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Nest and Complete Accumulation Point
Compactness of the Product of
Topological Spaces

ALEXANDER ABIAN®

Abstract

Based on the definition of nest compactness (i.e., the intersection of a
nest of nonempty closed sets is nonempty) we show that the product of
the two nest compact topological spaces is nest compact, and, this with-
out invoking the compactness of the product of two compact topological
spaces based on the classical definition of compactness (i.e., every open
cover has a finit subcover). The same is done based on the definition
of complete accumulation point compactness. The latter, by Remark 5,
extends easily to the infinite products of topological spaces.

In what follows, by a nest we mean a family of sets well ordered by the reverse
inclusion 2. Moreover, we call a topological space K nest compact iff every
nest of nonempty closed sets of K has a nonempty intersection. Furthermore,
we call a topologlcal space K classically compact iff every cover of K by its
open sets has a finite subcover.

We recall that the product topology T x Ty of two topological spa.ces T; and

T, is defined in terms of its open basis, i.e., the set of all u x v ’s where u

is an open set of T} and v is an open set of T5. Thus, in dealmg with a

product topology Ty x T the use of the basic open sets u X v ’s of Ty x Ty is
“inevitable”.
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We prove bellow that the product K; x K3 of two nest compact topological
spaces K} and K is nest compact. We prove this without ever using the clas-
sical compactness of K;x Kj. However, the abovementioned “inevitability”
manifests itself on two occasions where we invoke the classical compactness of
cach of the nest compact topological spaces K; and K; (but, as mentioned,
not of their product K;x K3).

Let us observe however, that our abovementioned invokation is justified by
Lemma 1 below [cf. 1, p. 163] which is proved heré perhaps in the shortest
and simplest way.

Lemma 1. If K is a nest compact topelogical space then K is classically
compact.

Proof. Assume on the contrary and let (Vj),cy be an open cover of
K of the smallest cardinality H such that (Vi),cy has no finite subcover.
Therefore H is an infinite cardinal. Consequently, the well ordered (by inclu-
sion C) family W = {Vp,(VoUV}),...,(LUVLU---UV;),...} with r € H,
is a family of proper open sets of K wich cover K. But then the family
VB, (V3uv),...,(VyuVfu---uV/),...} of the complements of the ele-
ments of W is a nest of nonempty closed sets of K with an empty intersection,
wich is a contradiction. Thus, our assumption is false and the Lemma is
proved. §

Remark 1. Tbe converse de Lemma 1 is also va.l1d However, we do not need
this fact.

Theorem 1. Let K; and K2 be nest compact topological spaces. Then the
product topological space K; x K2 is also nest compact.

Proof. Let (C’,),e D be a nest of nonempty closed sets C; of K; x Kj. Let
us assume on the contrary that N;epC; is empty.

Let z € K. Clearly, {z} x K3 is homeomorphic to Ky, thus {z} x K is nest
compact. We claim that {z} x K; is disjoint from at least one term, say, Cj of
(Ci)iep- This is so because otherwise (({x} x K2) N C;);cp would be a nest of
nonempty closed sets of {x} x K> and therefore would have a nonempty inter-
section, which, in turn would 1mply that Ny pC; has a nonmepty intersection,
contrading our assumption.

Since {z} x K3 is disjoint form the closed subset Cj of K; x K3, there exists
an open set V of K; x Kj such that {z} x K3 C V and V is disjoint from
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Ck. But then V is a union of basic open sets u; x v; of Ky:x Ky (where u;
is an open set of K; and v; is an open set of K3).. However, by Lemma 1,
since {z} x Kj is classically compact (here is our first invocation of Lemma
1) a finite number of basic open sets, say, up X v¢,..7, Um X vy already cover
{r} x K3. Thus, the open tube u(z) = (up N---Num) X Ko of K; x Ky is
disjoint from the term Cj of (Ci),c , where, of course, z € (up N - - Nuy,).
Therefore, for every « € K there exists an open tube u(x) x Ka such that
u(z) x K3 is disjoint from some term of (C;);cp. Clearly, the u(z)’s form
an open cover of K;. However, by Lemma 1, since K is classically compact
(here is our second invocation of Lemma 1) a finit number of open sets, say,
u(Zp),...,u(xy) already cover K;. Hence,

u(zp) x K2 U+~ Uu(zy) x Ky = Ky x Ko, (1)

However, each open tube in (1) is disjoint from a term of the nest (Ci)ien
and therefore, from (1) it follows, that the intersection of corresponding finite
number of terms of (Ci);cp must be empty. This contradicts the fact that
(Ci)iep is a nest of nonempty closed sets of K; x Ky (and therefore no fi-
nite number of terms of (Ci);cp can have an empty intersection). Thus, our
assumption is false and the Theorem is proved. §

Remark 2. The converse the Theorem 1 is also valid, ie., if K1 x K3 is nest
compact then each K and K is also nest compact. This follows from the fact
that if (Si);c g is a nest of nonempty closed sets of, say, K then (S; x K. 2)icE
is a nest of nonempty closed sets of Ky x K, and therefore Nicg (Si x K3) as
well as NicgS; is nonempty. :

