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Nest and Complete .Accumulation Point
Compactness of the Product of

Topological Spaces

Based on the definition oí nest compactness (Le., the intersection oí a
nest oí nonempiy'closed sets is nonempty) we show that the product oí
the two nest complict topological spaces is nest compact, and, this with-
out invoking the cornpactness ofthe product oí two compact topological
spaces based on the classical definition oí compactness (Le., every open
cover has a finit subcover). The same is done based on the definition
oí complete accumulation point compactnes8. The latter,by Remark 5,··
extends easily to the infinite products oí topological spaces.

In what fol1ows,by a nest we mean a family of sets well o1Ykredby the reverse
inclusion 2. Moreover, we call a topological space K nest compact iff every
nest of nonempty closed sets of K has a nonempty intersection. Furthermore,
we call a topological space K classically compact iff every ¿ov~r of K by its
open sets has a finite suhcover. .
We recal1 that the product topology TI x T2 ()f two topological spaces TI and
T2 is defined in terms oí its open hasis, Le., the set of all u x v 's where u
is an open set of TI and v is an open set of T2' Thus, in dealing with a
product top~logy T¡ x T2 the use of the hasic 'open sets u x v 's ofTl X T2 is
"inevitable" .
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We prove bellow that the product K¡ x K2 of two nest compact topological
spaces Kl and K2 is nest compacto We prove this without ever using the clas-
sical compactness of K¡ x K2. However, theabovementioned "inevitability"
manifests itself on two occasions where we invoke the classical compactness of
cach of the nest compact topological spaces K¡ and K2 (but, as me:'1tioned,
not of their product K1 x K2).
Le~ us observe however, t~at our abovementioned invokation is justifie,d by
Lemma 1 below [ef. 1, p. 163] which is proved lÍer~ perhaps in the shortest
and simplest way.

Lemma 1. If K is a nest· Col11pacttopological space then K is c1assically
compacto

FrooÍ. Assume on the eontrary ana Iet ~Vi)iEH be an open eover oi
K of the smallest cardinality H such that CVi)iEH has no finite subcover.
Therefore H is an infinite cardinal. Consequently, the well ordered (by inclu-
sion ~) family W = {Vo,(VoU VI),"" (\-'o U V¡ U··· U v;.), ... } with r E H,
is a family of proper open sets of K wich cover K. But then the family
{Vó, (Vó U VD, ... , (Vó U V{ u··· U V:), ... } of the complements of the ele-
ments of W is a nest of nonempty closed sets of K with an empty intersection,
wich is a contradiction. Thus, our as~lUp1ptionis false and the Lemma is
proved .•

Remark 1. The converse de Lemma 1is also valido However, wedo not need
this [acto

Theorem 1. Let K¡ and K2 be nest compact topological spaces. Then the
product topological space K¡ x K2 is also nest compacto

Proof. Let (Ci)iED be a nest of nonempty closed sets Ci of K¡ x K2. Let
us assume on the contrary that niEDCi is empty.
Let x E K1• Clearly, {x} x K2 is homeomorphic to K2, thus {x} x K2 is nest
compacto We claim that {x} x K2 is disjoint from at least one term, say, Ck of
(Ci)iED' This is so because otherwise « {x} x K2) nCi)iED would be a nest of
nonempty closed sets of {x} x K2and thereforewouId have a nonempty inter-
section, which, in tum wouId imply that niEDCi has a nonmepty intersection,
contrading our assumption.
Since {x} x K2 is disjoint forni the closed subset Ck oí K¡ x K2, there exists
an open set V of K¡ x K2 such that {x} x K2 ~ V and V is disjoint from



Ck. But then V is a uníon of.basic open sets Ui x Vj of Kl'X K2 (where Ui

is an open set of Kl and vjis an open set of K2)" HoWever, by Lemma 1,
since {x} X K2 is classically compact (here is our first invocation of Lernma
1) a finite numberof basie open sets, say,,'Uh x Vt, • : i ,Um x Vn already cover
{x} x K2. Thus, the open tube u (x) = (Uh n· .. n Um) x K2 of Kl x K2 is
disjoint from the term Ck of (Ci)iED' where, of course, x E (Uh n··· n um).

Therefore, for every x E K 1 there exitltli tl.l1 open tube 'U (x) x K'}, sudl that
u(x) x K2 is disjointfrom some term of (Ci)iED' Clearly, the u(x)'s form
an open cover of Kl' However, by Lamma 1, since Kl is classically compact
.(here· is our second invocation of Lemma 1) a finit number of open sets, say,
u (xp) , .•. ,U (xq) already coverKl. Hence,

¡':

U (xp) X K2 ~ ... UU(xq) X K2 = Kl X K2.

However, each open tube in (1) is disjoint from a term of the nest (Ci)iED
and therefore, from (1) it follows, that the interseetion of corresponding finite
number of terms oí (Ci)iED must be empty. This contradicts the fact tlíat
(Ci)iED is a nest of nonempty closed sets of KI x K2 (and therefore no fi-
nite number of terms of (Ci)iED can have an empty intersection). Thus, our
assumption is false and the Theorem is proved .•

Remark 2. The converse the Theorem 1 is also valid, i.e., if K1 x K2 is nest
compact then eacb K1 and K2 is also nest compacto Trus follows [rom the fact
that if (Si)'iEE is a nestof nonempty c10sedsets ol, say, Kl then (Si x K2)iEE
is a nest of nonempty closed sets of K1 x K2 and therefore niEE (Si x K2) as
well as niEESi is nonempty.

