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Abstract
Anaerobic digestion is a worldwide technology to treat organic waste streams, primarily due to its capacity 
to produce methane as renewable energy. However, there is an increasing interest on nutrient recovery 
(N and P), which from both environmental and economic reasons have been identifi ed as key feature in 
anaerobic digestion plants. The manuscript presents a comprehensive overview on recent advances in 
nutrient recovery technologies applicable for anaerobic digestion systems. The review focus on N and P 
recovery through the use of digestates as fertilizers, struvite precipitation and biological systems such as 
phycoremediation (i.e. algae cultivation) and polyphosphates accumulating organisms.

Keywords: Anaerobic digestion, nutrient recovery, struvite, phycoremediation, fertilizer. 

Resumen
La digestión anaeróbica es una tecnología mundialmente aplicada para el tratamiento de residuos 
orgánicos, principalmente debido a su capacidad de producir metano como fuente de energía renovable. 
Sin embargo, existe un creciente interés en la recuperación de nutrientes (N y P), el cual desde el punto 
de vista ambiental y económico ha sido identifi cado como un factor clave en las plantas de tratamiento 
vía digestión anaeróbica. El presente manuscrito presenta una visión global de los recientes avances 
en las tecnologías de recuperación de nutrientes aplicables a sistemas de digestión anaeróbica. La 
revisión está enfocada en la recuperación de N y P mediante el uso del digestado como fertilizante, 
la precipitación de estruvita y sistemas biológicos como la fi coremediación (ej. cultivos de algas) y 
organismos acumuladores de polifosfatos.
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Resumo
A digestão anaeróbia é uma tecnologia mundialmente conhecida para o tratamento de resíduos orgânicos, 
principalmente devido a sua capacidade de produzir metano como energia renovável. No entanto, há 
um interesse crescente sobre a recuperação de nutrientes (N e P), que a partir de razões ambientais e 
econômicas têm sido identificados como elemento-chave em plantas de digestão anaeróbia. O presente 
manuscrito apresenta uma visão abrangente sobre os recentes avanços em tecnologias de recuperação 
de nutrientes aplicáveis para sistemas de digestão anaeróbia. O foco da revisão é a recuperação do N e 
P através do uso de fertilizantes, como digestates precipitação estruvite e sistemas biológicos, tais como 
phycoremediation (por ex, cultivo de algas) e organismos acumuladores de polifosfatos.

Palabras-chave: digestão anaeróbia, recuperação de nutrientes, estruvite, fitorremediação, adubo orgânico.

Introducción

Anaerobic digestion (AD) stands as an important 
technology in the emerging green energy economy 
[1]. Advantages of AD over other technologies 
are: (i) cost-effective organic wastes treatment 
for wastewater and solid waste streams, and (ii) 
energy/economy alternative in rural sector through 
the digestion of agro-wastes and/or energy crops 
[2,3]. AD plants are usually of large scale, with 
digester capacities ranging from few hundred m3 
up to several thousand m3 [4]. In urban areas AD 
plants mostly treat sewage sludge and organic 
fraction of municipal solid wastes (OFMSW) 
[5,6]; while, rural biogas plants, centralized 
and on-farm, co-treat animal manure and other 
suitable organic residues [3]. Centralized plants 
commonly develops in high density of livestock 
areas linked to insufficient accessible arable 
land (i.e. Europe) [7,8]; while on-farm plants are 
becoming for interest on extensive regions with 
biogas incentives (i.e. United States and Australia) 
[9]. However, the uses of house digester have 
started to rise in the developing countries 
as energy/biogas source. On biogas plants 
the biogas can, after cleaning, produce heat in 
a quality adapted burner, or electricity and heat 
in a combined heat and power unit [8]. However, 
biogas can also be transformed into green gas by 
upgrading which has the same quality as natural 
gas and can be supplied to the natural-gas grid or 
used as transport fuel [10]. 
Besides renewable energy, AD of organic wastes 
produces a digestate which is a mixture of partially 
degraded organic matter, anaerobic biomass 
and inorganic matter (including nutrients) [11]. 
The AD process facilitates the mobilization of 
nutrients (N and P) from the organic matter to 
the liquid phase. N is converted into ammonium 

