm dnx.

3.3. Improper Integrals

Our next task is the integration of functions that do not have compact support. A
function f : Qp → C is said to be locally integrable, f ∈ L1

loc, if

∫

K

f (x) dx

exists for every compact K.

Example 3.4. The function |x|p is locally integrable but not integrable.

Definition 3.5 (Improper Integral). A function f ∈ L1
loc is said to be integrable in Qn

p if

lim
l→+∞

∫

Bl(0)

f (x) dnx = lim
l→+∞

l∑

j=−∞

∫

Sj(0)

f (x) dnx

exists. If the limit exists, it is denoted as
∫
Qn

p
f (x) dnx, and we say that the improper

integral exists.

Note that ∫

Qn
p

f (x) dnx =

+∞∑

j=−∞

∫

Sj(0)

f (x) dnx.

3.4. The change of variables formula in dimension one

Let us start with the formula

d (ax) = |a|p dx, a ∈ Q×
p , (6)

which means the following: ∫

aU

dx = |a|p

∫

U

dx,

for every Borel set U ⊆ Qp, for instance an open compact subset. Consider

Ta : Qp −→ Qp

x 7−→ ax,

with a ∈ Q×
p . Ta is a topological and algebraic isomorphism. Then aU 7→

∫
aUdx is a

Haar measure for (Qp,+), and by the uniqueness of such measure, there exists a positive
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constant C(a) such that
∫
aU
dx = C(a)

∫
U
dx. To compute C(a) we can pick any open

compact set, for instance U = Zp, and then we must show

∫

aZp

dx = C(a) = |a|p .

Let us consider first the case a ∈ Zp, i.e., a = plu, l ∈ N, u ∈ Z×
p . Fix a system of

representatives {b} of Zp/p
lZp in Zp; then,

Zp =
⊔

b∈Zp/plZp

b+ plZp,

and

1 =

∫

Zp

dx =
∑

b∈Zp/plZp

∫

b+plZp

dx =
∑

b∈Zp/plZp

∫

plZp

dx

= #
(
Zp/p

lZp

) ∫

plZp

dx,

i.e.,

p−l = |a|p =

∫

plZp

dx =

∫

aZp

dx.

The case a /∈ Zp is treated in a similar way.

Now, if we take f : U → C, where U is a Borel set, then

∫

U

f (x) dx = |a|p

∫

a−1U+b

f (ay + b) dy, for any a ∈ Q×
p , b ∈ Qp.

The formula follows by changing variables as x = ay+ b. Then we get dx = d (ay + b) =
d(ay) = |a|p dy, because the Haar measure is invariant under translations and formula
(6).

Example 3.6. Take U = Zp r {0}. We show that

∫

U

dx =

∫

Zp

dx = 1.

Notice that U is not compact, since the sequence {pn}n∈N ⊆ U converges to 0 /∈ U . Now,
by using

Zp r {0} =
∞⊔

j=0

{
x ∈ Zp : |x|p = p−j

}
,
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we have
∫

Zpr{0}

dx =

∞∑

j=0

∫

pjZ
×

p

dx =

∞∑

j=0

p−j

∫

Z
×

p

dy, (x = pjy)

=

(
1

1− p−1

) ∫

Z
×

p

dy =

(
1

1− p−1

){∫

Zp

dy −

∫

pZp

dy

}
=

1− p−1

1− p−1
= 1.

This calculation shows that Zpr{0} has Haar measure 1 and that {0} has Haar measure
0.

Example 3.7. For any r ∈ Z,
∫

Br(0)

dx =

∫

p−rZp

dx = pr
∫

Zp

dy = pr.

Example 3.8. For any r ∈ Z,
∫

Sr(0)

dx =

∫

Br(0)

dx−

∫

Br−1(0)

dx = pr − pr−1 = pr
(
1− p−1

)
.

Example 3.9. Set

Z(s) :=

∫

Zp

|x|sp dx, s ∈ C with Re(s) > −1.

We prove that Z(s) has a meromorphic continuation to the whole complex plane as a
rational function of p−s.

Indeed,

Z(s) =

∫

Zpr{0}

|x|sp dx =

∞∑

j=0

∫

|x|p=p−j

|x|sp dx =

∞∑

j=0

p−js

∫

|x|p=p−j

dx

=
(
1− p−1

) ∞∑

j=0

p−j(s+1) (here we need the hypothesis Re(s) > −1)

=

(
1− p−1

)

1− p−1−s
, for Re(s) > −1.

We now note that the right hand-side is defined for any complex number s 6= −1, therefore,
it gives a meromorphic continuation of Z(s) to the half-plane Re(s) < −1. Thus we have
shown that Z(s) has a meromorphic continuation to the whole C with a simple pole at
Re(s) = −1.

Example 3.10. Let f : Qp → C be a radial function, i.e., f(x) = f(|x|p). If
+∞∑

j=−∞

f
(
pj
)
pj < +∞, then

∫

Qp

f
(
|x|p

)
dx =

+∞∑

j=−∞

∫

|x|
p
=pj

f
(
|x|p

)
dx =

(
1− p−1

) +∞∑

j=−∞

f
(
pj
)
pj .
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Example 3.11. By using
+∞∑
r=0

rp−r = p
(p−1)2

, one may show that

∫

Zp

ln
(
|x|p

)
dx = −

ln p

p− 1
.

Example 3.12. We compute

Z(s, x2 − 1) =

∫

Zp

∣∣x2 − 1
∣∣s
p
dx, for Re(s) > −1, p 6= 2.

Let us take {0, 1, . . . , p− 1} ⊂ Z ⊂ Zp as a system of representatives of Fp ≃ Zp/pZp.
Then,

Zp =

p−1⊔

j=0

(j + pZp),

and

Z(s, x2 − 1) =

p−1∑

j=0

∫

j+pZp

|(x− 1) (x+ 1)|sp dx

= p−1

p−1∑

j=0

∫

Zp

|(j − 1 + py) (j + 1 + py)|sp dy, (x = j + py).

