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Abstract

Tn this paper we study boundedness and certain stability properties of so-
lution of Second Order Linear Differential Equations (2). Some relations
with the limit point circle classification are also presented.

1. Introduction

The study of the various boundedness and stability properties associated with
solutions of differential equations may be proved by constructing a positive
definide function E with

- Ski@)w(E)+k2(z); (1)
where ki, kg € L1(0,00) and w is a function belonging to a class G defined
bellow (see [4], [11], [16] and thcir references). In this paper we shall apply

this idea to obtain certain results on the boundedness and stability of secoiid
order linear differential equation:

(@) (@) +4(2)y (@) =0, a<z< oo, @

under suitable conditions on the coefficient functions p and q.

Our approach differs from those of the earlier investigations as all the earliér
authors constructed energy functions (a partial survey of this area may be
found un [14]). We have adopted the generalized idea mentioned above; our
results differ significantly from those obtained previously,
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Definition 1. (See [16]) Let ¢ be the set of all real functions w (x) > 0 for
x > a wich are continuous and non-decreasing for = € [a,00) and have the
property that w (z) = O (x) as «= tend to mﬁmty

It is obvious that:

u 1.
Q(u):/ = — 00, a8 u — 00.
_ : uo""(") . :

F‘urthermore, 1f w1 and wg are, both in G then wi + wg € G.

We requlere ‘the followmg results, wich ¢ari be found in [3] and [16], respec-
tively.

Lemma 1. Let the functions F (z) and Y (z) be continuous, F (z) > 0 for all
x> xg and k > 0. If w € G, then the inequality:

Y (z) <k + /:) F(i)w (v (1) ds, 3)

Y (2) < Q1 (Q(k);/x:p('t)dt) o @

Lemma 2. Suposse then exists a positive-definite continuous function E of

implies

x € R™ (n > 1) such that along trajectory of

dy;

- = (z,y), i= 1,... ,n, _ _' (5)

‘the total derivate % satisfies the inequality (1) where w € G and ky and ks

are non-negative functions in L! (0, c0). Suppose also that E — 0o as y, — 00
for some r. Then y, es bounded.

-Thioughout' this paper we consider the follo'wing assumptions:

i) p>6>0;ptelLl(a,oc0)

iil) ¢g>0;q9€ Ll (a,00).

Equation (2) is equivaléent to the following system:

y = =
o | (6)
., |

i

I
Q
4
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2. Results

The problem of boundedness of solutions is of particular importance in the
qualitative theory, and if has received a considerable amount of attention in
the last three decades. So, we begin with some of the simpler possibilities.

Theorem 1. Under assumptions i) and ii) every solution of (2) satisfies the
following conditions:

1. y is bounded for all ¢ > a;

2. py' is bounded for all z > a.

E(x)=(z+3)% +4> (7)

The derivate E’ of the function E defined by (7) along any solution of system
(6) satisfies:
dE 222 4y2

— = —2qyz — 2qy% + = + —.
dr qyz — 2qy" + " + " (8)

Employing ii) we get:

dE 2 2
— < —2qyz+ 2_z_ + —2yz
dr p P

IA

—2qyz + % (22 + 2yz)

< ( E )+2E
= M2 1) 7,

q 2
(7—+3)"
Now note that (—2773—_—1 + %) € L'[a,0) and w(E) = E € G.

Therefore, by Lemma 1, E es bounded. Using Lemma 2, we can conclude that
y and z are bounded. §

In {13] Wintner proved that if there exist constants « and w # 0 such that

either:
o0

IA

q—'w2| < 00 (9)
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or N v
o
/ lg') < oo and q(w) — w2 as r — 00, (10)
a

then both y and 3/ are bounded on [a oo) for anycsoluftmn y of (2) W1th p =, 1

Remark 1. It is seen easy that Theorem 1 extend (9) tow =0 and the
condition of regularity (10} are not used..

The above remark remain true if are consider the results [1] and [2] taking q
bounded.

Theorem 2. Under conditions i) and ii) we have ¢*/2 € L?[a, 00).

