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Abstract
In this work, prediction models of Saturates, Aromatics, Resins and Asphaltenes fractions (SARA) from 
thirty-seven vacuum residues of representative Colombian crudes and eighteen fractions of molecular 
distillation process were obtained. Mid-Infrared (MIR) Attenuated Total Reflection (ATR) spectroscopy 
in combination with partial least squares (PLS) regression analysis was used to estimate accurately 
SARA analysis in these kind of samples. Calibration coefficients of prediction models were for saturates, 
aromatics, resins and asphaltenes fractions, 0.99, 0.96, 0.97 and 0.99, respectively. This methodology 
permits to control the molecular distillation process since small differences in chemical composition can 
be detected. Total time elapsed to give the SARA analysis per sample is 10 minutes.

Keywords: MIR-ATR, PLS, SARA analysis, molecular distillation, vacuum residue.

Resumen
En este trabajo se obtuvieron modelos predictivos para la determinación de la fracción de saturados, 
aromáticos, resinas y asfáltenos (SARA) en fondos de vacío y sus fracciones, a partir del análisis de 
treinta siete muestras de dichos fondos.  Se utilizó espectroscopia infrarroja en el modo de reflectancia 
total atenuada en combinación con regresión de mínimos cuadrados parciales para predecir de manera 
relativamente exacta el análisis SARA.  Los coeficientes de regresión para la calibración fueron de 
0,99, 0,96, 0,97 y 0,99 para los modelos predictivos de saturados, aromáticos, resinas y asfáltenos, 
respectivamente.  El tiempo requerido para el análisis SARA por muestra fue de 10 minutos.

Palabras claves: MIR-ATR, PLS, análisis SARA, destilación molecular, fondos de vacío.

Resumo
Neste trabalho, os modelos preditivos para determinar a fração de saturados, aromáticos, resinas e 
asfaltenos (SARA) em fundos de vácuo e suas frações foram obtidas a partir da análise de trinta e 
sete amostras de fundos. A espectroscopia de infravermelho foi utilizada em modo de reflectância 
total atenuada em combinação com regressão parcial para prever com precisão relativamente à SARA 
análise dos mínimos quadrados. Os coeficientes de regressão para calibração foram de 0,99, 0,96, 
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0,97 e 0,99 para os modelos preditivos saturados, aromáticos, resinas e asfaltenos, respectivamente. O 
tempo necessário para a análise SARA por amostra foi de 10 minutos. 

Palavras-chave: MIR-ATR, PLS, análise SARA, a destilação molecular, fundos de vácuo.

Introduction

Heavy oil reserves account for more than three 
times the amount of combined world reserves of 
conventional oil and gas, and while is growing the 
production, the amount of residues (like vacuum 
residues) in refineries will grow too [1]. The 
molecular study of vacuum residues has been very 
important in the field of Petroleum Chemistry, due 
to many refining processes that are closely related 
to their composition and chemical structure [2].
Molecular distillation is a process has found 
important applications in the purification of sensible 
materials to the temperature [3] and in fractioning 
of vacuum residues [4]. With the characterization 
of these fractions trough viscosity, API gravity and 
SARA analysis [5], it can be extended the true 
boiling point (TBP) curve [6,7]. The extension of 
TBP is very important in taking of a decision in 
refinery considering that Colombia produces a great 
variety of crude oil from different reservoirs and 
variable behaviour in distillation [8-10]. In addition, 
structural analysis focused on understanding 
of molecular distillation can be done using other 
spectroscopic techniques. Nevertheless, the 
gross analysis of vacuum residue and its fractions 
demand more than 200 grams per sample and this 
amount, depending of vacuum residue, could not 
be obtained easily to some fractions of molecular 
distillation. Additionally all these analyses  spend 
long time, taking about 2 days per sample without 
considering the consumption of large amounts of 
toxic solvents [11]. The development of accurate 
and fast methods is an urgent need for quality 
control in processes in which are involved refining 
residues. Mid-infrared (MIR) spectroscopy in the 

attenuated total reflectance mode (ATR) has been 
used in the determination of physicochemical 
properties of crude oil and its fractions in association 
with chemometric tools with good results [12,13]. 
For that reason, a preliminary methodology to 
obtain the SARA analysis of vacuum residues 
and fractions of distillation molecular based on 
MIR-ATR spectroscopy and PLS regression was 
developed in the Colombian Institute of Petroleum 
of ECOPETROL S.A.