and organic P is hydrolyzed to soluble P [12,13]. 
Digestate quality and mobilization extent depend 
on the three main components of the anaerobic 
digestion system: (i) the feedstock, (ii) the 
digester design and operational conditions, 
and (iii) digestate post-treatment [14]. As an 
example, Figure 1 illustrates the most common 
organic fraction municipal solid waste (OFMSW) 
AD plant configurations.
Today, most AD plants are energy focused with 
low attention on nutrient recovery. Nevertheless, 
the continuous increase in fertilizer prices 
(mainly formed of N, P and K) has raised 
interest on nutrient recovery from digestate. 
Batstone and Virdis [15] clearly stated that new 
wastewater treatment plants have to: (i) achieve 
existing public health and environmental goals, 
(ii) recover maximal energy from wastewater, 
and (iii) preserve and recover nutrients for reuse. 
Moreover, the economic success of investment 
in AD plants is strictly related to incentive 
polices adopted in the countries. Actually, a 
high proportion of AD operators seldom sell 
digestates above cost recovery prices, despite 
its high agronomic value [9]. Therefore it has 
been provide interest and incentives to nutrient 
recovery from AD effluents. For instance, biogas 
Italy subsidies provide a plus an added bonus 
(15-30€/MWh) if nitrogen is removed to produce 
a fertilizer [16,17].

Digestate direct land application
Today, using digestate as organic fertilizer or 
soil conditioner seem to be the best option for 
its recycling [3,13,18]. The use of digestate as 
fertilizer allow to recycle nutrients and reduce 
the use of chemical fertilizers [19]. Nonetheless, 
the quality of the digestate must be carefully 
evaluated prior usage [18].
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Figure 1. Current OFMSW AD plant schemes.
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High quality digestate fit for use as fertilizer is 
defined by essential features such as declared 
content of nutrients, pH, dry matter and organic 
dry matter content, homogeneity, purity (free of 
inorganic impurities such as plastic, stones, glass, 
etc), content of biological (pathogenic) material 
and of chemical pollutants (organic and inorganic) 
[20]. From an agricultural point of view, the main 
parameters to take into consideration are pH, salinity, 
nutrients, pathogens and heavy metals [3,13,21], 
while environmental concerns are inappropriate 
digestate handling, storage and application, which 
may led to ammonia emissions, nitrate leaching 
and phosphorous overdoses [22]. Table 1 shows 
the heavy metals, micro- and macro-nutrients 
composition of different AD digestate, which have 
been grouped in five categories [3,23]: (i) sewage 
sludge (SS); (ii) animal manures; (iii) food industry 
wastes; (iv) energy crops and harvesting residues; 
and (v) OFMSW. It can observe that element 
concentrations are highly variable and substrate 
type dependent. For instance, sewage sludge 
digestate present a relatively high P concentration 
while slaughterhouse waste digestate present high 
N concentration. Digestate are also evaluated in 
terms of salinity, remaining biodegradable organic 
matter, phytotoxicity and pathogens abundance 
[24,25]. Such facts determine the need for applying 
additional specific treatment to increase digestate 
quality until acceptable levels [26]. 
The risk of inappropriate use of digestate is related 
with the salinity (i.e. Na+ and Al3+) and digestate 
stability. High doses or continued application of 
high salinity digestate can lead to an excessive 
salt and heavy metals accumulation in soil, 
which might inhibit plant growth [3,26,27]; while 
application of unstable digestate (i.e. digestate 
with large amounts of non-degraded organic 
matter) may exert negative impact on organic 
matter mineralization and nutrient turn-over in the 
plant-soil system [13,27,28]. Unstable digestate 
can be obtained from badly operated digesters or 
digesters operated at intense conditions such as 
short hydraulic retention times, high organic loading 
rates and co-substrate addition based on random 
or heuristic decisions [3]. Enlarging digestion time 
can decrease the amount of labile compounds in 
digestates; however it may reduce the specific 
volumetric biogas production of digesters as well 
as require a higher investment (larger vessel). 
Aerobic post-treatment can be used to decrease 
digestates phytotoxic impact without affecting AD 
feasibility as well as improve pathogens destruction. 

In this regard, Abdullahi et al. [28] found that the 
seed germination increased with dilution and 
incubation time, suggesting that lower application 
rates and longer lag periods between application 
of aerobically treated digestate and planting can 
reduce the occurrence of phytotoxicity. Abubaker et 
al. [29], who studied bacterial community structure 
and microbial activity in different soils amended 
with digestate and untreated cattle slurry, observed 
that differences in microbial community structure 
induced by the digestate appeared to be smaller 
than those induced by cattle slurry, and those 
changes did not translate into altered microbial 
functioning.