Let us consider first the integrals in which j ∓ 1 + py ∈ Z×
p , i.e., the reduction mod p of

j ∓ 1 is a nonzero element of Fp; in this case,

∫

Zp

|(j − 1 + py) (j + 1 + py)|sp dy = 1,

and since p 6= 2, there are exactly p− 2 of those j’s; then,

Z(s, x2 − 1) = (p− 2) p−1 + p−1

∫

Zp

|py (2 + py)|sp dy + p−1

∫

Zp

|(−2 + py) py|sp dy

= (p− 2) p−1 + 2p−1−s

∫

Zp

|y|sp dy = (p− 2) p−1 + 2p−1−s 1− p−1

1− p−1−s
.

Lemma 3.13. Take q (x) =
r∏

i=1

(x− αi)
ei ∈ Zp [x], αi ∈ Zp, ei ∈ N r {0}. Assume that

αi 6≡ αj mod p. Then by using the methods presented in examples 3.9 and 3.12, one can
compute the integral

Z(s, q(x)) =

∫

Zp

|q (x)|sp dx.
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3.5. Change of variables (general case)

A function h : U → Qp is said to be analytic on an open subset U ⊆ Qp, if there exists a

convergent power series
∑

i aix
i for x ∈ Ũ ⊂ U , with Ũ open, such that h (x) =

∑
i aix

i

for x ∈ Ũ . In this case, h′ (x) =
∑

i iaix
i−1 is a convergent power series. A function f is

said to be bi-analytic if f and f−1 are analytic.

Let K0,K1 ⊂ Qp be open compact subsets. Let σ : K1 → K0 be a bi-analytic function
such that σ′(y) 6= 0, y ∈ K1. Then, if f is a continuous function over K0,

∫

K0

f (x) dx =

∫

K1

f (σ(y)) |σ′(y)|p dy, (x = σ(y)).

4. Implicit Function Theorems on Qp

Let us denote by Qp [[x1, . . . , xn]], the ring of formal power series with coefficients in
Qp. An element of this ring has the form

∑
cix

i =
∑

(i1,...,in)∈Nn

ci1,...,inx
i1
1 · · ·xinn .

A formal series
∑
cix

i is said to be convergent if there exists r ∈ Z such that
∑
cia

i con-
verges for any a = (a1, . . . , an) ∈ Qn

p satisfying ‖a‖p = maxi |ai|p < pr. The convergent
series form a subring of Qp [[x1, . . . , xn]], which will be denoted as Qp 〈〈x1, . . . , xn〉〉.

If for
∑
cix

i there exists
∑
c
(0)
i xi ∈ R 〈〈x1, . . . , xn〉〉 such that |ci|p ≤ c

(0)
i for all i ∈ Nn,

we say that
∑
c
(0)
i xi is a dominant series for

∑
cix

i and write
∑

cix
i <<

∑
c
(0)
i xi.

Proposition 4.1. A formal power series is convergent if, and only if, it has a dominant
series.

Proof. Set |i| := i1 + . . . + in, for (i1, . . . , in) ∈ Nn. Assume that
∑
cix

i <<
∑
c
(0)
i xi,

then
lim

|i|→∞
|ci|p ≤ lim

|i|→∞
c
(0)
i = 0,

and thus
∑
cix

i is convergent by Lemma 2.10.

If
∑
cix

i ∈ Qp 〈〈x1, . . . , xn〉〉, then there exists r ∈ Z such that
∑
cia

i converges for any
‖a‖p < pr. Choose r0 ∈ Z such that 0 < pr0 < pr. Then for every a ∈ Qn

p satisfying
‖a‖p < pr0 , we have ∣∣ciai

∣∣
p
≤ |ci|p p

|i|r0 < |ci|p p
|i|r,

and thus lim|i|→∞ |ci|p p
|i|r0 = 0. Hence, |ci|p p

|i|r0 ≤ M , for some positive constant M .
Finally,

∑
cix

i <<
∑(

M

p|i|r0

)
xi.

�XXX
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We say that f (x) =
∑
cix

i ∈ Qp [[x1, . . . , xn]] is a special restricted power series, abbre-
viated SRP, if f (0) = 0, i.e., c0 = 0, and ci ≡ 0 mod p|i|−1, for any i ∈ Nn, i 6= 0.

Lemma 4.2. Assume that f(x) is a SRP; then the following assertions hold: (i) f (x) ∈
Zp [[x1, . . . , xn]]; (ii) f (x) is convergent at every a in Zn

p ; (iii) f(a) ∈ Zp.

Theorem 4.3 (First Version of the Implicit Function Theorem). (i) Take F (x, y) =
(F1 (x, y) , . . . , Fm (x, y)), with Fi (x, y) ∈ Qp [[x, y]] := Qp [[x1, . . . , xn, y1, . . . , ym]] such
that Fi (0, 0) = 0, and

det

[
∂Fi

∂yj
(0, 0)

]

1≤i≤m
1≤j≤m

6= 0.

Then there exists a unique f (x) = (f1 (x) , . . . , fm (x)), with fi (x) ∈ Qp [[x1, . . . , xn]],
fi (0) = 0, satisfying F (x, f (x)) = 0, i.e., Fi (x, f (x)) = 0 for all i.

(ii) If each Fi (x, y) is a convergent power series, then every fi (x) is a convergent power
series. Furthermore, if a is near 0 in Qn

p , then f (a) is near 0 in Qm
p and F (a, f (a)) = 0;

and if (a, b) is near (0, 0) in Qn
p ×Qm

p and F (a, b) = 0, then b = f(a).

For a proof of this result the reader may consult [31, Thm. 2.1.1].

Corollary 4.4 ([31, Cor. 2.1.1]). (i) If gi (x) ∈ Qp [[x1, . . . , xn]], gi (0) = 0 for 1 ≤ i ≤ n,
and

det

[
∂gi
∂xj

(0)

]
6= 0,

then there exists a unique f (x) = (f1 (x) , . . . , fn (x)) with fi (x) ∈ Qp [[x1, . . . , xn]],
fi (0) = 0, for all i, such that g (f (x)) = x.