Experimental

Samples 
Thirty-seven vacuum residues (VR) of 
representative Colombian crude oils and eighteen 
molecular distillation fractions (MDF) were used to 
obtain the correlation models. Table 1 shows the 
maximum and minimum values of each component 
of SARA analysis which were obtained according to 
ASTM D-4124 [14]. Molecular distillation fractions 
have a broader variation, especially in saturates, 
and resins, in comparison with vacuum residues 
SARA components. While the maximum saturates 
concentration in vacuum residues is 29.8wt% in 
the molecular distillation fractions are as high as 
45.7wt%.
The molecular distillation fractions were obtained 
from three vacuum residues from initial group of 
samples, using a wiped-film molecular distillation 
unit (model KD-6-1S of Chem. Tech. Services, 
Inc). In each run are possible obtaining three cuts 
to three temperatures from 350 to 691ºC AET 
(atmospheric equivalent temperature). So from 
each cut two fractions, condensed and residue, 
were obtained.

Table 1.  Distribution of SARA analysis.
Sample N° Saturates Aromatics Resins Asphaltenes

max min max min max min max min
VR 37 29.8 4.20 59.6 34.1 36.6 16.8 28.8 4.20

MDF 18 45.7 2.60 59.8 32.8 42.1 6.07 22.5 0.00
Total 55 45.7 2.60 59.8 32.8 42.1 6.07 28.8 0.00
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Acquisition of MIR spectra
The MIR spectra were recorded on a Shimadzu 
IR-Prestidge 21 spectrometer with a spectral 
resolution of 8cm-1 over the range of 4000-650cm-1 
and 32 scans. This resolution was used in spite that 
in the majority of works the acquisition of spectra 
is reported with 4cm-1. The aim was to reduce 
acquisition time to one half, important aspect for 
analyzing a high number of samples. It is important 
to show that increasing the resolution does not affect 
the ability to predict gross properties and analysis 
time reduces. The spectrometer was equipped 
with a Pike Miracle attenuated total reflectance 
(ATR) diamond cell with simple reflection and 
incidence angle of 45º. An adjustable pressure 
system was used for assuring the contact between 
the sample and the ATR crystal. Acquisition time 
for 32 scans was 15 seconds, approximately. The 
spectral files were transformed to ASCII format 
using the IR-Solution software and exported to 
The Unscrambler® version 9.7 to perform the 
multivariable analysis.

Data analysis
Unlike traditional chromatographic methods (open 
column), the MIR spectroscopy does not resolve 
the sample components. All chemical information 
about components is embedded on multiple 
absorption bands; most of them highly overlapped 
(reference). To establish the relationship between 
MIR spectral data and SARA components Partial 
Least Squares (PLS) were used. The quality of 
models was evaluated according to values of root 
mean square error of calibration (RMSEC) and 
root mean square error of prediction (RMSEP). 
According to ASTM norm E1655-05 [15] 
preliminary studies can be performed to determine 
if there is a relationship between the IR spectra 
and the component/property of interest collecting 
30 to 50 samples covering the entire range for 
the constituent/property of interest and testing 
the calibration model by cross-validation (ASTM 
E1655, 2005). In our case, 55 samples were used 
and validation of models was done using the full 
cross validation method [16]. 

Results and Discussion

Spectral features and data pretreatment 
In general, vacuum residues have shown very 
similar spectra to those observed with other 
petroleum fractions (reference). Figure 1 shows 
MIR spectra of three samples of calibration. The 

most intense bands correspond to stretching 
vibrations at about 2920 and 2850cm-1 and bending 
vibration at 1454 and 1375cm-1 of aliphatic CH2 
and CH3, less intense but also important for the 
chemometric analysis are vibrations associated to 
CH in aromatic rings [17] at  875, 810 and 750cm-1. 
Before processing the data in the PLS regression 
analysis all spectral signals were first derived and 
then normalized subtracting from them the regions 
from  1900-2750 and  3100-4000cm-1 where do 
not appear assignable signals to hydrocarbons to 
avoid interferences with atmospheric gases like 
CO2 and humidity.

Figure 1. The raw MIR spectra of three samples.

Partial least squares (PLS) regression analysis 
Individual calibration models were generated 
for each SARA component. With the purpose of 
evaluate the predictability of the models, pre-
treatments as derivation and normalization before 
and after derivation using data of different spectral 
regions were proved. Full cross validation was 
employed additionally to provide the optimal 
number of latent variables finally used in each 
model.
As shown in Table 2, resulting models are able 
to explain most of the X-variance; they have 
coefficients of regression highest than 0.96 and 
RMSEC lowest than 2%. From each model near 
to 10% of samples were excluded as outliers. 
Two types of outliers can be identified during the 
calibration procedures. The first type is a sample 
that represents an extreme composition relative to 
the remainder of the calibration set. The second 
type of outlier is one for which the estimated value 
differs from the reference value by a statistically 
significant amount. Such outliers could indicate 
an error in the reference measurement, an error 
in the spectral measurement, a clerical error in 
sample attribution or reference value transcription, 
or a failure of the model. In this last type of outlier 
we classify the samples that were discarded [15] 



46

rev.ion. 2014;27(1):43-48. Bucaramanga (Colombia).