Digestate Solid-Liquid separation
Although digestate direct land application is widely 
applied, the large amount of digestate produced 
in intensive livestock regions can led to nutrient 
surplus problems [40–42]. Additionally, the large 
amount of water (>80%) in digestates will increase 
transport expenses and difficult its utilization. 
To avoid negative impacts on the environment, 
complementary treatment of digestate are needed 
in context of nutrient surplus removal and/or 
recovery [43,44]. One of the simplest digestate 
post-treatment methods is the separation of the 
solid and the liquid fraction (known as digestate 
dewatering) [45,46]. 
The solid-liquid separation provides two materials 
fractions that can be handling independently 
[47]. The solid fraction can be transported longer 
distances because of the reduction in the water 
content, or undergo further processing to produce 
value-add products (e.g. compost and organic 
fertilizer by bio-stabilization) [47]. The liquid 
fraction can be returned to the process, treated 
to meet lands requirements (nutrient removal), or 
treated to recover valuable nutrients (P and N) [48–
53]. The aims of solid and liquid separation are: (i) 
increase the possibilities of digestate management as 
by-product; (ii) avoid uncontrolled decomposition 
process; and (iii) reduce transport cost (solid 
fraction) [54]. The common solid and liquid 
separation technologies are decanting, 
centrifuge, brusch-roller, vibrating screen, 
screw press, belt press and run-down screen 
[55]. The kind of technology used in the solid-
liquid separation of the digestate will determine 
the composition of the fractions. Moreover, the 
separation efficiency is determined by the flows, 
solid content, use of additives and digestate 
degradation [45,53,54,56]. 
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For instance, in manure centrifuged digestate, the 
dry matter content of the solid fraction is typically 
25-35%, containing 60-80% of the digestate dry 
matter and almost the totally of phosphorus from 
the original slurry, but only 20 – 25% on the nitrogen 
and 10-15% of the potassium [14]. Another factor 
to consider in the solid-liquid separation is the 
economic efficiency which is mainly determined 
by the organic matter and nutrient (N, P and K) 
retention in the solid fraction [53]. 
Therefore, some processes integrate two 
sequential separation technologies to increase 
separation efficiency and provide different: (i) 
operation conditions (flows), (ii) performances (N 
and P recovery) and (iii) expenses (investment and 
operation cost) [57]. 
For instance, Parera et al. [58] evaluated the 
economic viability of two solid and liquid separation 
systems, run down screen-screw press and screw 
press–centrifuge; concluding that operational 
conditions regulation and calibration (i.e. flows and 
mesh pore diameter) determinate the separation 
efficiency. The run down screen-screw press 
system allowed high flow (20m3/h) with N and 
P recovery of 15 and 20%, respectively, while 
screw press–centrifuge systems worked at low 
flow (4.5m3/h) with N and P recovery of 45-80%, 
respectively. However, the economic balance 
showed that run-down screen-screw press system 
presented lower operation cost (1.03€/m3; 1.96€/kg 
N and 4.96€/kg P) than the screw press–centrifuge 
systems (3.68€/m3; 2.34€/kg N and 4.43€/kg P) [58].

Digestate solid fraction treatment
From the solid-liquid separation, the solid fraction 
can subsequently be applied directly as fertilizer 
in agriculture, composted or dried for intermediate 
storage and enhanced transportability. The solid 
fraction can be also be sold as a phosphorous rich 
fertilizer, without any further treatment [20]. Nest 
et al. [59] showed that the use of solid fraction of 
separated digestate may replace mineral fertilizer 
and leads to enhanced the availability of P. 
Digestate composting and stockpiling are widely 
used, since these technologies are the simplest 
techniques and the material can be considered 
hygienically safe [60]. 
On the other hand, pelletized technology 
is rapidly expanding. Pelletized technology 
consists of digestate dried (e.i. fluidized bed 

dryer) following by mixing with a (NH4)2SO4 
solution and pellets formation [43,61]. It has 
been shown that when digestate is converted to 
dry pelletized bagged products, digestate can 
reach a far greater price up €250/ton [60]. Other 
options for digestate solid fraction is the use for 
industrial purposes, this involves production 
of composite materials, biorefinery processes 
or incineration for energy production [20]. Santi 
et al. [62] showed that digestate solid fraction 
produced by commercial corn-silage AD contains a 
notable quantity of cell wall polymers that could 
potentially be used in biorefinery processes 
for ethanol and xylo-oligosaccharide 
production.