(ii) If gi (x) ∈ Qp 〈〈x1, . . . , xn〉〉, then fi (x) ∈ Qp 〈〈x1, . . . , xn〉〉 for all i. Furthermore,
if b is near 0 in Qn

p and a = g(b), then a is also near 0 in Qn
p and b = f(a). Therefore,

y = f(x) gives rise to a bi-continuous map from a small neighborhood of 0 in Qn
p to

another neighborhood of 0 in Qn
p .

Remark 4.5. (i) Take U1 ⊂ Qn
p , U2 ⊂ Qm

p , open subsets containing the origin. Assume
that each Fi (x, y) : U1 × U2 → Qp is a convergent power series. A set of the form

V := {(x, y) ∈ U1 × U2 : Fi (x, y) = 0, i = 1, . . . ,m}

is called an analytic set. In the case in which all the Fi (x, y) are polynomials and
U1 = Qn

p , U2 = Qm
p , V is called an algebraic set. If all the Fi (x, y) ∈ Qp 〈〈x, y〉〉 satisfy

the hypotheses of the implicit function theorem, V has a parametrization, possible after
shrinking U1, U2, i.e. there exist open subsets containing the origin Ũ1 ⊂ U1, Ũ2 ⊂ U2,
such that

V =
{
(x, y) ∈ Ũ1 × Ũ2 : Fi (x, y) = 0, i = 1, . . . ,m

}

=
{
(x, y) ∈ Ũ1 × Ũ2 : y = f (x)

}
.

(ii) If we now use as coordinates

x1, . . . , xn, z1 = y1 − f1(x), . . . , zm = ym − fm(x),
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we have
V :=

{
(x, z) ∈ Ũ1 × Ũ2 : z1 = · · · = zm = 0

}
.

We say that such V is a closed analytic submanifold of Ũ1×Ũ2 ⊂ Qn
p×Qm

p of codimension
m. The word ‘closed’ means that V is closed in the p-adic topology.

In the next version of the implicit function theorem we can control the radii of the balls
involved in the theorem.

Theorem 4.6 (Second Version of the Implicit Function Theorem). (i) If Fi (x, y) ∈
Zp [[x, y]] := Zp [[x1, . . . , xn, y1, . . . , ym]], Fi (0, 0) = 0 for all i and

det

[
∂Fi

∂yj
(0, 0)

]

1≤i≤m
1≤j≤m

6≡ 0 mod p,

then there exists a unique solution f (x) = (f1 (x) , . . . , fm (x)), with fi (x) ∈
Zp [[x1, . . . , xn]], fi (0) = 0, of F (x, f (x)) = 0, i.e. Fi (x, f (x)) = 0 for all i.

(ii) If every Fi (x, y) is an SRP in x1, . . . , xn,y1, . . . , ym, then every fi (x) is an SRP
in x1, . . . , xn. Furthermore, if a ∈ Zn

p , then f(a) ∈ Zp and F (a, f(a)) = 0, and if
(a, b) ∈ Zn

p × Zm
p satisfies F (a, b) = 0, then b = f(a).

For a proof of this result the reader may consult [31, Thm. 2.2.1].

Corollary 4.7 ([31, Cor. 2.2.1]). (i) If gi(x) ∈ Zp [[x1, . . . , xn]], gi(0) = 0 for all i, and
further

det

[
∂gi
∂xj

(0, 0)

]

1≤i≤n
1≤j≤n

6≡ 0 mod p,

then every fj(x) in the unique solution of gi (f1(x), . . . , fn(x)) = x satisfying fj(0) = 0
is also in Zp [[x1, . . . , xn]].

(ii) If every gi(x) is a SRP in x1, . . . , xn, then every fj(x) is also a SRP in the same
variables, and, y = f(x) gives rise to a bi-continuous map from Zn

p to itself.

Remark 4.8. Assume that every Fi(x, y) is a SRP in x, y. Take

V =
{
(x, y) ∈ Zn

p × Zm
p : Fi(x, y) = 0, i = 1, . . . ,m

}
.

Under the hypotheses of the second version of the implicit function theorem, we have

V =
{
(x, y) ∈ Zn

p × Zm
p : y = f(x), x ∈ Zn

p

}
.

By using the coordinate system

x1, . . . , xn, z1 = y1 − f1(x), . . . , zm = ym − fm(x),

V takes the form

V =
{
(x, z) ∈ Zn

p × Zm
p : z1 = · · · = zm = 0

}
,

and we will say V is a closed analytic submanifold of Zn
p × Zm

p of codimension m.
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4.1. General change of variables formula

Theorem 4.9 ([31, Prop. 7.4.1]). Let K0,K1 ⊂ Qn
p be open compact subsets, and let

σ = (σ1, . . . , σn) : K1 → K0 be a bi-analytic map such that

det

[
∂σi
∂yj

(z)

]
6= 0, z ∈ K1.

If f is a continuous function on K0, then
∫

K0

f (x) dnx =

∫

K1

f (σ(y))

∣∣∣∣det
[
∂σi
∂yj

(y)

]∣∣∣∣
p

dny, (x = σ(y)).

5. The Igusa local zeta functions

Let p be a fixed prime number. Set

Am := Z/pmZ, m ∈ Nr {0} ,

the ring of integers modulo pm. Recall that any integer can be written in a unique form
as

a0 + a1p+ . . .+ akp
k, ai ∈ {0, 1, . . . , p− 1} .

Thus we can identify, as sets, Am with
{
a0 + a1p+ . . .+ am−1p

m−1, ai ∈ {0, 1, . . . , p− 1}
}
.

Take f (x) ∈ Z [x1, . . . , xn]r Z, and define

Nm =





# {x ∈ (Z/pmZ)
n
: f(x) ≡ 0 mod pm} if m ≥ 1,

1 if m = 0.

A basic problem is to study the behavior of the sequence Nm as m→ ∞.

