DOI: http://dx.doi.org/10.18273/revsal.v49n3-2017001

Artículo Científico

How much is known about the genetic diversity of the Asian tiger mosquito? A systematic review

¿Cuánto se conoce acerca de la diversidad genética del mosquito tigre? Una revisión sistemática

 

Oscar Alexander  Aguirre-Obando1

Mário Antônio Navarro-Silva1

 

1Universidade Federal do Paraná. Curitiba, Brasil

 

Correspondence: Mário Antônio Navarro-Silva. Address: Laboratório de Entomologia Médica e Veterinária, Universidade Federal do Paraná, Setor de Ciências Biológicas, Departamento de Zoologia. 81531-980 Curitiba, Paraná, Brasil. E-mail: mnavarro@ufpr.br  Telephone:+554133611640.

 

ABSTRACT

Introduction: Aedes (Stegomyia) albopictus (Skuse, 1894) is a vector for dengue and chikungunya viruses in the field, along with around 24 additional arboviruses under laboratory conditions. Knowledge of the genetic diversity of insect vectors is critical for the effective control and elimination of vector-borne diseases.

Objective: We determined the current scenario of the genetic diversity in natural populations of A. albopictus through a systematic review.

Methodology: It was possible to establish the first reports and distribution of A. albopictus populations in the world, as well as its genetic diversity, population genetic structure and molecular markers used to determine its genetic diversity.

Results: A. albopictus is distributed worldwide with genetically structured populations and low diversity; however, 89.5% of the genetic diversity known is based on the use of RFLP, allozymes, isozymes, and mtDNA molecular markers that exhibit significant problems according to the literature. After the results were obtained, a critical analysis was carried out and existing shortcomings were detected.

Conclusion: The current knowledge of genetic diversity of A. albopictus is based on genetic markers that exhibit significant problems reported in the literature; therefore, vector control programs targeting A. albopictus populations, may be compromised.

Keywords: Aedes albopictus, Genetic, Markers, Gene, Flow.

 

RESUMEN

Introducción: Aedes (Stegomyia) albopictus (Skuse, 1894) es un vector para los virus del dengue y chicunguña en la naturaleza, junto con cerca de 24 arbovirus en condiciones de laboratorio. El conocimiento de la diversidad genética de los insectos vectores es fundamental para el control eficaz y la eliminación de enfermedades transmitidas por estos.

Objetivo: Aquí se determinó el escenario actual de la diversidad genética en poblaciones naturales de A. albopictus a través de una revisión sistemática.

Metodología: Se pudieron establecer los primeros registros y distribución de las poblaciones de A. albopictus en el mundo, así como su diversidad genética, estructura genética poblacional y marcadores moleculares utilizados para determinar su diversidad genética.

Resultados: A. albopictus se distribuye en todo el mundo con poblaciones genéticamente estructuradas y baja diversidad; Sin embargo, el 89,5% de la diversidad genética conocida se basa en el uso de RFLP, aloenzimas, isoenzimas y marcadores moleculares mitocondriales que presentan problemas significativos según la literatura. Una vez obtenidos los resultados, se realizó un análisis crítico y se detectaron deficiencias existentes.

Conclusión: El conocimiento actual de la diversidad genética de A. albopictus se basa en marcadores genéticos que presentan problemas significativos reportados en la literatura; Por lo tanto, los programas de control de vectores dirigidos a las poblaciones de A. albopictus pueden verse comprometidos.

Palabras clave: Aedes albopictus, Marcadores moleculares, Flujo genético

 

Recibido: 20/06/2017

Aprobado: 15/07/2017    

Publicado online: 21/07/2017

 

 

INTRODUCTION

 

 

Aedes albopictus, also known as the Asian tiger, is a mosquito from Southeast Asia, the Pacific and Indian Ocean Islands. It has spread and colonized every continent except Antarctica in the past 30–40 years, primarily by trading of tires, and is expected to continue to disperse(1-2). A. albopictus is commonly found in sub-urban, rural, semi-rural and savage environments from tropical, subtropical and temperate regions(2,3,4). The Asian tiger mosquito has been linked to the transmission of arboviral and filarial infectious diseases of humans and animals(5-6). Its high potential to carry a wide range of human pathogens is consequently of wide concern.

A. albopictus presents vector competence for 26 arboviruses from the families Flaviviridae (e.g., Dengue virus, Nile virus, yellow fever, Japanese encephalitis), Bunyaviridae (e.g., Potosí, LaCrosse virus), Togaviridae (e.g., Chikungunya and Ross River virus) and Reoviridae (e.g., Orungo and Nodamura virus)(7,8,9). Naturally, A. albopictus is able to transmit important diseases such as dengue and chikungunya fever. The Asian tiger mosquito has played a significant role in Chikungunya virus (CHIKV) outbreaks in Central Africa, Asia and Europe(10,11,12,13). In addition to CHIKV, A. albopictus, a species that is sympatrically distributed with Aedes aegypti, is epidemiologically important in transmitting the dengue viruses (DENV) throughout areas of Southeast Asia, Africa, North America and Europe(14,15).