Digestate liquid fraction treatment
From the solid-liquid separation the liquid fraction 
generates greater interest, since it contains most 
nitrogen and potassium. Digestate liquid fraction 
can be used to dilute high solid feedstock and 
re-fed to the digester and/or applied as irrigation 
water [48,63]. However, the accumulation of 
nitrogen due to liquid recirculation can lead to 
anaerobic biomass inhibition [64–66] and restricts 
land application directives limiting N spreading on 
lands [67,68]. Therefore, AD plants are currently 
focusing their efforts on providing adequate 
technologies to process digestate liquid fraction, 
giving strategic importance to reduce nitrogen 
content by either removal or recovery technologies 
(Figure 2) [14]. Removal consist in reduce the 
nitrogen concentration on digestate, converting 
the ammonium into nitrogen gas, enhancing the 
nitrogen concentrations to directive limits or land 
requirements; while recovery consist in ammonium 
fixation and concentration on liquid or solid medium 
that are potentially reusable as agricultural fertilizer 
or chemical reagent [15]. Today, nitrogen treatment 
technologies are mainly focus on its elimination 
rather than on its recovery. However, conventional 
nitrogen removal methods are being recognised 
as wasteful [15,63]. For instance, the conventional 
nitrification-denitrification process, where nitrogen is 
converted to elemental nitrogen gas requires both 
electrical and chemical energy [15]. In this regard, 
new technologies such as Anammox, absorption 
and membrane have been presented as alternative 
nitrogen treatment options. A brief description of the 
main technologies is discussed below.
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Anammox
Anaerobic ammonium oxidation (Anammox) 
is growing on importance as an alternative 
technology for biological nitrogen removal from 
wastewater due to its lower energy, oxygen and 
carbon requirements [69]. The Anammox process 
consist of ammonia oxidation in the absence of 
oxygen but in the presence of nitrite (Equation 1) 
[70,71]. Therefore, a pre-requisite of the Anammox 
process is a partial nitrification unit where about 

50% of the ammonium is converted to nitrite 
concentration appropriate to the stoichiometry 
for the Anammox reaction as shown in Equation1 
[72]. Figure 3 shows the general scheme of 
Anammox process. The optimal operational 
conditions for Anammox have been reported at 
pH=7-8.5; C/N ration 0.6:1; hydraulic retention 
time of 1 day and temperature 30-37ºC [73]. 
However, Anammox reactors have already been 
operated at psychrophilic temperatures [74,75].

Figure 2. General scheme treatment of nitrogen rich digestates.

The feasibility of the process has been demonstrated 
in laboratory and full scale wastewater treatment 
[76] and full-scale experiences in the treatment of 
digestates by Anammox are now become known 
[77,78].  Anammox is a promising alternative since it 
has several advantages compared to conventional 
wastewater treatment bio-systems for N removal 
[79]. Anammox present ~60% reduction in the 
oxygen required for nitrification, elimination of organic 
carbon requirement for denitrification, reduction in 
the production of biosolids, higher rates of N removal 

and good coupling with biogas production [80]. The 
main challenges for implementing Anammox are: 
(i) the low growth rate of Anammox organisms, 
causing long start-up periods and the need to ensure 
bacterial cells retention inside the reactor [81]; (ii) high 
concentrations of N inside Anammox reactor should 
be a risk of biomass inhibition, therefore, digestate 
may be diluted before being supplied to the Anammox 
reactor, increasing both operational and capital costs; 
and (iii) digestate sulphide and phosphorus content 
may interfere in the Anammox process [79].

Figure 3. General scheme of Anammox process.
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Figure 4. Nitrogen reduction form anaerobic digester by a) ammonium stripping and b) NH3 absorption by biogas 
recirculation (↑N = relative high N concentration; ↓N = relative low N concentration).

Absorption
Inorganic nitrogen existing in digestates is an 
equilibrium between free ammonia (NH3) and 
ammonium (NH4

+). Ammonia recovery from 
digestates has been investigated with methods 
such as coupled gas stripping and liquid/solid 
absorption [82]. Ammonia stripping is carried out 
by displacing the equilibrium to free ammonia 
by increase of digestate pH and/or temperature. 
Ammonia stripping has been trialled using a range 
of approaches, including with and without solid/liquid 
separation and using air, nitrogen, steam or biogas 
as the stripping agent [83]. The ammonia absorption 
can be done by ion exchange materials or acid 
solution, of which acid absorption is the widely used 
since high purity ammonium sulphate crystals can 
be produced when sulphuric acid solutions are 
used. Ammonium sulphate crystals isolated from 
the absorption process is a useful fertilizer with high 
commercial value [84,85].
Ammonium plays a vital role as a buffer agent in 
the AD process [86]. However, high ammonium 
concentrations are inhibitory for anaerobic 
biomass, especially aceticlastics methanogens [87]. 