More generally, we can take f (x) ∈ Zp [x1, . . . , xn] r Zp (recall that Z ⊂ Zp and that
Z/pmZ ≃ Zp/p

mZp), and

Nm =





# {x ∈ (Zp/p
mZp)

n
: f(x) ≡ 0 mod pm} if m ≥ 1,

1 if m = 0,

where x ≡ y mod pm means x − y ∈ pmZp. To study the sequence {Nm}m∈N we
introduce the following Poincaré series:

P (t) :=
∞∑

m=0
Nm

(
p−nt

)m
, t ∈ C with |t| < 1. (7)

We expect that the analytic properties of P (t) provide information about the asymptotic
behavior of the sequence {Nm}m∈N. A key question is the following:

Is P (t) a rational function of t?

In what follows we will use the convention: given a > 0 and s ∈ C, we set as = es ln a.
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Definition 5.1. Let f(x) ∈ Qp [x1, . . . , xn]rQp and let ϕ be a locally constant function
with compact support, i.e., an element of D

(
Qn

p

)
.The local zeta function (also called

Igusa’s local zeta function) attached to (f, ϕ) is

Zϕ (s, f) :=

∫

Qn
prf−1(0)

ϕ (x) |f (x)|sp dnx, s ∈ C,Re(s) > 0,

where dnx is the Haar measure of
(
Qn

p ,+
)

normalized such that
∫
Zn
p
dnx = 1.

Remark 5.2. Zϕ (s, f) is an holomorphic function on the half-plane Re(s) > 0. For the
proof of this fact the reader may consult [31, Lemma 5.3.1].

Given f(x) ∈ Zp [x1, . . . , xn]r Zp, we set

Z (s, f) := Z(s) =

∫

Zn
prf−1(0)

|f (x)|sp dnx, s ∈ C,Re(s) > 0.

Proposition 5.3. With the above notation,

P (t) =
1− tZ(s)

1− t
, t = p−s, for Re(s) > 0,

where P (t) is the Poincaré series defined in (7).

Proof. We first note that

Z(s) =

∫

Zn
prf−1(0)

|f (x)|sp d
nx =

∞∑

j=0

p−js

∫

{x∈Zn
p :|f(x)|=p−j}

dnx.

On the other hand,

{
x ∈ Zn

p : |f (x)| = p−j
}
=
{
x ∈ Zn

p : ord (f (x)) = j
}

=
{
x ∈ Zn

p : ord (f (x)) ≥ j
}
r
{
x ∈ Zn

p : ord (f (x)) ≥ j + 1
}
.

Now, take x0 ∈ Zn
p satisfying ord (f (x0)) ≥ j, then, by using Taylor expansion,

f
(
x0 + pjz

)
= f (x0) + pj

n∑

j=1

∂f

∂xi
(x0) (xi − x0,i) + p2j (higher order terms) ,

we have ord
(
f
(
x0 + pjz

))
≥ j, for all z ∈ Zn

p , i.e. ord
(
f
(
x0 + pjZn

p

))
≥ j. This fact

implies:

(i) x0 ∈
(
Zp/p

jZp

)n
satisfies f (x0) ≡ 0 mod pj ;

(ii) Aj :=
{
x ∈ Zn

p : ord (f (x)) ≥ j
}
=

⊔
f(x0)≡0 mod pj

x0 + pjZn
p ;

(iii)
∫
Aj

dnx = Njp
−jn.
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Therefore,

Z(s) =
∞∑

j=0

p−js
(
Njp

−jn −Nj+1p
−(j+1)n

)

=
∞∑

j=0

Njp
−js−jn −

∞∑

j=0

Nj+1p
−js−(j+1)n

=

∞∑

j=0

Nj

(
p−nt

)j
− t−1

∞∑

j′=1

Nj′
(
p−nt

)j′
(t = p−s)

= P (t)− t−1 (P (t)− 1) ,

i.e., P (t) = 1−tZ(s)
1−t , for Re(s) > 0. �XXX

Theorem 5.4 (Igusa, [31, Thm. 8.2.1]). Let f(x) be a non-constant polynomial in
Qp [[x1, . . . , xn]]. There exist a finite number of pairs (NE , vE) ∈ (Nr {0}) × (Nr {0}),
E ∈ T , such that ∏

E∈T

(
1− pvE−sNE

)
Zϕ (s, f)

is a polynomial in p−s with rational coefficients.

The proof of this theorem will be given in Section 8. From Theorem 5.4 and Proposition
5.3, we get:

Corollary 5.5. P (t) is a rational function of t.

The rationality of P (t) was conjectured in the sixties by Borevich and Shafarevich. Igusa
proved this result at middle of the seventies. The rationality of Zϕ (s, f) also allows us
to find bounds for the Nm’s (see e.g. [28] and [31]).

The proof of Theorem 5.4 given by Igusa depends on a deep result in algebraic geometry
known as Hironaka’s resolution of singularities theorem. Now we introduce the station-
ary phase formula, which is an elementary method for computing p-adic integrals like
Zϕ (s, f), Igusa has conjectured in [29] that this method will conduct to a new elementary
proof of the rationality of Zϕ (s, f).

6. The Stationary Phase Formula

Let us identify Fp, set-theoretically, with {0, 1, . . . , p− 1}. Let ‘-’ denote the reduction
mod p map, i.e.,

Zp → Fp

x0 + p(. . .) 7→ x0.

This map can be extended to Zn
p → Fn

p . The reduction mod p of a subset E ⊂ Zn
p

will be denoted as E ⊂ Fn
p . If f(x) ∈ Zp [x1, . . . , xn] r pZp [x1, . . . , xn], f denotes its

reduction mod p.
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Proposition 6.1 (Stationary Phase Formula). Take E ⊂ Fn
p and denote by S the subset

consisting of all a ∈ E such that f (a) ≡ ∂f
∂xi

(a) ≡ 0 mod p, for 1 ≤ i ≤ n. Denote by

E, S the preimages of E, S under reduction mod p map Zn
p → Fn

p , and by N the number

of zeros of f (x) in E. Then

∫

E

|f (x)|sp dnx = p−n
(
#E −N

)
+
p−n−s

(
1− p−1

) (
N −#S

)

1− p−1−s
+

∫

S

|f (x)|sp dnx.