Next, let lIS reeall [ef. 1, p. 163J that in a topologieal space T, a point p is
called a complete (u:r.umuln.tirm point oí an infinite sequence (Si)iED (where D
i5:in infi~itc ca.rdinal) iff cvcry ncighborhood of p contains D terms of (Si)iED'
Morevoer, we call a topological space A complete accumulation point compact
(or CAP-compact, for short) iff every infinite sequence in A has a complete
aCcumúIation point.
\Ve prove below that the produet Al X A20f two CAP-compact topological
spaees Al and A2 is CAP-compact. Again, nowhere in our proof do we use
the classcieal eompaetlless of Al x A2. Again, however, as mentioned earlier,
the use of classical eompaetness of Al or A2 in the proof is inevitable. In
fact, as our proof (of Theorem '2) shows, here we invoke onIy onee the classieal
compactness of only A1.WeJ observe again that our invokationis justified by
Lemma 2 below [ef. 1, p.163J wieh we prove in a short and simple way.



As mentioned in,Remark 5, the prooí oí Theorem 2 extends most conveniently
to the case,of a infinite product of.CAP-compact topologica.1spaces.

Lemma 2. If A is a CAP-compact topological space then A is c188Sically
compacto

Proof. Assume on the contrary and let ("i)iEH be an open cover of Aof
the smallest cardina.1ity H such that· ("i)iEHhas no finite subcover. Therefore
H is an infinite cardinality. Without loss of genera.1ity we may assume· that
W = {Vo, (Vo U VI),"" (VoU VI U .. , U lI,.), ... } with r E Bis a familyof
distinct open subsets of A wich cover A. But then (Si)¡EH with S¡ E ("i+l - "i)
is an infinite sequence en A without a complete accumulation point since W
covers A. But this contradicts the hypotesis that A is CAP-compact. Thus

Remark 3. The converse tbe Lemma 2 is also valid. However, we don not
need this fact.

Theorem 2. Let Al and A2 be CAP-compact topological spaces. Tben the
product topological space Al x A2 is also CAP-compact.

Pr;oof.· Let ((a¡, b¡))¡ED be a sequence in Al x A2 where Vis an infinite car-
dinal. Then (a¡)¡ED is an infinite sequence in Al' Since Al isCAP-compact,
(a¡)¡ED has a complete accumulation point a in Al, Hence, if 'U(a) is a neigh-
borhood of a in A¡, we have

We claim that there exists a point b of A2 such that (a, b) is a compl~te
accumulation point of ((a¡, b¡»¡ED in Al XA2 which would imply that Al x Ai
is CAP-compact, as required.'
Let us assume the contrary. Thus, for every point y of A2 there exists b13Sic
open sets Uy x vy of Al x A2 such that (a,b) E (Uy x vy) and such that for
every y E A2 we have .

'Uy x vy contains less thán D terms 01 ((a¡, b¡))¡ED . (3)

Clearly, (Uy x VY)YEA2 is an open caver oí {a} x A2 which is CAP-compact
since it is homeomorphic to A2' However, by Lemma 2, since A2 is .cAP-
compact (here is our one and only invokation oí Lemma2) a finite numbet



of open sets, say, Uh x Vt, .. _, Um X Vn already cover {a} x A2- Obviously,
u (a) = Uh n· _.n Um is a neighborhood of a in Al- Thus, by (2) we have

On the other hand, u (a) x A2 ~ (Uh x Vt) U··, U (Um x Vn) and therefore by
(3) we see that u(a) x A2 has D terms of ((a¡,bi))iED' which contradicts (4).
Thus, our assumption is false and the Theorem is proved. I

Remark 4. The converse of Theorem 2 is also valid, Le., if Al x A2 is CAP-
compact then each Al and A2 is also CAP-eompact. This follows from the
fact that if (a¡)iEE is an inifinite sequence in, say, Al and b is a point in A2
then ((ai, b) )iEE is an infinite sequence in Al x A2 and therefore has a complete
accumulation point (a,b) in Al x A2. Clearly, a is a complete accumulation
point oi (a¡)iEE as required.

Remark 5. The proof of Theorem 2 can be extended most conveniently to
the proof of the CAP-eompactness oE an infinite product fI Aj oE CAP-

jEW
comapct topological spaces Aj where W is an infinite cardinal. This is done
as follows.
LetS= ((ab,aLa~, ... ,af""))iED withj E W be a sequence in A whereD
is an infinite cardinal. Then the existence of a complete accumulation point
p = (pO,pl ,p2, ... ,pi , ... ) with j E W of S in A is proved (based on Theorem
2) using transfinite induction by requiring that the j-th entry pi of p satisfy
the following condition:
For every finite subset F of ordinals ~ j and every neighborhood u (pk) of pk
in Ak the open tube

rr Bj
jEW

where { Bj = u (J!-), if j E F,
Bj = Aj, if j fj F