Consequently, several research efforts have been 
made to reduce the ammonium concentration in the 
digester medium [24,64,87]. Chemical absorptions 
use new reactors configuration to capture the 
ammonium in a solid or liquid medium. Serna-Maza 
et al. [88] proposed a side-stream ammonium 
stripping using thermal alkaline treatment (Figure 
4a). In this method, reactor content and biogas 
are treated in the stripping column and the biogas 
leaving the stripping column is passed through 
acid (0.25N H2SO4) traps to remove ammonia, 
while the biogas and reactor content return to the 
reactor. Sun et al. [89] reduced ammonia during 
thermophilic anaerobic digestion of protein rich 
stillage at a higher organic loading rate (7gL-1d-1) 
by biogas recirculation on water-washed biogas 
system (Figure 4b). Wirthensohn et al. [90] tested 
acidic gel cation exchange resin column (to remove 
ammonium by ion exchange) after filtration and 
reverse osmosis at a full-scale AD plant. Resin 
shows 99% of ammonium removal (27.6g NH4

+-N L-1 
resin) and present also a regeneration with 3 bed 
volumes of 2M HCl, recovering 91.7% of the original 
cation exchange capacity [90].

Phycoremediation
Microalgae biomass has been presented an intense 
interest application in environmental biotechnology 
since it can be used for bioremediation of 
wastewaters [91]. Hence, combining microalgae 
biomass production with organic wastewater 
treatment can mitigate: (i) water consume; (ii) 
substitute for fertilizer requirements of algal 
cultures by wastewater rich in nitrogen and 
phosphorus and (iii) algal biomass produced may 
be further valorized in the bio-fuel production [92–
94]. Nitrogen and phosphorus are considered as 
essential nutrients for algal cultivation. Nitrogen is 
directly associated with the primary metabolism of 
algae as it is the main constituent of nucleic acid 

and proteins [95]. Phosphorus needs to be supplied 
as phosphates because phosphorus in other forms 
may combine with metal ions and get precipitated, 
thus becoming unavailable to the microalgae [95].
Association of microalgae culture and AD 
seems a promising technology for sustainable 
algal biomass and biogas production. The use 
of digestate liquid fraction for sustaining the 
growth of microalgae reduces the cost and the 
environmental impacts associated with the algal 
nutrient requirements [96]. However, the growth 
of the microalgal resulting biomass will be driven 
by light, carbon source, nutrients loads (N and P), 
trace amount of micronutrients such as metals and 
vitamins [97]. In the specific use of digestates to 
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Figure 5. Microalgae biomass production with digestates nutrient recovery.

microalgae production, the high concentration of 
ammonium, as well as turbidity, salinity, toxins, etc; 
present harmful effects on microalgae growth and 
therefore digestates has to be diluted before used 
for microalgal cultivation, being the dilution a key 
element on the economic and operation feasibility 
[92,93]. Table 2 shows different nutrient removal 
experiences using microalgae from digestate liquid 
fraction. In addition to nitrogen and phosphorous, 
algae also require trace amount of micro-nutrients 
such as metals (Na, Mg, Ca, Mn, Zn, Cu, Fe and 
Mo) and vitamins for effective growth [98]. Algae 
can also be used as bio-sorbent to remove heavy 
metal ions (e.g. Cu, Pb, Cr, and Sr) [99]. Bio-sortion 
applied on digestates using algae has several 
advantages over conventional methods (e.g. 
chemical reduction, ion exchange, precipitation 
and membrane separation): (i) low operating cost; 

(ii) high efficiency in detoxifying heavy metals in 
low concentration streams; and (iii) no nutrient 
requirements [100].
Algae growth also becomes attractive for AD 
systems by the capacity of remove CO2 from biogas. 
AD produces biogas at CH4 and CO2 concentration 
between 50-80% and 50-20%, respectively [101]. 
There are several methods available for the 
removal of CO2 from biogas (i.e. liquid and solid 
absorption, pressure swing adsorption, membrane 
filtration and cryogenic separation) [10]. These 
processes require considerable amount of 
energy and their operation may be complex 
[102].  Microalgae biomass production and biogas 
upgrading can be also integrated with digestate 
liquid fraction treatment [103].  Figure 5 shows 
the microalgae biomass production and biogas 
upgrading integration.