Proof. From (8) we obtain:

IE
22 = —(717 - 2qyz + - (y +2)?

dE E 2
< —_— z
- dx +q(21/2—1)+pE

dE q 2
< ——+|—=—+=)E.
- dm+(21/2—1+p)E

Integrating this inequality between 0 and = we have:

/z 24t < E (0) E()+/I(—q—'—+g)Edt
oqy - ’ o \21/2-1 " p '

Since F is bounded, there is a constant k such that f; gy%dt < k. The result
now follows easily. B

Theorem 3. If i m addition: to condmons' 1,)—11), we assume that Lu.b. p (t) =
M < oo, then py' € L?[a, o).

Proof. From (8) we obtain:

222 dE 4
P dz P
dE 2
< —+4+3¢qFE+ ——7——E.
- dx 9%+ (21/2—1)p
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Integrating this inequality between 0 and = we have:

2/I2Ldf<E )-E(0)+ /,3 +— 2V Edr
-I' 0 q (21/2—1)[) 2

From this, since E is bounded we have [ %dtus K.

If condition Lu.b. p(t) = M < oo then f§ ,‘%dt < oo. This completes proof. i

Theorem 4. If in addition to conditions i)-ii), we assume that |¢| < M
(M > 0) then zli.ngoz (z)=0.

Proof. First note the following:

2 |

|2zz'| = |2qyz| < |q| (J +z )

la
| dz
The expression on the right-hand side is bounded by a positive constant for y

and 2 bounded. The use of an elementary Lemma [5, p.261] yield the started
result. §

Theorem 5. If under the conditions of the above theorem, we assume that
0<m <|q| <M then 2:1.1_’110101/(:) =0

Proof. Since y is bounded, we can choose a sequence z, such that:
Jdim |y (zq)| = lim |y («)l =7

We shall show that § = 0.
If follows from the last equation of (6) that:

Z($n+1)‘z($n)=
Tn+1
= —/z q(r)y(r)dr

. ZTn+1 Tn+l
= - L (M) y () —q(7)y (xzn))dr — / q(r)y (xn)dr.

In
Therefore

Zn+1l

mly(z,)] < / g(r)dr |y (z,)|

Tn
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o, 2o+l _
s Iz(rn'+1)—z(mn)l+/ la (Ml ly (7) = y (zn)l 477

. M eelzn,zn+1] IJ (£)|

.Q"V\

1z (€)1

b £e[a:..,a:,.+l]

Sintce z (x) tends to zero as x tends to infinity we have that |y (xp)} — 0 as
n — 00, that is nl_l_’nololy (zn)| = zll.n;oly (z)]=0.12

Remark 2. Further results on the boundednees and asymptotic properties
of z can be obtained by imposing a very restrictive set of conditions on the
differential equations. For example, if ¢ € L'[a,00) then py' is bounded on
[a, 00) whenever y is bounded real-valued solution of (2).

3. On the limit point-limit circle classification

“From equat‘ibh' (1), we define the second order, ordinary differential expressions

r defined by
ry = — (py') +ay, (11)

A= {y € [a,00) = R:y, py € ACLocla,0); y,7y € L2[u.,oo)}. (12)

Following previous autors, we define the following terms, the expressions (11)
is: A ‘

a) limit-circle (LC) if all solutions of it are L2a, c0),
b) limit-point (LP) if there is a solution wich is not L?[a, oo),

c) Dirichlet (D) at oo if |p| 1/2 f,and |q|1/2f € L2%[a, 0); f € A

The cases a) and b) is due to Weyl and it has important consequences in the
spectral theory associated with (1) in Hilbert space L2[a,00). No necessary
and sufficient condition on p and ¢ is known distinguishes between the LP and
LC types, but a number of sufficient conditions for the two types are known.
From previous results (see [5, 9] and [15]) and Theorem 2, we can easily derive
that: ' :
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Corollary 1. Under condition i) and |g| > m the equation (2) is LC on [a, 00).

So, our results is a LC criterion under milder condition, because decomposition
methods or regularity conditions are not used. In this sense, this criterion is
the best possible. - o

From {12, Lemma 3.1] and the same Theorem 2 we obtain the following result:

Corollary 2. Suppose [ Ip|~* ¢ L[a, 00) then expressions T is D at oo.
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