Proof. By definition E =
⊔

a∈E a+ pZn
p ; then,

∫

E

|f (x)|sp dnx =
∑

a∈E

∫

a+(pZp)
n

|f (x)|sp dnx = p−n
∑

a∈E

∫

Zn
p

|f (a+ px)|sp dnx

= p−n
∑

a∈E \S

∫

Zn
p

|f (a+ px)|sp dnx+ p−n
∑

a∈S

∫

Zn
p

|f (a+ px)|sp dnx

= p−n
∑

a∈E \S

∫

Zn
p

|f (a+ px)|sp dnx+

∫

S

|f (x)|sp dnx.

Take a ∈ E \S such that f (a) 6= 0, i.e., |f (a+ px)|p = 1; in this case,

∫

Zn
p

|f (a+ px)|sp dnx = 1,

and the contribution of these a’s is p−n
(
#E −N

)
.

Take now

a ∈ E \ S such that f (a) = 0,
∂f

∂xi
(a) 6= 0 for some i, (8)

say i = 1. Define

yi =





f (a+ px)− f (a)

p
if i = 1,

xi if i > 1.

Then yi’s are SRP’s and det
[
∂yi

∂xj
(0)
]
= ∂f

∂x1

(0) 6≡ 0 mod p; hence, the map x 7→ y gives

rise to a measure-preserving map from Zn
p to itself (cf. Corollary 4.7). Therefore,

∫

Zn
p

|f (a+ px)|sp dnx =

∫

Zp

|py1 + f (a)|sp dy1 = p−s

∫

Zp

∣∣∣∣y1 +
f (a)

p

∣∣∣∣
s

p

dy1

= p−s

∫

Zp

|y1|
s
p dy1 = p−s 1− p−1

1− p−1−s
,
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and the contribution of the points of the form (8) is

p−n−s
(
1− p−1

) (
N −#S

)

1− p−1−s
. �XXX

Set f (a+ px) := pea f̃ (x) with f̃ (x) ∈ Zp [x1, . . . , xn]r pZp [x1, . . . , xn]. The stationary
phase formula, abbreviated SPF, can be re-written as

∫

E

|f (x)|sp dnx =
L (p−s)

1− p−1−s
+

∫

S

|f (x)|sp dnx

=
L (p−s)

1− p−1−s
+ p−n

∑

a∈S

∫

Zn
p

|f (a+ px)|sp dnx

=
L (p−s)

1− p−1−s
+ p−n−eas

∑

a∈S

∫

Zn
p

∣∣∣f̃ (x)
∣∣∣
s

p
dnx.

We can now apply SPF to each
∫
Zn
p

∣∣f̃ (x)
∣∣s
p
dnx. Igusa has conjectured that by

applying recursively SPF, it is possible to establish the rationality of integrals of
type

∫
E
|f (x)|sp d

nx, in the case in which the polynomial f has coefficients in a non-
Archimedean complete field of arbitrary characteristic.

The arithmetic of the Laurent formal series field

Fp ((T )) =

{
∞∑

k=k0

akT
k : ak ∈ Fp, k0 ∈ Z

}

is completely analog to that of Qp. In particular, given a polynomial with coefficients in
Fp ((T )), we can attach to it a local zeta function, which is defined like in the p-adic case.
The rationality of such local zeta functions is an open problem. The main difficulty here
is the lack of a theorem of resolution of singularities in positive characteristic. The above-
mentioned conjecture can be re-stated saying that the rationality of local zeta functions
for polynomials with coefficients in Fp ((T )) should follow by applying recursively SPF.

Remark 6.2. Take f (x) ∈ Zp [x1, . . . , xn]r pZp [x1, . . . , xn]. If the system of equations

f (a) ≡
∂f

∂xi
(a) ≡ 0 mod p, 1 ≤ i ≤ n

has no solutions in Fn
p , then S = ∅, and by SPF,

Z(s, f) = p−n
(
#E −N

)
+
p−n−s

(
1− p−1

)
N

1− p−1−s
.

Example 6.3. Let f (x) ∈ Zp [x1, . . . , xn]r pZp [x1, . . . , xn] be a homogeneous polynomial

of degree d, such that f (a) ≡ ∂f
∂xi

(a) ≡ 0 mod p, 1 ≤ i ≤ n, implies a = 0. We now
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compute Z(s, f). We use SPF with E = Zn
p , E = Fn

p , S = pZn
p , S = {0}.

Z(s, f) = p−n (pn −N) +
p−n−s

(
1− p−1

)
(N − 1)

1− p−1−s
+

∫

pZn
p

|f (x)|sp dnx

= p−n (pn −N) +
p−n−s

(
1− p−1

)
(N − 1)

1− p−1−s
+ p−n−ds

∫

Zn
p

|f (y)|sp dny

= p−n (pn −N) +
p−n−s

(
1− p−1

)
(N − 1)

1− p−1−s
+ p−n−dsZ(s, f);

therefore,

Z(s, f) =
1

1− p−n−ds

{
p−n (pn −N) +

p−n−s
(
1− p−1

)
(N − 1)

1− p−1−s

}
.

6.1. Singular points of hypersurfaces

Take
f (x) ∈ Zp [x1, . . . , xn]r pZp [x1, . . . , xn]

and define
Vf (Qp) =

{
z ∈ Qn

p : f (z) = 0
}
.

Vf (Qp) is the set of Qp-rational points of the hypersurface defined by f . This notion can
be formulated on an arbitrary field K. Set

V f (Fp) :=
{
z ∈ Fn

p : f (z) = 0
}
.

V f (Fp) is the set of Fp-rational points of the hypersurface defined by f . If

Vf (Zp) := Vf (Qp) ∩ Zn
p ,

then Vf (Zp) = V f (Fp). A point a ∈ Vf (Qp) is said to be singular if ∂f
∂xi

(a) = 0 for
1 ≤ i ≤ n. The set of singular points of Vf (Qp) is denoted as Singf (Qp). We define
Singf (Zp) = Singf (Qp) ∩ Zn

p . In a similar form we define Singf (Fp).