Table 2. Comparison of major nutrient removal rates by microalgae cultivation in various anaerobic digestion 
wastewater conditions (adapted and expanded from Ji et al. [92])

Table 2. Comparison of major nutrient removal rates by microalgae cultivation in various anaerobic digestion wastewater conditions (adapted and 
expanded from Ji et al. [92]) 
 

Anaerobic digestion 
wastewater Gas source Microalgae 

species 
Cultivation 
period (d) 

Initial nutrient 
(mgL-1) 

Nutrient 
removal 

(mgL-1d-1) 

Dry cell 
weight        
(gL-1d-1) 

References 

 
Digested dairy manure 

(20x dilution) 

 
CO2 

 
Chlorella sp. 

 
21 

 
NH4-N = 89.1 
TNK= 172.8 

TP= 12.5 

 
4.28 
6.24 
0.20 

 
0.0814 

 
[102] 

        
Digested dairy manure 

(50x dilution) 
2-3% CO2 Neochloris 

oleoabundans 
16 NH4-N = 42 

 
6.48 0.0883 [103] 

        
Digested pig manure 

(10x dilution) 
 Scenedesmus 

accuminatus 
10 NH4-N = 120 

 
5.20 0.0458 [104] 

        
Anaerobic Digestete    

(6x dilution) 
Biogas Chlorella sp. 6 NH4-N = 59.6 

TP= 6.21 
8.33 
0.83 

0.1026 [105] 

        
Digested cattle 

manure (20x dilution) 
CO2 Chlorella 

vulgaris 
21 NH4-N = 81.7 

PO43--P= 3.65 
 

5.2 
0.19 

0.25 [106] 

        
Anaerobic Digestate 3% air Synechocystis 

sp. 
10 TN = 80 

NH4-N = 6.8 
TP= 1.143 

0.15 0.1509 [107] 
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Struvite
Struvite precipitation has been attracting an 
increased interest as a technique to recover N 
and/or P, since struvite has a high nutrient value 
per unit weight (low transport cost) and is highly 
effective as a slow-release fertilizer [115,116]. 

Struvite is a crystalline solid phase consisting of 
magnesium, ammonium and phosphorus in equal 
molar concentrations and its precipitation naturally 
occurs, as for Equation 2, when the combined 
concentration exceeds the solubility product 
[117,118].

Membrane separation
Membrane technology has acquired significant 
relevance in many industry sectors. Membranes 
can be designed to allow gas transfer between two 
liquid phases. To accomplish this mass transfer, a 
microporous hydrophobic membrane separates the 
two liquid phases, which are an NH3 rich feed and an 
acidic absorption solution (Figure 6a). The gas filled 
pores of the membrane are the transfer area. The 
difference in the NH3 partial pressure between the 
two liquid phases is the driving force for the mass 
transfer. Hollow fiber membrane contactors have 
been used to remove NH3 from anaerobic digestate 
[109] and also directly from an operating AD reactor 
[110]. 
Other uses of membranes in nutrient recovery of 
anaerobic digestion system are bio-electrochemical 

systems (BES). The representative system includes 
microbial fuel cells (MFCs) (Figure 6b), microbial 
electrolysis cells (MECs) (figure 6c) and microbial 
desalination cells (MDCs) [111]. The foundation for 
realizing ammonia recovery in a BES is the fact that 
ammonium ions can move across ion exchange 
membrane via either current-driven migration or 
diffusion [111]. It was found that an MFC could 
achieve 100% ammonia recovery in efficiency 
and reduce ammonia inhibition on anaerobic 
digestion [111,112]. The theoretical analysis of 
energy consumption and production suggested 
that ammonia recovery in an MFC had significant 
energy advantage (with a positive energy balance) 
[111,113]. One of the key factors in ammonia 
recovery is the high pH of cathode, which can drive 
ammonium to ammonia gas [114]

Figure 6. N recovery from digestates with membrane technologies as a) fibre membrane, b) MFC and c) MEC.
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Figure 7. Struvite precipitation from a) digestate liquid fraction and b) coupling AD.