(ASTM E1655. 2005). However, anyone of them 
corresponds to fractions of molecular distillation 
which means that the exclusion of samples did 
not affect the range of calibration. Even though 
the four SARA components are interrelated, the 

contribution of each one of them is determined 
individually. This implies that, if a particular sample 
did not have account for one particular model, not 
necessarily it must be excluded from the rest of 
models.

Table 2. PLS calibration and validation results for SARA analysis.

Pre-
treatments

Wavenumber 
range/cm-1

Variance of 
X-explained LV R2 RMSEC 

(%)
RMSEP 

(%)
Excluded 
samples

Saturates 1st der. 3100-680 98 10 0.99 1.1 2.7 5

Aromatics 1st der. 1900-680 96 10 0.96 1.5 3.4 5

Resins 2nd der. 3100-2700 99 8 0.97 2.0 2.7 5

Asphaltenes 1st der. 3100-680 94 7 0.99 0.81 1.4 4

The Figure 2 summarizes the results obtained for 
each model. In addition, taking into account that the 
number of latent variables (LV) obtained in this work 
was smaller than those reported in other works, i.e. 
more than 10LV, the confidence is bigger. More than 
10LV affects negatively the model robustness [12]. 
Success in obtaining prediction models lies in the 
accuracy of Y-values. If these values have a high 
uncertainty, then the models will have it also. The 
predictor model of aromatic fraction had the highest 
RMSEP and the lowest value of R2. It could be 
explained if it is considered that vacuum residues 
and its fractions are very heavy and they have a 
considerable amount of aromatic molecules with 
huge structural variety. The initial values of aromatic 
fractions could be uncertain since a part of them 

could elute with resins and other part could do it with 
saturates. Therefore, the initial values of aromatics 
have a high uncertainty which was “transferred” to 
the PLS model. So this predictor model reproduced 
the error of raw data.
Models were posterior proved with the analysis 
of two fractions from molecular distillation unit 
(samples 1 and 2) and one vacuum residue (sample 
3). All models were independent among themselves. 
So, if the sum of the components is near to one 
hundred, it means that the models are consistent. 
The three samples had SARA analysis with sums 
around 100%. In addition, in most of the cases, the 
differences between MIR prediction and reference 
method [14] (ASTM 4124) values were less than 
one. The results are summarized in Table 3.

Figure 2. Scatter plots showing correlations between MIR prediction values and reference values for SARA both in 
calibration (filled circles) and validation (open circles). (a) Saturates; (b) aromatics; (c) resins; (d) asphaltenes.



47

rev.ion. 2014;27(1):43-48. Bucaramanga (Colombia).

Table 3. Comparison between the results using MIR-ATR and standardized method.
Sample 1 Sample 2 Sample 3

MIR-prediction Reference 
method

MIR-
prediction

Reference 
method

MIR-
prediction

Reference 
method

Saturates 12.8 12.1 6.3 6.0 13.4 14.3
Aromatics 51.2 50.0 48.4 50.4 46.4 46.5

Resins 27.0 26.8 33.7 28.8 30.1 28.9
Asphaltenes 10.8 11.2 14.2 14.8 12.4 10.3

Total 101.8 100.0 102.6 100.0 102.4 100.0

Determination of SARA analysis of molecular 
distillation fractions 
Finally the SARA analysis for a group of fractions 
from molecular distillation unit, were predicted. With 
this methodology was possible to differentiate each 
one of the six fractions obtained from three cuts 
(553, 626, 685°C AET) of a raw vacuum residue. 
As we expect, the condensed are lightest and the 
residues are heaviest than raw vacuum residue, in 
terms on the increasing of resins and asphaltenes 
and the decreasing of saturates and aromatics 
values of these fractions. This can appreciate in 
Figure 3. Thus it is possible to infer that every one 
of these fractions is clearly differentiated between 
them and they can be used to extent the TBP curve 
of this crude.

Figure 3. Distribution of SARA analysis of fractions 
obtained from molecular distillation process.

Conclusion 

Mid-Infrared (MIR) attenuated total reflection 
(ATR) spectroscopy was used to build models for 
predicting SARA analysis of vacuum residues. 
Vacuum residue from representative Colombian 
crudes and fractions obtained from molecular 
distillation process were used in order to have a 
huge variation range that allows doing an adequate 
quality control of molecular distillation process. 

The validation results indicate that there are 
consistencies between the MIR predicted values 
and those provided by the references methods. In 
addition it was possible to detect subtle changes 
in chemical composition of condensed and 
residue obtained in molecular distillation, namely, 
differentiating every fraction of molecular distillation 
process from a raw vacuum residue in terms on 
SARA analysis. Finally it was demonstrated that 
increasing the resolution from 4 to 8cm-1 does not 
affect the ability to predict gross properties and 
analysis time reduces.
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