Next, let us recall [cf. 1, p. 163] that in a topological space T, a point pis
called a complete accumulation point of an infinite sequence (8i)icp (where D
is an infinite cardinal) iff cvery acighborhood of p contains D terms of (5:);cp.
Morevoer, we call a topological space A complete accumulation point compact
(or CAP~compact, for short) iff every infinite sequence in A has a complete
accumulation point. ' '

We prove below that the product A; x Az of two CAP-compact topological
spaces A; and A; is CAP-compact. Again, nowhere in our proof do we use
the classcical compactness of A; x A2. Again, however, as mentioned earlier,
the use of classical compactness of A; or A; in the proof is inevitable. In
fact, as our proof (of Theorem 2) shows, here we invoke only once the classical
compactness of only A;. We observe again that our invokation is justified by
Lemma 2 below [cf. 1, p.163] wich we prove in a short and simple way.
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As mentioned in Remark 5, the proof of Theorem 2 extends most convenientﬁ_ly'
to the case.of & infinite product of. CAP—compact topological spaces.

Lemma 2. If A is a CAP-compact topologlcal space then A is classically
compact.

Proof. Assume on the contrary and let (V;);cy be an open cover of A of
the smallest cardinality H such that (V;);cy has no finite subcover. Therefore
H is an infinite cardinality. Without loss of generality we may assume that
W = {Vo,(VbUW),...,(VoUVL1U---UV;),...} with r € H is a family of
distinct open subsets of A wich cover A. But then (s;);cy with 8; € (Viy1 — Vi)
is an infinite sequence en A without a complete accumulation point since W
covers A. But this contradicts the hypotesis that A is CAP-compact. Thus

Loalan nend dha T amaena ~
our aaauux‘.lwuu An 1ai8€ aliG wnd LENilia m yl.uvuu -
K

Remark 3. The converse the Lemma 2 is also vélid. However, we don not
need this fact.

Theorem 2. Let A; and Ay be CAP—compact topological spaces. Then the
product topological space A x Ay is also CAP-compact.

Proof. - Let ((ai, b;));cp be a sequence in A; x A2 where D is an infinite car-
dinal. Then (a;);cp is an infinite sequence in A,. Since A, is CAP-compact,
(ai);ep has a complete accumulation point @ in A;. Hence, if u (a) is a neigh-
borhood of a in A;, we have

u(a) contains D terms of (@i);ep - (2)

We claim that there exists a point b of A such that (a,b) is a compléa"c"e
accumulation point of ((a;, b;));¢p in Ay X A2 which would imply that A; x A2
is CAP-compact, as required.

Let us assume the contrary. Thus, for every point y of Ag there exists basic
open sets uy X vy of A; X Az such that (a,b) € (uy x vy) and such that for
every y € Az we have

Uy X vy contains less than D terms of ((ai,5:));cp - (3)

Clearly, (uy X Uy),cq, 18 an open cover of {a} x Az which is CAP—compact
since it is homeomorphic to A;. However, by Lemma 2, since Aj is CAP-
compact (here is our one and only invokation of Lemma 2) a finite number
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of open sets, say, up X v,...,um X v, already cover {a} x A2. Obviously,
u(a) = upN---Nuy is a neighborhood of a in 4;. Thus, by (2) we have

u(a) x Az has D terms of ((as,b:));ep - (4)

On the other hand, u(a) x Az C (up X vt) U--- U (um X vp) and therefore by
(3) we see that u(a) x Az has D terms of ((aj, b;));cp, which contradicts (4).
Thus, our assumption is false and the Theorem is proved. i

Remark 4. The converse of Theorem 2 is also valid, i.e., if A} x As is CAP-
compact then each A; and Ay is also CAP-compact. This follows from the
fact that if (a;);cp is an inifinite sequence in, say, A, and b is a point in Ay
then ((a;, b)), g is an infinite sequence in A X A and therefore has a complete
accumulation point (a,b) in A; x As. Clearly, a is a complete accumulation
point of (a;);cp as required.

Remark 5. The proof of Theorem 2 can be extended most conveniently to
the proof of the CAP-compactness of an infinite product [] A; of CAP-
jEw

comapct topological spaces A; where W is an infinite cardiria.l. This is done
as follows.

Let S = ((af),a},a?, codl. )) <D with j € W be a sequence in A where D
is an infinite cardinal. Then the existence of a complete accumulation point
p=(p°,p',p?%...,p%,...) withj € W of S in A is proved (based on Theorem
2) using transfinite induction by requiring that the j—th entry p’ of p satisfy
the following condition:

For every finite subset F of ordinals < j and every neighborhood u (p") of p*
in A* the open tube

A N
I B; where{B’_u\pp)’ I-f]_&F’
JEW B; = 4;, ifj¢F

contains D terms of S.
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