Note that Singf (Zp) 6= Singf (Fp). In fact, it may occur that Singf (Zp) = ∅ and

that Singf (Fp) 6= ∅. For instance, if f (x, y) = px + x2 − y3, then Singf (Zp) = ∅, but
Singf (Fp) = {(0, 0)}.

Example 6.4. We compute Z(s, f) for f (x, y) = px + x2 − y3 by using SPF. Note that
E = Z2

p, E = F2
p, S = pZp × pZp, S = {(0, 0)},

N = #
{
(u, v) ∈ F2

p : u2 − v3 = 0
}
;

then, by applying SPF,

Z(s, f) = p−2
(
p2 −N

)
+
p−2−s

(
1− p−1

)
(N − 1)

1− p−1−s
+

∫

pZp×pZp

∣∣px+ x2 − y3
∣∣s
p
dxdy.
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By changing variables in the last integral as x = pu, y = pv, we have

Z(s, f) =
L(p−s)

1− p−1−s
+ p−2

∫

Z2
p

∣∣p2u+ p2u2 − p3v3
∣∣s
p
dudv =

L(p−s)

1− p−1−s

+ p−2−2s

∫

Z2
p

∣∣u+ u2 − pv3
∣∣s
p
dudv.

We now apply SPF to the last integral. Take g (u, v) = u + u2 − pv3, g (u, v) = u + u2.
Since the system of equations

u+ u2 = 0, 1 + 2u = 0, u, v ∈ Fp

has no solutions, S = Singg (Fp) = ∅; by applying SPF we get

Z(s, f) =
L(p−s)

1− p−1−s
+ p−2−2s

{
p−2

(
p2 − 2p

)
+

2p−1−s
(
1− p−1

)

1− p−1−s

}
.

Remark 6.5. Take f (x) ∈ Zp [x1, . . . , xn] r pZp [x1, . . . , xn]. If Singf (Qp) = ∅, but
Singf (Fp) 6= ∅; then,

Z (s, f) =
L (p−s)

1− p−1−s
,

where L (p−s) is a polynomial in p−s with rational coefficients (see [60]-[61]). The de-
nominator of Z (s, f) is controlled by Singf (Qp). Nowadays the numerator is not fully
understood, but it depends strongly on Singf (Fp). The lack of Qp-singular point, i.e.

Singf (Qp) = ∅, makes the denominator of Z (s, f) ‘trivial’: 1 or 1− p−1−s.

Example 6.6. We now compute

Z(s, x2 + y3) =

∫

Z2
p

∣∣x2 + y3
∣∣s
p
dxdy,

by using SPF. Note that E = Z2
p, E = F2

p, S = pZp × pZp, S = {(0, 0)}, and that

N = #
{
(u, v) ∈ F2

p : u2 + v3 = 0
}
= p,

because the set
{
(u, v) ∈ F2

p : u2 + v3 = 0
}

can be parametrized as u = α3, v = α2, with
α ∈ Fp. By applying SPF we have

Z(s, x2 + y3) = p−2
(
p2 − p

)
+
p−2−s (p− 1)

(
1− p−1

)

1− p−1−s
+

∫

pZp×pZp

∣∣x2 + y3
∣∣s
p
dxdy

=
(
1− p−1

) 1− p−2−s

1− p−1−s
+

∫

pZp×pZp

∣∣x2 + y3
∣∣s
p
dxdy.
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By changing variables in the last integral as x = pu, y = pv, dxdy = p−2dudv,

Z(s, x2 + y3) =
(
1− p−1

) 1− p−2−s

1− p−1−s
+ p−2−2s

∫

Z2
p

∣∣u2 + pv3
∣∣s
p
dudv

=:
(
1− p−1

) 1− p−2−s

1− p−1−s
+ p−2−2sZ1(s).

We now apply SPF to Z1(s): E = Z2
p, E = F2

p; since g(u, v) = u2 + pv3 = u2, the

solution set of u2 = 2u = 0 is S = {0} × Fp, then S = pZp × Zp. In addition,
#
{
(u, v) ∈ F2

p : u2 = 0
}
= p. Therefore,

Z1(s) = p−2
(
p2 − p

)
+

∫

pZp×Zp

∣∣u2 + pv3
∣∣s
p
dudv

=
(
1− p−1

)
+ p−1−s

∫

Z2
p

∣∣pu2 + v3
∣∣s
p
dudv

=:
(
1− p−1

)
+ p−1−sZ2(s),

and

Z(s, x2 + y3) =
(
1− p−1

) 1− p−2−s

1− p−1−s
+ p−2−2s

(
1− p−1

)
+ p−3−3sZ2(s).

We now apply SPF to Z2(s): E = Z2
p, E = F2

p, S = Zp × pZp, S = Fp × {0}; then,

Z2(s) = p−2
(
p2 − p

)
+

∫

Zp×pZp

∣∣pu2 + v3
∣∣s
p
dudv

=
(
1− p−1

)
+ p−1−s

∫

Z2
p

∣∣u2 + p2v3
∣∣s
p
dudv

=:
(
1− p−1

)
+ p−1−sZ3(s),

and

Z(s, x2+y3) =
(
1− p−1

) 1− p−2−s

1− p−1−s
+p−2−2s

(
1− p−1

)
+p−3−3s

(
1− p−1

)
+p−4−4sZ3(s).