Worldwide, Aedes aegypti is the primary vector for the DENV, a disease that remains a serious public health problem in many tropical and subtropical countries(16). In the Americas, A. aegypti is the only confirmed natural dengue virus vector(17). Although its geographical distribution is more limited, A. albopictus is considered a potential vector in the Americas due to the high level of vector competence of local populations for DENV(18-19). A meta-analysis of 14 studies on the relative susceptibility of A. albopictus and A. aegypti for DENV suggests that A. albopictus is more susceptible to midgut infections than A. aegypti; however, the ability of the virus to disseminate in the latter mosquito is considerable, suggesting a greater potential for transmission in nature(20). Nevertheless, currently A. aegypti is the primary vector for the DENV in the Americas(21,22).

Given the sanitary and epidemiological importance of A. albopictus, the understanding of the patterns of genetic structure and gene flow among A. albopictus populations is pivotal for the development of rational vector control programs(23). Population genetics studies of A. albopictus have been carried out globally as the species continues to spread and displace A. aegypti in some áreas(4). Different genetic markers have been used to study the population genetic structure of A. albopictus, such as Isozymes/Allozymes(24-25), Restriction Fragment Length polymorphism (RFLP(26)), Random Amplified Polymorphic DNA (RAPD(27)), Mitochondrial DNA (mtDNA((28,29,30)) sequence haplotype, ribosomal DNA (rDNA((31)) and Microsatellites(32).

Genetic studies with early populations of A. albopictus, using Isozymes/Allozymes, indicated that populations cluster by continent or country of collection(24,25,33,34). Subsequent researches examined variation at smaller and/or wider geographic scales using molecular markers such as RAPD, mtDNA, rDNA and microsatellite; these genetic studies report varying levels of population differentiation at both local and continental scales(29,35,36).

Population genetic studies provide insights into the basic biology of arthropod disease vectors by estimating dispersal patterns and their potential to spread pathogens(37). Significant progress has been made in understanding insect diversity and ecology by using protein markers such as isozymes/allozymes(38). The isozymes, developed in the late 70s, were originally defined as multiple molecular forms of enzymes with identical or similar functions and that are present in the same individual(39-40). The isozymes may have different allelic forms known as allozymes(41). The isozymes application is guided for quantifying heterozygosity, genetic diversity, genetic differentiation and other measures of genetic variation within and among populations. However, one of the problems of the protein markers is the lack of ability to detect polymorphisms between related species, since the proteins are the result of gene expression, which may differ from one tissue to another, from one stage of development to another, or from one environment to another(42).

Protein markers made a significant contribution in the early periods when DNA technologies were not as advanced as it is now. However, with the development of DNA-based marker systems, such as RFLP, RAPD, mtDNA and microsatellites, it was found that a greater level of polymorphism could be obtained by using DNA rather than protein markers in many cases(43). The RFLP was the first DNA marker used in population studies(44) and is used to detect DNA fragments from different molecular weights (by digestion with the same restriction enzyme) in different organisms, usiny electrophoresis on agarose or polyacrylamide gel(38). The RFLP has been used for constructing genetic maps, cloning of genes based on maps and for helping to resolve taxonomic and phylogenetic problems45. However, the main disadvantage of the RFLP is the requirement of large amounts of high quality DNA to recognize loci single copies, which only detect a fraction of the variability of existing sequences in the genome, which means the information is limited(46).

The RAPD markers method has been reported to be an efficient tool to differentiate geographically and genetically isolated population. The RAPD technique uses the PCR principle for random amplification of DNA sequences. The RAPD-PCR is a dominant type of molecular marker, that is unable tt differentiate heterozygotes from homozygotes(43). These markers allow the study of a large number of loci and provide a random sampling of DNA, therefore, present high levels of polymorphism compared to RFLP and protein markers(46). However, they have significant limitations when compared to codominant markers (e.g., microsatellites) and/or haploid (e.g., mtDNA), since, the amplified fragments often do not correspond to DNA bound to a character, but to one repeated, and it does not provide information about the number of copies of genomic DNA containing the amplified sequence(43).

The mtDNA is used for marker analyses largely because of their maternal inheritance, haploid status, and high rate of evolution(47). The mtDNA is a type of marker used for the recognition of cryptic species, phylogenetic studies and/or genetic structure of populations(48,49,50). One of the disadvantages of using mtDNA in population and phylogenetic studies is the presence of nuclear mitochondrial pseudogenes (NUMTs)(51-52). NUMTs are non-functional copies of mitochondrial sequences that have become incorporated into the nuclear genome(53). Samples containing mixtures of mtDNA and NUMT sequences are expected to significantly affect the outcome of genealogy- and frequency-based analyses. This is because mtDNA and NUMTs have separate genealogies and thus, evolutionary history(52).

The ribosomal DNA (rDNA) can be found in the mitochondria, chloroplast and nucleus. The rDNA has been analyzed at the structural level in a large number of multicellular eukaryotes, including insects(54). The rRNA occurs in tandem repetitions and it consists of three highly conserved subunits (18rDNA, 5.8rDNA and 28rDNA),dseparated by two External Transcribed Spacers (ITS1 e ITS2) with high replacement rates(55). Due to the low rate of substitution present, these sequences are useful in phylogenetic studies on taxa with old divergence time(56). Nevertheless, it has been found NUMTs in A. aegypti derived from the tRNA and rRNA genes throughout the mtDNA genome(53).