The struvite crystal development occurs in two 
chemical phases: nucleation (crystal birth) and 
crystal growth [115]. Several physicochemical 
parameters influence these mechanisms such as 
pH [119], super-saturation [120], mixing energy 
[121], temperature and presence of foreign 
ions [122]. Taking account of these factors, 
several struvite crystalliser reactors have been 
development, mostly continuous flow reactors 
[115,122–124]. 
The precipitation of struvite from AD digestates 
(Figure 7a) normally requires the addition of  Mg2+ 
since their concentration is very low with relation to 
NH4

+ and PO4
3- concentration [125]. Nevertheless, 

although the use of struvite for recovering NH4
+ 

and PO4
3- from wastewaters is technically feasible, 

it is not widely adopted because of the high 
costs of chemical compounds [117,126]. Several 
authors have evaluated the utilisation of alternative 
magnesium sources such as bittern [127], sea 
water and brine [128], magnesite [129], magnesite 
pyrolysate [130], struvite pyrolysate recycling [131] 
and electrochemical magnesium dosage [132]. 
Table 3 summarises the removal of NH4

+ and PO4
3- 

by struvite precipitation from different wastewater 
and digestates using different magnesium source. 
Rich-magnesium by-products from the calcination 
of magnesite have shown good results in struvite 
precipitation and some advantages in comparison 
with other Mg2+ sources [117,133,134]. In this topic, 
Quintana et al. (2008) observed that the origin 
and the pre-treatment of the by-products have a 
considerable influence over the reaction time as 
well as on the quantity and quality of the struvite 
obtained.
Coupling anaerobic digestion and struvite 
precipitation in the same reactor have been 
presented as an alternative approach to further 
reduce treatment cost (Figure 7b) and, additionally, 
mitigate ammonium inhibition on anaerobic 
digestion systems. This approach have been 
trialed by some researchers on continuous reactors 
without any negative impact on AD performance 
and high nutrient recovery (N <50%; P<90%) [136–
138]. However, continued dosing of Mg2+ can led 
to inhibitory phenomena by extreme pH or cation 
toxicity as well as high operation costs associated 
with Mg2+ reagents purchasing [117].
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Table 3. Removal of NH4
+ and PO4

3- by struvite precipitation from different wastewaters and digestates using 
different magnesium source (expanded and expanded from Uludag-Demirer et al., [136])  
 

Waste water 
Chemicals added 

Mg:N:P 

Initial 
concentrations  

(mgL-1) 
  Removal (%) Optimum 

pH Ref. 

Mg2+ PO43- N-NH4+ P-PO43-   N-NH4+ P-PO43- 
Activated 

sludge MgCl2·H2O  1.4:1.1:1 60 120  53 75 9.1 - 10.2 [126] 

 Seawater      54 81 10  

 bittern      39 76 9.6  
           

Landfill 
leachate MgCl2 H3PO4 1:1:1 2700 43  97  8.6-9.4 [128] 

 MgCO3      91    
           

Pigglery 
wastewaters Struvite pyrolysate  2.5:1:1 985 161  80 96 8.6 [129] 

           
Urine Mg (Electrochemical)  Mg:P (1.5:1) 2540 197   100 8.9 [131] 

           

Cochineal 
insects 

processing 
LG-MgO  3.7:1.5:1 2320 3490   100 8.5-9 [116] 

           
Sewage LGMgO  Mg:P (1.6:1) 322 64   80 8.4-8.5 [133] 

 LGMgO Pretreated (1)       70   
 LGMgO Pretreated (2)       90   
           

Municipal 
wasatewater MgO  Mg:P (1.5:1) 630 54  82 92 8.8 [134] 

 LG-MgO  Mg:P (3.6:1)    89 96 8.7  
           

Calf manure 
digestate Bittern bone 

meal 1.3:1:1.3 1060 450  91 99 9 [144] 

           
source-

sepatated   
urine 

wood ash  (Mg+Ca):P          
(1.5:1) 2720 187   99 8.5-8.7 [145] 

           

Molasses Struvite Mg2+ and 
PO43- recycled (3)  1.2:1:1.2 1400 24  92  8.5 [146] 

           
Leachate 
municipal 

landfill 
MgO H3PO4 1:1:1 2600 27  67  9 [63] 

   2:1:1    95    
(1) Pretreated correspond to suspension at a concentration of 3g of LGMgO L-1 of tap water 
(2) Pretreated correspond to supernatant after settling for 4h after 28h aeration    
(3) Distillation with NaOH 
LG-MgO = Low grade magnesium  oxide       

 