Finally, we apply SPF to Z3(s): E = Z2
p, E = F2

p, S = pZp× Zp, S = {0} × Fp; then,

Z3(s) = p−2
(
p2 − p

)
+

∫

pZp×pZp

∣∣u2 + p2v3
∣∣s
p
dudv

=
(
1− p−1

)
+ p−1−2s

∫

Z2
p

∣∣u2 + v3
∣∣s
p
dudv

=
(
1− p−1

)
+ p−1−2sZ(s, x2 + y3),
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and

Z(s, x2 + y3) =
(
1− p−1

) 1− p−2−s

1− p−1−s
+ p−2−2s

(
1− p−1

)
+ p−3−3s

(
1− p−1

)

+ p−4−4s
(
1− p−1

)
+ p−5−6sZ(s, x2 + y3),

i.e.,

Z(s, x2 + y3) =

(
1− p−1

)

1− p−5−6s

{
1− p−2−s

1− p−1−s
+ p−2−2s + p−3−3s + p−4−4s

}

=

(
1− p−1

)

(1− p−1−s) (1− p−5−6s)

{
1− p−2−s + p−2−2s − p−5−6s

}
.

6.2. Quasi-homogenous singularities

Take w = (w1, . . . , wn) ∈ (Nr {0})n and f (x) ∈ Zp [x1, . . . , xn]. We say that
f(x) is a quasi-homogeneous polynomial of degree d with respect to w if: (1)
f (λw1x1, . . . , λ

wnxn) = λdf (x), λ ∈ Q×
p ; (2) Singf (Qp) = {0} ⊂ Qn

p .

Set |w| := w1 + . . .+ wn, and

Z(s, f) =

∫

Zn
p

|f (x)|sp dnx.

Proposition 6.7. With the above notation and hypotheses,

Z(s, f) =
L (p−s)

(1− p−1−s)
(
1− p−ds−|w|

) ,

where L (p−s) is a polynomial in p−s with rational coefficients.

Proof. Set

A =
{
(x1, . . . , xn) ∈ Zn

p : ord (xi) ≥ wi for i = 1, . . . , n
}

= pw1Zp × . . .× pwnZp,

Ac := Zn
p rA.

Then,

Z(s, f) =

∫

A

|f (x)|sp dnx+

∫

Ac

|f (x)|sp dnx.

By changing variables in the first integral as xi = pwiui, i = 1, . . . , n, dnx = p−|w|dnu,
we have ∫

A

|f (x)|sp dnx = p−ds−|w|Z(s, f),
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and

Z(s, f) =
1

1− p−ds−|w|

∫

Ac

|f (x)|sp dnx.

We now note that Singf (Qp) ∩A
c = ∅, but it may occur that Singf (Fp) ∩Ac 6= ∅; this

makes the computation of the integral on Ac not simple. By using SPF recursively and

some ideas on Néron p-desingularization, one can show that
∫
Ac |f (x)|

s
p dnx =

L(p−s)
1−p−1−s .

For a detailed proof, including the most general case of the semiquasi-homogeneous
singularities, the reader may consult [60]. �XXX

7. p-adic Analytic Manifolds and Resolution of Singularities

This section is based on [31, Sec. 2.4]. Let U ⊂ Qn
p be a non-empty open set, and let

f : U → Qp be a function. If at every point a = (a1, . . . , an) of U there exists an element
fa(x) ∈ Qp 〈〈x− a〉〉 = Qp 〈〈x1 − a1, . . . , xn − an〉〉 such that f(x) = fa(x) for any point
x near to a, we say that f is an analytic function on U . It is not hard to show that all
the partial derivatives of f are analytic on U .

Let U be as above and let h = (h1, . . . , hm) : U → Qm
p be a mapping. If each hi is an

analytic function on U , we say that h is an analytic mapping on U .

Let X denote a Hausdorff space and n a fixed non–negative integer. A pair (U, φU ), where
U is a nonempty open subset of X and φU : U → φU (U) is a bi-continuous map (i.e., a
homeomorphism) from U to an open set φU (U) of Qn

p , is called a chart. Furthermore
φU (x) = (x1, . . . , xn) , for a variable point x of U are called the local coordinates of x. A
set of charts {(U, φU )} is called an atlas if the union of all U is X and for every U , U ′

such that U ∩ U ′ 6= ∅ the map

φU ′ ◦ φ−1
U : φU (U ∩ U ′) → φU ′ (U ∩ U ′)

is analytic. Two atlases are considered equivalent if their union is also an atlas. This
is an equivalence relation and any equivalence class is called an n-dimensional p-adic
analytic structure on X . If {(U, φU )} is an atlas in the equivalence class, we say that X
is an n-dimensional p-adic analytic manifold, and we write n = dim (X).

Suppose that X , Y are p-adic analytic manifolds respectively, defined by {(U, φU )},
{(V, ψV )}, and f : X → Y is a map. If for every U, V such that U ∩ f−1 (V ) 6= ∅ the
map

ψV ◦ f ◦ φ−1
U : φU

(
U ∩ f−1 (V )

)
→ Qdim(Y )

p

is analytic, then we say that f is an analytic map. This notion does not depend on the
choice of atlases.

Suppose that X is a p-adic analytic manifold defined by {(U, φU )} and Y is a nonempty
open subset of X . If for every U ′ = Y ∩ U 6= ∅ we put φU ′ = φU |U ′ , then {(U ′, φU ′)}
gives an atlas on Y , which makes Y a p-adic analytic open submanifold of X , with
dim(X) = dim(Y ).

If U , U ′ are neighborhoods of an arbitrary point a of X , and f , g are p-adic analytic
functions respectively on U , U ′ such that f |W= g |W for some neighborhood W of a
contained in U ∩ U ′, then we say that f , g are equivalent at a. An equivalence class is
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said to be a germ of analytic functions at a. The set of germs of analytic functions at a
form a local ring denoted by OX,a, or simply Oa.

Suppose that Y is a nonempty closed subset of X , a p-adic analytic manifold as before,
and 0 < m ≤ n such that an atlas {(U, φU )} defining X can be chosen with the following
property: If φU (x) = (x1, . . . , xn) and U ′ = Y ∩ U 6= ∅, there exist p-adic analytic
functions F1, . . . , Fm on U such that firstly U ′ becomes the set of all x in U satisfying
F1 (x) = · · · = Fm (x) = 0, and secondly,

det

[
∂Fi

∂xj

]

1≤i≤m
1≤j≤m

(a) 6= 0 at every a in U ′.