Microsatellites are also used as popular markers in insect studies because of the high abundance and highly variable nature of their loci in genome(57). However, in contrast to most other arthropods (e.g., Anopheles gambiaes.(58)), microsatellites appear to be underrepresented within some members of the mosquito subfamily Culicinae (e.g., Culex pipiens, C. pipiens quinquefasciatus, and A. aegypti(59-60)). Nevertheless, in A. aegypti for instance, microsatellites are commonly used in population genetics studie(61).

Regarding these marker systems (Isozymes, RFLP, etc.), some details about A. albopictus movement, gene flow patterns and genetic structure has been inferred. However, no published article has focused on analyzing the current scenario of the genetic diversity from natural populations of the Asian tiger mosquito. Hence, the objective of this systematic review was to defind the current scenario of the genetic diversity of natural populations of A. albopictus. For this purpose, data from the first record and distribution of the vector was compiled and included; besider, discussion as focused on the current knowledge of genetic diversity through different molecular techniques. Finally, some important gaps of knowledge, that needed to be addressed, were identified for further research.

 

 

MATERIALS AND METHODS

 

 

Throughout May 2014, a systematic review was carried out on articles about: The first records of the vector, Genetic diversity, and distribution of natural populations of A. albopictus. Distribution data of the vector was considered from the reviews authored by: Rai(62), Benedict et al.(63), Caminade et al.(2), Medlock et al.(64) and Bonizzoni et al.(1). The database used for the research of the early records of the vector and the genetic diversity, sere: Web of Knowledge (“all databases”, including Biological Abstracts, Biosis, Current Contents Connect,  Web of Science, and Zoological Records) by Thomson Reuters and the Google search engine (limited to the first five pages of results). The Google search engine was used to identify reports, conference abstracts, guidelines, etc. Data research was performed including all dates andelimite to sources i: English, Spanish and Portuguese. keywords used for the research on the early records of the vector was, ‘Aedes albopictus’ followed by the phrase ‘first record’. Only the first record for country was considered. Regarding the research on genetic diversity, the keyword used was: ‘Aedes albopictus’ followed by the terms ‘genetic diversity’, ‘gene flow’, ‘population structure’ ‘population genetics’, ‘mtDNA’ and ‘nuclear DNA’. From the results of the research, all the titles and abstracts found were read, and from these, only articles related to the search criteriasweretconsidered. After reading the title and abstract, replicas and items that did not meet the inclusion criteria, were removed from the search. The publications included in the analysis were summarized using a data extraction tool developed from Microsoft Excel 2010. Two data matrices were constructed: one related to the first record-distribution and the other on genetic diversity. The first matrix on the first record-distribution contained data such as: Location (state, city, region, county, district, and street), year, geographic coordinates, distribution, and references. The second one, on the genetic diversity, included data like: Location (state, city, region, county, district, and street), geographic coordinates, genetic diversity (polymorphic diversity / haplotype / gene / nucleotide), molecular technique, genetic structure (p-value that indicate genetic structure such as: X2 test (Isozymes/ Allozyme)/GST (RAPD)/FST (mtDNA, Microsatellites)) and references. Maps were designed based om the geographical coordinates of the two matrices and the molecular techniques. The georeferencing data were calculated using Google Earth 7.1.

 

 

RESULTS

 

 

A total of 65 published articles between 1987 and 2014 were analyzed. From these articles, 63% referreg to the first record of the vector and the other 37% on genetic diversity (Table 1-2). The first record of A. albopictus outside Asia (place of origin of the vector) was registered in 1979 in Europe (Albania). Since then, the Asian tiger has been dispersed in the continents of Oceania, Africa, Europe and America during the last 36 years (Figure 1a, Table 1). In Oceania, the vector is present in 10 of the Torres Strait Islands, since its appearance in Brisbane (Queensland, Australia) in 1988. In Africa, there are records of A. albopictus from 1991 in Nigeria (Delta State) and South Africa (Cameroon). However, nowadayt, there are no records of the vector along the African continent. In Europe, A. albopictus has been confirmed in 16 countries from the continent after its appearance in Albania (1979), and later in Genova (Italy) in 1990. In America, A. albopictus was initially introduced in the middle of the decade of the 1980 in United States (Texas). Consequently, the Asian tiger has been registered in South America and Central America since 1980 until 1990, primarily in Brazil (1986, Rio de Janeiro) and Mexico (1988, Coahuila), and subsequently in the remaining countries (Table 1).

Literaturs on genetic diversity showed that the Asian tiger populations have been studied in all ite distribution arear (Figure 1b). A total of 267 vector populations have been studied throughout the world. The largest number of populations studied was founs in the American continent (37%) followed by Europe (21%), Africa (20%), Asia (16%) and Oceania (6%). The 37% in the American continent is distributed into: 56% in North America (United States), 41% in South America (mainly Brazil) and 3% Central America (Dominican Republic, Guatemala and Cayman Islands; Figure 1b, Table 2).

 

In general, most of the populations of A. albopictus have hat genetic structure studies at regional and global levels. The genetic diversity (Hd) of the Asian tiger populations ranged from 0.0 (Central Africa) to 0.83 (China, Singapore, Japan, Italy, United State), rnonetheless, most of the Hd studies results were lower than 0.7. Furthermore, the haplotype diversity (π) of the Asian tiger populations ranged from 0.00 to 0.30 (Table 2).