 Romero-Güiza et al. [139] found that the use of 
stabilizing agent (mainly formed of newberyite 
(MgPO4·3H2O)) formulated with low-grade 
magnesium oxide by-product, can reduce the 
ammonium concentration up to 70% and increase 
the specific biogas production by 40% with a 
long-term stability. 
Struvite has been successfully used as fertilizer 
on different crops. In fact, struvite is the preferable 
fertilizer for crops that needs magnesium, like 

sugar beet [140]. Other favorable aspects 
of struvite are its low leaching rate (release 
nutrients slowly during the plant growing season) 
and that it does not burn the roots like traditional 
ammonium-phosphate fertilizer [115]. However, 
in some cases struvite obtained from anaerobic 
digestates may contain some heavy metals 
[116], which are incorporated into the struvite 
crystalline network not only by nucleation, but 
also during the crystal growth process [129,141–

Table 3. Removal of NH4+ and PO43- by struvite precipitation from different wastewaters and digestates using different 
magnesium source (expanded and expanded from Uludag-Demirer et al., [136])
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143]. However, it is unlikely that the heavy 
metals will exceed limit concentrations for land 
application [144].

Enhanced phosphorous recovery
Phosphorus is typically present in wastewaters, 
industrial streams, and anaerobic digestates at 
low concentrations (10-100mgPL-1). Recovery of 
phosphates through precipitation with aluminium, 
iron, calcium and magnesium is technically 
possible; however aluminium and iron sources 
are expensive and makes phosphorus unavailable 
to plants [148]. Calcium phosphates are a poorer 
fertilizer (particularly in alkaline soils) [149,150], 
while recovery as struvite requires a higher P 
concentration in the solution [151]. To solve this 
problem enhanced biological phosphorus removal 
(EBPR) is suggested as technology to concentrate 
phosphorus in order to make phosphorus recovery 
and reuse feasible. EBPR sludge contains 5-7% 
phosphorus in contrast with normal activated 
sludge, ranging 1 and 2% (dry weight) [152]. EBPR 
relies on polyphosphates accumulating organisms 
(PAOs) to take up phosphorus from wastewater 
streams and thus concentrating P in the biomass 
previous anaerobic digestion [153,154], which 
digestate can be either directly applied to land 
or treated to recover P as struvite [155]. Recent 
advances on EBPR suggest that the main factors 
involving the technology are: (i) biochemical 
transformations performed by PAOs, (ii) process 
design and operation, and (iii) phosphorus 
recovery from EBRP sludge [152,156]. The EBPR 
system requires alternating anaerobic and aerobic 
conditions. In continuous systems this is achieved 
by spatially dividing the bioreactor into anaerobic 
and aerobic zones [157–160], while sequencing 
batch reactors provide anaerobic and aerobic 
periods in a single vessel [161,162].

Conclusions
 
Using anaerobic digestates as organic fertilizer or 
soil conditioner seem to be the best option for its 
nutrient recycling. However, most digestates are 
not suitable to be directly applied on land as their 
properties might cause environmental problems 
such as ammonia emissions, nitrate leaching and 
nutrient overdoses. Separation of the solid and 
liquid fraction is, due to its simplicity, the most 
widespread digestate treatment method. However, 
adequate treatments are still required for their 
correct management. The solid fraction is usually 

easier to treat, while the liquid fraction requires 
severe and expensive processes.
Nutrient recovery on anaerobic digestion systems 
is mainly focus on nitrogen. Nitrogen recovery 
has been achieved by striping, membrane, 
electrochemical systems and precipitation 
technologies. Removing nitrogen from the digester 
medium rather than from the effluent is an interesting 
approach since it also allows reducing biomass 
ammonia inhibition. However, phosphorous 
recovery has been identified as key a feature in 
full-scale treatment plants due to phosphorous 
scarcity and commercial value. In this matter, most 
research efforts have been made in concentrating 
phosphorous in polyphosphates accumulating 
organism’s previous anaerobic digestion and 
subsequent recovery by precipitation. Struvite 
precipitation is a useful process for both N and P 
recovery, where research is done to investigate 
the feasibility of using magnesium by-products as 
cost-effective Mg2+ source. Finally, the integration 
of anaerobic supernatant treatment and algae 
cultivation has been identified as a potential ways 
to reduce the risk of nitrogen and phosphorus 
pollution from anaerobic digestion and as a biogas 
upgrading technology; however further research is 
required to overcome limiting factors.
Main limitation identified on nutrient recovery from 
anaerobic digestion systems is the electric and/or 
chemical requirements, which result in economic 
unviable processes. Moreover, some of the 
processes presented are still under development. 
Another limitation on using anaerobic digestates 
as organic fertilizer is their marketing. The negative 
perception by consumers and the competition with 
conventional fertilizers raise the need to increase 
digestates marketability and governmental 
incentives.
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