Then by Corollary 4.4-(ii) the mapping x 7→ (F1 (x) , . . . , Fm (x) , xm+1, . . . , xn) is a bi-
analytic mapping from a neighborhood of a in U to its image in Qn

p . If we denote by V
the intersection of such neighborhood of a an Y , and put ψV (x) = (xm+1, . . . , xn) for
every x in V , then {(V, ψV )} gives an atlas on Y . Therefore Y becomes a p-adic analytic
manifold with dim (Y ) = n −m. We call Y a closed submanifold of X of codimension
m.

Let µn denote the normalized Haar measure of Qn
p . Take X and {(U, φU )} as before. Set

α a differential form of degree n on X ; then α |U has an expression of the form

α (x) = fU (x) dx1 ∧ · · · ∧ dxn,

in which fU is an analytic function on U . If A is an open and compact subset of X
contained in U , then we define its measure µα (A) as

µα (A) =

∫

A

|fU (x)|p µn (φU (x)) =
∑

e∈Z

p−eµn

(
φU
(
f−1
U

(
peZ×

p

)
∩ A

))
. (9)

We note that the above series converges because fU (A) is a compact subset. If (U ′, φU ′ )
is another chart and A ⊂ U ′, then we will have the same µα (A) relative to that chart.
In fact, if φU ′(x) = (x′1, . . . , x

′
n) = x′, then

fU ′(x) det

[
∂x′i
∂xi

]
= fU (x), and µn (φU ′(x)) =

∣∣∣∣det
[
∂x′i
∂xi

]∣∣∣∣
p

µn (φU (x)) .

Actually, the previous equations just give account of the change of variables rule as
x 7→ x′, in the integral (9), that is

∫

A

|fU (x)|p µn (φU (x)) =

∫

A

|fU ′(x)|p µn (φU ′(x)

(see [31, pg. 112 and Proposition 7.4.1]). Note that if X = U ⊂ Qn
p and

α = dx1 ∧ · · · ∧ dxn,

then µα is the normalized Haar measure of Qn
p .
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Theorem 7.1 (Hironaka). Take f(x) a nonconstant polynomial in Qp [x1, . . . , xn] , and
put X = Qn

p . Then there exist an n-dimensional p-adic analytic manifold Y , a finite set
T = {E} of closed submanifolds of Y of codimension 1 with a pair of positive integers
(NE, vE) assigned to each E, and a p-adic analytic proper mapping h : Y → X satis-
fying the following conditions: (i) h is the composition of a finite number of monoidal
transformations each one with a smooth center; (ii)

(f ◦ h)−1
(0) =

⋃

E∈T

E

and h induces a p-adic bianalytic map

Y r h−1 (Singf (Qp)) → X r Singf (Qp) ;

(iii) at every point b of Y , if E1, . . . , Em are all the E in T containing b with local
equations y1, . . . , ym around b and (Ni, vi) = (NE, vE) for E = Ei, then there exist local
coordinates of Y around b of the form (y1, . . . , ym, ym+1, . . . , yn) such that

(f ◦ h) (y) = ε (y)

m∏

i=1

yNi

i , h∗


 ∧

1≤i≤n

dxi


 = η (y)

(
m∏

i=1

yvi−1
i

)
∧

1≤i≤n

dyi (10)

on some neighborhood of b, in which ε (y), η (y) are units of the local ring Ob of Y at b.
In particular, ∪E∈TE has normal crossings.

8. Proof of Theorem 5.4

We want to end this notes by proving Igusa’s Theorem about the meromorphic continua-
tion of Zϕ (s, f) (see Theorem 5.4 in Section 5). We follow the proof given by Igusa in
[31, Thm. 8.2.1].

Let
∣∣∣
∧

1≤i≤ndxi

∣∣∣ denote the measure induced by the differential form
∧

1≤i≤ndxi on Qn
p ,

which agrees with the Haar measure of Qn
p . Then

Zϕ (s, f) =

∫

Qn
prf−1(0)

ϕ (x) |f(x)|sp

∣∣∣
∧

1≤i≤ndxi

∣∣∣ .

Pick a resolution of singularities h : Y → X for f−1 (0) as in Theorem 7.1; we use all the
notation introduced there. Then Y r h−1

(
f−1 (0)

)
→ X r f−1 (0) is a p-adic bianalytic

proper map, i.e., a proper analytic coordinate change; then,

Zϕ (s, f) =

∫

Yrh−1(f−1(0))

ϕ (h (y)) |f (h (y))|sp

∣∣∣h∗
(∧

1≤i≤ndxi

)
(y)
∣∣∣ .

At every point b of Y rh−1
(
f−1 (0)

)
we can choose a chart (U, φU ) such that (10) holds.

Since h is proper and the support of ϕ, sayA, is compact, we see that h−1 (A) := B is com-
pact. Then we can cover B by a finite disjoint union of open compact balls Bα such that
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each of these balls is contained in some U above. Since ϕ is locally constant, after subdi-

viding Bα we may assume that (ϕ ◦ h)
∣∣∣
Bα

= ϕ (h (b)) , |ε (y)|p

∣∣∣
Bα

= |ε (b)|p , |η (y)|p

∣∣∣
Bα

=

|η (b)|p , and further that φU (Bα) = c+ peZn
p , for some c = (c1, . . . , cn) in Qn

p and e ∈ N.
Then,

Zϕ (s, f) =
∑

α

ϕ (h (b)) |ε (b)|p |η (b)|p ·
∏

1≤i≤n

∫

ci+peZp

|yi|
Nis+vi−1
p dyi,

with the understanding that Ni = 0, vi = 1 in the case Ei is not crossing through b.
Finally one has by [31, Lemma 8.2.1] that

∫

ci+peZp

|yi|
Nis+vi−1
p dyi =





p−(Nis+vi)e
(

1−p−1

1−p−Nis−vi

)
if ci ∈ peZp

p−e |ci|
Nis+vi−1
p if ci /∈ peZp.
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