The data were obtained from the published literature (Table 1-2). The colors indicate vector distribution: Gray (Unknown or no data), Red (Indigenous) and Blue (Current distribution range).

 

 

 

Figure 1. Political maps indicating: A. The first record and distribution of A. albopictus, and B. The A. albopictus populations used in genetic diversity studies.

 

Table 1. First records (in chronological order) of natural populations of A. albopictus in the world.

findings indicate that molecular techniques used in studies on genetic diversity of A. albopictus are: RFLP, Allozymes, Isozymes, RAPD, mtDNA (Cytb, COI, ND5), microsatellites and ITS2. However, there were also found studies in which more than one molecular technique was used such as: mtDNA and microsatellite and mtDNA and ITS2 and (Table 2). From the total of the population studied, 50.9% have been analyzed using mtDNA, 24.7% allozymes, 7.5% isozymes, 6.4% RFLP, 4.5% mtDNA and microsatellites, 3.0% mtDNA and ITS2, 2.6% RAPD and 0.4% microsatellites (Figure 2). On the other hand, the 89.5% of the known genetic diversity is based on the use of RFLP, allozymes, isozymes, and mitochondrial molecular markers, which exhibie problems reported on the literature. Molecular techniques (in inverse chronological order) used to estimate genetic diversity in A. albopictus populations are: ITS2 (2013-present), microsatellites (2011-present), mtDNA and RAPD (2002-present), and RFLP, allozymes and isozymes (1988- 2003) (Table 2).

 

Table 2. Genetic diversity worldwide observed (in chronological order) in natural populations of A. albopictus using various molecular markers.

n = Number of cities/towns/sampled regions; Hd = haplotype diversity; π = nucleotide diversity; * = Genetic structuring (p < 0.05); MD = missing data; A = RFLP/Isozymes/Allozymes; B = RAPD; C = Cytb; D = COI; E = ND5; F = Microsatellites; G = ITS2.

 

 

Figure 2. Political maps showing the populations of A. albopictus analyzed in genetic diversity studies using the molecular techniques: A. Isozymes, Allozyme, RFLP and RAPD; B. mtDNA (Cytb, COI and ND5); C. Microsatellite; and D. ITS2. The colors indicate vector distribution: Gray (Unknown or no data), Red (Indigenous) and Blue (Current distribution range).

 

 

DISCUSSION

 

 

This study revealed that A. albopictus is distributed globally wity structured populations exhibiting low genetic diversit,; most of the genetic diversity known is based on genetic markers that present witw significant problemse. For the last 36 years, the Asian tiger has spread form Asia (place of origin) to Oceania, Africa, Europe and the Americ as. However, mathematical models of distribution indicate that A. albopictus will continue spreading all over the world due to factors such as transportation means, the environment and climate change(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65). Successful dispersion of A. albopictus is associated mainly to its ecological plasticity (i.e., the vast array of breeding habitats ranging from treeholes and cut bamboo to a wide variety of man-made containers), and also, to its passive transport of eggs through the international trade of semi-new tires, plants shipping (Dracaena spp.) from Asia, accidental transportation of adults in aircrafts and other means of transportation(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64).These situations make A. albopictus a highly invasive species, and also link the gene flow among A. albopictus populations to the human transportation, as it was globally observed in A. aegypti populations(66).

The pattern observed of genetic variation in populations of A. albopictus may be attributed to the chemical measures used in vector control programs(67). Worldwide, extensive and repeated insect control activities have involved source reduction and insecticide application, leading to the reduction and/or eradication of A. albopictus populations(68-69). As a result, reduced levels of genetic variation were observed in the current study. Increased use of insecticides for agricultural pest control, for direct control of A. albopictus or for control of sympatric vectors (e.g., other Anophelinae and Culicinae species), has imposed selection pressures on A. albopictus populations for increased resistance, as it was observed in A. albopictus populations from Asia, Africa, Central America and South America(70-71). In these resistant populations, genetic polymorphisms could have decreased quickly on any part of the mosquito genome due to the use of insecticides, thereby showing a low genetic diversity.

Low genetic diversity is most likely a result of a decline in population size caused by insecticide use, as it was observed in American A. aegypti populations(72,73,74). However, some studies have revealed the presence of greater genetic diversity in areas that are frequently treated with insecticides, as shown in A. aegypti populations from French Polynesia and Brazil(75-76). In our findings, most of the genetic diversity of the Asian tiger populations were lower than 0.7. Those results were lower than in other studies on the mtDNA ND4 gene of A. aegypti, a genetic marker widely used in genetic diversity studies in A. aegypti.(47,77,78). For instance, in 36 locations in the Americas, Asia and Africa (Hd = 0.80) (79) and five states in Brazil (Hd = 0.80)(80) showed higher genetic diversity than the observed in A. albopictus populations.

Most Asian tiger populations were genetically structured, a trend also found on A. aegypti populations from Asia, Africa, and America(23,61,72). The genetic structure of A. albopictus populations have implications for vector control program, since, studies on selection pressure in A. aegypti populations using insecticides such as organophosphates and/ or pyrethroids under laboratory conditions, show the fixation of the population resistance phenotype in only a few generations(81,82,83,84,85).

