https://revistas.uis.edu.co/index.php/revistaintegracion/issue/feedRevista Integración, temas de matemáticas2025-05-31T18:10:24+00:00Javier Enrique Camargo Garcíarevista.integracion@uis.edu.coOpen Journal Systems<p>The Revista Integración, temas de matemáticas is a biannual publication, edited by the School of Mathematics of the Universidad Industrial de Santander. It publishes original articles, theoretical or applied, in all areas of mathematics. It is freely accessible and it is indexed in <a href="https://dialnet.unirioja.es/servlet/revista?codigo=24753" target="_blank" rel="noopener">Dialnet</a>, <a href="https://biblat.unam.mx/es/revista/revista-integracion" target="_blank" rel="noopener">Biblat: Latin American Bibliography</a>; <a href="https://www.latindex.org/latindex/ficha/15903" target="_blank" rel="noopener">Latindex: Regional Online Information System for Scientific Journals from Latin America, the Caribbean, Spain and Portugal</a>; <a href="https://doaj.org/toc/2145-8472?source=%7B%22query%22%3A%7B%22bool%22%3A%7B%22must%22%3A%5B%7B%22terms%22%3A%7B%22index.issn.exact%22%3A%5B%220120-419X%22%2C%222145-8472%22%5D%7D%7D%5D%7D%7D%2C%22size%22%3A100%2C%22sort%22%3A%5B%7B%22created_date%22%3A%7B%22order%22%3A%22desc%22%7D%7D%5D%2C%22_source%22%3A%7B%7D%2C%22track_total_hits%22%3Atrue%7D" target="_blank" rel="noopener">DOAJ: Directory of Open Access Journals;</a> <a title="0120-419X INTEGRACIÓN - UIS" href="https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/veiculoPublicacaoQualis/listaConsultaGeralPeriodicos.jsf" target="_blank" rel="noopener">Qualis/Capes - C Homologation</a>; <a href="https://mathscinet.ams.org/msnhtml/serials.pdf" target="_blank" rel="noopener">AMS: The Review of the American Mathematical Society-MATHEMATICAL REVIEWS</a>; <a href="https://zbmath.org/serials/?q=sn%3A%092145-8472" target="_blank" rel="noopener">ZENTRALBLATT MATH , ZBMATH Database online</a>, <a href="http://www.scielo.org.co/scielo.php?script=sci_serial&pid=0120-419X&lng=es&nrm=iso" target="_blank" rel="noopener">SciELO Colombia: Scientific Electronic Library Online;</a> <a href="https://www.redalyc.org/revista.oa?id=3270" target="_blank" rel="noopener">REDALYC: Network of Scientific Journals of Latin America and the Caribbean, Spain and Portugal</a>; <a href="https://www.ebsco.com/m/ee/Marketing/titleLists/fap-coverage.htm" target="_blank" rel="noopener">EBSCO-Academic Source</a>, and it is admitted by Publindex-National Index of Colombian Scientific and Technological Serial Publications of COLCIENCIAS.</p> <p><strong>Áreas:</strong>Mathematics<strong><br /></strong><strong>Periodicity: </strong>Semi-annual<strong><br />ISSN: </strong>0120-419X<strong> | eISSN:</strong> 2145-8472<br /><a href="http://creativecommons.org/licenses/by/4.0/" rel="license"><img src="https://i.creativecommons.org/l/by/4.0/88x31.png" alt="Licencia Creative Commons" /></a></p>https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/16331Conductors of fractional ideals in Burnside rings for cyclic p-groups and their zeta function2025-05-15T20:47:25+00:00David Villa Hernándezdvilla@fcfm.buap.mxJuan Manuel Ramírez Contrerasjuan.ramirez@udemex.edu.mxCristhian Vázquez Rosascristhian_vr16@hotmail.com<p>This study is part of the zeta function of the Burnside ring study. The main objective of this paper is to determine the conductors of all isomorphism classes of fractional ideals of finite index in Bp(Cp^n ) the Burnside ring for cyclic groups of order p^n, which leads to a new explicit formula for ζBp(Cp^n )(s) the zeta function of Bp(Cp^n ), and we present a conjecture in which we establish when a fractional ideal M of Bp(Cp^n ) has a Zp-order structure, according to its ZBp(Cp^n ) (M; s) function.</p>2025-05-15T00:00:00+00:00Copyright (c) 2025 Revista Integración, temas de matemáticashttps://revistas.uis.edu.co/index.php/revistaintegracion/article/view/16332An Introduction to Calculus in the q− Real Spinor Variables2025-05-15T21:26:16+00:00Julio Cesar Jaramillo Quicenojcjaramilloq@unal.edu.co<p>In this paper we introduce the calculus in q− real spinor variables. We establish the q− difference operator for q− real spinor variables and the q− spinor real integral formulas. We also define the differential equation on q− real spinor variable, and the suggestions for further work at the end of the paper.</p>2025-05-14T00:00:00+00:00Copyright (c) 2025 Revista Integración, temas de matemáticashttps://revistas.uis.edu.co/index.php/revistaintegracion/article/view/16380Extended b-metric preserving functions2025-05-31T18:10:24+00:00Reinaldo Martínez Cruzreinaldo.martinez.c@uatx.mxMarian C. Cruz-Cruzmaristar1943@gmail.comTomás Pérez Becerratomas@mixteco.utm.mx<p>In a previous investigation, we present the current state of the family of functions that preserve the weak ultrametric UD and the set of maps that preserve the extended b–metric BE and their relation to those existing in the literature. In this article, we continue with the investigation by providing a characterization for the space BE, and this fact allows us to verify that the graph of the elements in BE are found in the region proposed by J. Doboš and Z. Piotrowski. Furthermore, we generalize some results from Tammatada Khemaratchatakumthorn, Prapanpong Pongsriiam and Suchat Samphavat.</p>2025-05-31T00:00:00+00:00Copyright (c) 2025 Revista Integración, temas de matemáticas