For the development of control programs, it is important to know the dispersal patterns and genetic diversity of the vector(79,86). Genetic markers are widely used to understand the biology and population dynamics of disease vectors(87). However, in our study, the 89.5% of the known genetic diversity is based on the use of RFLP, allozymes, isozymes, and mitochondrial molecular markers, which have problems reported in the literature. For instance, the RFLP, allozymes and isozymes markers (developed in the late 70s) are no longer employed in genetic diversity studies, since they present significant limitations when compared to microsatellites and/or mtDNA, due to these show little variation, need sufficient training time and also are poorly reproducible in the laboratory(88,89).

Nevertheless, the main concern is that most of the genetic diversity found in the Asian tiger mosquito populations (51%) is through the use of mtDNA markers. In the last decade, the use of mtDNA has been widely used in population genetics studies for reconstructing historical patterns of population demography, admixture, biogeography and speciation in arthropods, included A. albopictus(47,69). However, integration of mitochondrial sequences in nuclear DNA (referred to as NUMTs) has been discovered in many eukaryotes, including A. aegypti(53,90,91,92,93). Thus, PCR amplification using mtDNA marker loci using total genomic DNA can potentially amplify these nuclear copies. These sequences complicate the employment of mtDNA as a molecular marker in genetic studies. In insects, because of the relative small genome size, high copy number of NUMTs sequences may interfere in effective separation of mtDNA from its nuclear paralogs(52,94). This has been evident among 85 sequenced eukaryotic genomes where the NUMTs sequences were found to have different mitochondrial origin(95). Thus, population studies using mitochondrial markers derived from these loci can potentially mislead the results.

Another problematic issue of using mtDNA markers has been identified in cases where the host insect harbours maternally inherited microorganisms such as Wolbachia. It is a gram-negative endosymbiotic bacterium that causes many developmental defects such as cytoplasmic incompatibility, feminization and sex ratio distortion(96). As the Wolbachia infection sweeps through an insect species, the frequency of mitochondria from infected individuals also increases in the population due to the similar mode of transmission used by Wolbachia and the mitochondria. As a result, the spread of the mtDNA from infected individuals reaches high prevalence in these populations, phenomenon commonly referred to as ‘genetic hitchhiking’. Thus, inferring evolutionary history of populations solely based on use of mtDNA markers in insect species harboring such maternally inherited microorganisms may be misleading(97). Wolbachia is commonly found in mosquitoes including A. albopictus. This species naturally carries two strains of the bacterium Wolbachia, wAlbA and wAlbB(98). Wolbachia inherited bacteria are able to invade insect populations using cytoplasmic incompatibility and provide new strategies for controlling mosquito-borne tropical diseases, such as dengue and Chikungunya fever, as shown by Blagrove, et al.(99) and Mousson, et al.(98) in their works.

Currently, there is no presence of NUMTs in A. albopictus, therefore, further studies should be done in order to reduce the error caused by NUMTs in the published mtDNA (COI, Cytb, ND5) sequences. Here, we suggest the search for heterozygous sites in the chromatogram and additional termination codons. Common analysis applied on population genetics studies in A. aegypti when mtDNA markers are used (see: Gonçalves, et al.(47); Aguirre-Obando, et al.(72).

Despite the mtDNA markers have been widely used in vector genetic diversity studies, including A. albopictus(29,100), these are not as sensitive to detect genetic variation as microsatellites and/or SNPs (Single Nucleotide Polymorphism) are(61,87). Microsatellites have been used as genetic markers for a number of arthropod vectors of human diseases, including A. albopictus(32). However, there are a few studies using microsatellites in A. albopictus as our findings show. Nevertheless, the use of microsatellites in A. albopictus populations has shown they are highly polymorphic. Delatte et al.(32) using 10 microsatellites (two of them previously used in A. aegypti) in A. albopictus populations from Reunion Island, in the southwest Indian Ocean, found population genetic structuring. An alternative to increase the number of polymorphic microsatellites in population genetics studies in A. albopictus would evaluate the microsatellites described for A. aegypti (33 microsatellite loci(60)), as some of them has proved to be highly polymorphic(32).

On the other hand, the SNPs, are the most common way of molecular variation in vertebrates and invertebrates(101,102,103,104). Currently, SNPs have become one of the selectable markers for studies on population genetics, characterization of genes or disease to elucidate the evolutionary processes at the molecular level, since they are easy to detect when compared, for example, with microsatellites(87,105). In vectors diseases such as Anopheles gambiae, A. funestus (vectors of malaria in Africa) and A. aegypti, SNPs have been highly polymorphic(87,104,106-107). For A. aegypti, Paduan & Ribolla(106) sequenced seven genes of 16 Brazilian populations of this species. These genes revealed the existence of 53 individual SNPs; eight of them are independent and highly polymorphic to be used in genetic diversity studies. Since, our search did not find any work related to the use of SNPs in A. albopictus, we suggest to test the polymorphic SNPs described for A. aegypti in A. albopictus, since other molecular markers developed in A. aegypti like microsatellites, have shown highly polymorphic in A. albopictus(32). It can be concluded then, that the current scenario of genetic diversity in A. albopictus populations, is based on genetic markers that present significant problems reported in the literature, thus vector control programs, understanding of the vectors transmission, and the spread of genetic traits, such as vector competence and insecticide resistance, may be compromised.

 

ACKNOWLEDGMENTS

We thank Angélico Asenjo for his useful comments on the manuscript. This work was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, process 140224/2013-0).

 

CONFLICT OF INTEREST

We declared there is no potential conflict of interest.

 

 

REFERENCE

1. Bonizzoni M, Gasperi G, Chen X, James AA. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol. 2013; 29(9): 460-468. DOI: 10.1016/j. pt.2013.07.003.

2. Caminade C, Medlock JM, Ducheyne E, McIntyre KM, Leach S, Baylis M, et al. Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J Royal Soc Interface. 2012; 2708-2017. DOI: 10.1098/rsif.2012.0138.

3. Carvalho RG, Lourenço-de-Oliveira R, Braga IA. Updating the geographical distribution and frequency of Aedes albopictus in Brazil with remarks regarding its range in the Americas. Mem Inst Oswaldo Cruz. 2014; 109(6): 787-796.

4. Rey JR, Lounibos P. Ecología de Aedes aegypti y Aedes albopictus en América y la transmisión de enfermedades. Biomédica. 2015; 35(2). DOI:https://doi.org/10.7705/biomedica.v35i2.2514.

5. Genchi C, Kramer LH, Rivasi F. Dirofilarial infections in Europe. Vector Borne Zoonotic Dis. 2011; 11(10): 1307-1317. DOI: 10.1089/ vbz.2010.0247.

6. Vega-Rúa A, Zouache K, Girod R, Failloux A-B, Lourenço-de-Oliveira R. High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of Chikungunya virus. J Virol. 2014; 88(11): 6294-6306. DOI: http://dx.doi.org/10.1128/ JVI.00370-14.

7. Martins VEP, Alencar CH, Kamimura MT, de Carvalho Araujo FM, De Simone SG, Dutra RF, et al. Occurrence of natural vertical transmission of dengue-2 and dengue-3 viruses in Aedes aegypti and Aedes albopictus in Fortaleza, Ceará, Brazil. PLoS One. 2012; 7(7): e41386. DOI: 10.1371/journal.

pone.0041386.

8. Rúa-Uribe GL, Suárez-Acosta C, Rojo RA. Implicaciones epidemiológicas de Aedes albopictus (Skuse) en Colombia. Rev Fac Nac Salud Pública. 2012; 30(3).

9. Higgs S, Vanlandingham DL. Chikungunya: here today, where tomorrow? Int Health. 2015; 7(1): 1-3. DOI: 10.1093/inthealth/ihu092.

10. de Alencar CHM, de Albuquerque LM, de Aquino TMF, Soares CB, Ramos Júnior AN, Lima JWdO, et al. Potencialidades do Aedes albopictus gomo vetor de arboviroses no brasil: um desafio para a atenção primária. Rev Atencao Prim Saude. 2008; 11(4).

11. Dubrulle M, Mousson L, Moutailler S, Vazeille M, Failloux A-B. Chikungunya virus and Aedes mosquitoes: saliva is infectious as soon as two days after oral infection. PLoS One. 2009; 4(6): e5895. DOI: 10.1371/journal.pone.0005895.

12. Vazeille M, Martin E, Mousson L, Failloux A, editors. Chikungunya, a new threat propagated by the cosmopolite Aedes albopictus. BMC Proc; 2011: BioMed Central Ltd.

13. Ravi V. Re-emergence of chikungunya virus in India. Indian J Med Microbiol. 2006; 24(2): 83-84.

14. Paupy C, Ollomo B, Kamgang B, Moutailler S, Rousset D, Demanou M, et al. Comparative role of Aedes albopictus and Aedes aegypti in the emergence of Dengue and Chikungunya in central Africa. Vector-Borne Zoonotic Dis. 2010; 10(3): 259-266. DOI: 10.1089/vbz.2009.0005.

15. Enserink M.  Entomology. A mosquito goes global. Science. 2008; 320(5878): 864–866. DOI: 10.1126/ science.320.5878.864.

16. WHO. Dengue and severe dengue. 2014.

17. Lourenço-de-Oliveira R, Vazeille M, de Filippis A, Failloux A. Aedes aegypti in Brazil: genetically differentiated populations with high susceptibility to dengue and yellow fever viruses. Trans R Soc Trop Med Hyg. 2004; 98(1): 43-54. DOI: 10.1016/ S0035-9203(03)00006-3.

18. Ibáñez-Bernal S, Briseno B, Mutebi JP, Argot E, Rodriguez G, Martinez-Campos C, et al. First record in America of Aedes albopictus naturally infected with dengue virus during the 1995 outbreak at Reynosa, Mexico. Med Vet Entomol. 1997; 11(4): 305-309. DOI: 10.1111/j.1365-2915.1997. tb00413.x.

19. Mendez F, Barreto M, Arias JF, Rengifo G, Munoz J, Burbano ME, et al. Human and mosquito infections by dengue viruses during and after epidemics in a dengue–endemic region of Colombia. Am J Trop Med Hyg. 2006; 74(4): 678-683. DOI: 10.4269/ ajtmh.2006.74.678.

20. Lambrechts L, Scott TW, Gubler DJ. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis. 2010; 4(5): e646. DOI: 10.1371/ journal.pntd.0000646.

21. OPS. Descripción de la situación epidemiologica actual del dengue en las Américas United States of America; 2013.

22. OPS. Number of Reported Cases of Dengue and Severe Dengue (SD) in the Americas, by Country. United States of America: Organización Mundial de la Salud; 2015.

23. Urdaneta-Marquez L, Failloux A-B. Population genetic structure of Aedes aegypti, the principal vector of dengue viruses. Infect Genet Evol.

2011;        11(2):       253-261.    DOI: 10.1016/j. meegid.2010.11.020.

24. Black IV WC, Ferrari JA, Rai KS, Sprenger D.  Breeding structure of a colonizing species: Aedes albopictus (Skuse) in the United States. Heredity (Edinb). 1988; 60(Pt 2): 173-181. DOI: 10.1038/ hdy.1988.29.

25. Kambhampati S, Black WC, Rai KS. Geographic origin of the US and Brazilian Aedes albopictus inferred from allozyme analysis. Heredity (Edinb). 1991; 67(Pt 1): 85-93. DOI: 10.1038/hdy.1991.67.

26. Kambhampati S, Rai KS. Mitochondrial DNA variation within and among populations of the mosquito Aedes albopictus. Genome. 1991; 34(2): 288-292. DOI: 10.1139/g91-046.

27. Ayres C, Romão T, Melo-Santos M, Furtado A. Genetic diversity in Brazilian populations of Aedes albopictus. Mem Inst Oswaldo Cruz. 2002; 97(6): 871-875. DOI: 10.1590/S007402762002000600022.

28. Birungi J, Munstermann LE. Genetic structure of Aedes albopictus (Diptera: Culicidae) populations based on mitochondrial ND5 sequences: evidence for an independent invasion into Brazil and United States. Ann Entomol Soc Am. 2002; 95(1): 125-132. DOI: https://doi.org/10.1603/00138746(2002)095[0125:GSOAAD]2.0.CO;2.

29. Kamgang B, Ngoagouni C, Manirakiza A, Nakouné E, Paupy C, Kazanji M. Temporal patterns of abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and mitochondrial DNA Analysis of Ae. albopictus in the Central African Republic. PLoS Negl Trop Dis. 2013; 7(12): e2590. DOI: 10.1371/journal.pntd.0002590.

30. Haddad N, Mousson L, Vazeille M, Chamat S, Tayeh J, Osta MA, et al. Aedes albopictus in Lebanon, a potential risk of arboviruses outbreak. BMC Infect Dis. 2012; 12(1): 300. DOI: 10.1186/1471-2334-12300.

31. Shaikevich    E,     Talbalaghi A.     Molecular

Characterization of the Asian Tiger Mosquito Aedes albopictus (Skuse)(Diptera: Culicidae) in Northern Italy. ISRN Entomology. 2013; 2013. DOI: http:// dx.doi.org/10.1155/2013/157426.

32. Delatte H, Toty C, Boyer S, Bouetard A, Bastien F, Fontenille D. Evidence of habitat structuring Aedes albopictus populations in Réunion Island. PLoS Negl Trop Dis. 2013; 7(3): e2111. DOI: 10.1371/ journal.pntd.0002111.

33. Urbanelli S, Bellini R, Carrieri M, Sallicandro P, Celli G. Population structure of Aedes albopictus (Skuse): the mosquito which is colonizing Mediterranean countries. Heredity (Edinb). 2000; 84(Pt 3): 331337. DOI: 10.1046/j.1365-2540.2000.00676.x.

34. De Oliveira RL, Vazeille M, De Filippis AMB,  Failloux A-B. Large genetic differentiation and low variation in vector competence for dengue and yellow fever viruses of Aedes albopictus from Brazil, the United States, and the Cayman Islands. Am J Ttrop Med Hyg. 2003; 69(1): 105-114. DOI: 10.4269/ajtmh.2003.69.105.

35. Gupta S, Preet S. Genetic differentiation of invasive Aedes albopictus by RAPD-PCR: implications for effective vector control. Parasitol Res. 2014; 113(6): 2137-2142. DOI: 10.1007/s00436-014-3864-2.

36. Usmani-Brown S, Cohnstaedt L, Munstermann LE. Population genetics of Aedes albopictus (Diptera: Culicidae) invading populations, using mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunit 5 sequences. Ann Entomol Soc Am. 2009; 102(1): 144-150. DOI: 10.1603/008.102.0116.

37. Araya-Anchetta A, Busch JD, Scoles GA, Wagner DM. Thirty years of tick population genetics: a comprehensive review. Infect Genet Evol. 2015; 29: 164-179. DOI: 10.1016/j.meegid.2014.11.008.

38. Behura SK. Molecular marker systems in insects: current trends and future avenues. Mol Ecol. 2006; 15(11): 3087-3113. DOI: 10.1111/j.1365294X.2006.03014.x.

39. Hunter R, Markert C. Histochemical demonstration of enzymes separated by zone electrophoresis in starch gels. Science. 1957; 125 (3261): 1294-1295. DOI: 10.1126/science.125.3261.1294-a.

40. Markert C, Møller F. Multiple forms of enzymes: tissue, ontogenetic, and species specific patterns. Proc Natl Acad Sci USA. 1959; 45(5): 753-763.

41. Lewontin R, Hubby J. A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics. 1966; 54(2): 595-609.

42. Jonah P, Bello L, Lucky O, Midau A, Moruppa S. The importance of molecular markers in plant breeding programmes. Global J Sci Frontier Res. 2011; 11(5): 5-12.

43. Jain SK, Neekhra B, Pandey D, Jain K. RAPD marker system in insect study: a review. Indian J Biotechnol. 2010; 9(1): 7-12.

44. Parker P, Snow A, Schug M, Booton G, Fuerst P. What molecules can tell us about populations: choosing andusing a molecular marker. Ecology. 1998; 79(2): 361-382. DOI:  10.1890/0012-9658(1998)079[0361:WMCTUA]2. 0.CO;2.

45. Murray TE, Fitzpatrick U, Brown MJ, Paxton RJ. Cryptic species diversity in a widespread bumble bee complex revealed using mitochondrial DNA RFLPs. Conservation Genetics. 2008; 9(3): 653666. DOI: 10.1007/s10592-007-9394-z.

46. Finger A, Klank C. Review Molecular Methods: Blessing or Curse? Relict Species: Springer; 2010. p. 309-320. DOI: 10.1007/978-3-540-92160-8_18.

47. Gonçalves A, Cunha I, Santos W, Luz S, Ribolla P, Abad-Franch F. Gene flow networks among American Aedes aegypti populations. Evol Appl. 2012; 5(7): 664-676. DOI: 10.1111/j.17524571.2012.00244.x.

48. Silva-Brandão KL, Santos TV, Cônsoli FL, Omoto C. Genetic Diversity and Structure of Brazilian Populations of Diatraea saccharalis (Lepidoptera: Crambidae): implications for pest management. J Econ Entomol. 2015;108(1): 307-316. DOI: 10.1093/jee/tou040.

49. Sharma M, Singh D, Sharma AK. Mitochondrial DNA based identification of forensically important Indian flesh flies (Diptera: Sarcophagidae).  Forensic Sci Int. 2015; 247: 1-6. DOI: 10.1016/j. forsciint.2014.11.017.

50. Kocher A, Guilbert É, Lhuillier É, Murienne J. Sequencing of the mitochondrial genome of the avocado lace bug Pseudacysta perseae (Heteroptera, Tingidae) using a genome skimming approach. C R Biol. 2015; 338(3): 149-160. DOI: 10.1016/j. crvi.2014.12.004.

51. Ribeiro L. Mitochondrial pseudogenes in insect DNA barcoding: differing points of view on the same issue. Biota Neotrop. 2012; 12(3): 301308. DOI: http://dx.doi.org/10.1590/S167606032012000300029.

52. Haran J, Koutroumpa F, Magnoux E, Roques A, Roux G. Ghost mtDNA haplotypes generated by fortuitous NUMTs can deeply disturb infra-specific genetic diversity and phylogeographic pattern. J Zool Syst Evol Res. 2015; 53(2): 109-115. DOI: 10.1111/jzs.12095.

53. Hlaing T, Tun-Lin W, Somboon P, Socheat D, Setha T, Min S, et al. 53. Mitochondrial pseudogenes in the nuclear genome of Aedes aegypti mosquitoes: implications for past and future population genetic studies. BMC Genet. 2009; 10(1): 11. DOI: 10.1186/1471-2156-10-11.

54. Collins F, Paskewitz S. A review of the use of ribosomal DNA (rDNA) to differentiate among cryptic Anopheles species. Insect Mol Biol.  1996; 5(1): 1-9. DOI: 10.1111/j.1365-2583.1996. tb00034.x.

55. Musters W, Boon K, Van der Sande C, Van Heerikhuizen H, Planta R. Functional analysis of transcribed spacers of yeast ribosomal DNA. EMBO J. 1990; 9(12): 3989-3996.

56. Hillis D, Dixon M. Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol. 1991; 66(4): 411-453. DOI: 10.1086/417338.

57. Stevens L, Monroy MC, Rodas AG, Hicks RM, Lucero DE, Lyons LA, et al. Migration and gene flow among domestic populations of the chagas insect vector Triatoma dimidiata (Hemiptera: Reduviidae) detected by microsatellite Loci. J Med Entomol. 2015; 52(3): 419-428. DOI: 10.1093/jme/ tjv002.

58. Zheng L, Benedict M, Cornel A, Collins F, Kafatos F. An integrated genetic map of the African human malaria vector mosquito, Anopheles gambiae. Genetics. 1996; 143(2): 941-952.

59. Smith J, Keyghobadi N, Matrone M, Escher R, Fonseca D. Cross-species comparison of microsatellite loci in the Culex pipiens complex and beyond. Mol Ecol Notes. 2005; 5(3): 697-700. DOI: 10.1111/j.1471-8286.2005.01034.x.

60. Slotman M, Kelly N, Harrington L, Kitthawee S, Jones J, Scott T, et al. Polymorphic microsatellite markers for studies of Aedes aegypti (Diptera: Culicidae), the vector of dengue and yellow fever. Mol Ecol Notes. 2007;7(1):168-171. DOI: 10.1111/j.1471-8286.2006.01533.x.

61. Monteiro F, Shama R, Martins A, Gloria-Soria A, Brown J, Powell J. Genetic Diversity of Brazilian Aedes aegypti: Patterns following an Eradication Program. PLoS Negl Trop Dis. 2014; 8(9): e3167. DOI: 10.1371/journal.pntd.0003167.

62. Rai KS. Aedes albopictus in the Americas. Annu Rev Entomol. 1991; 36(1): 459-484. DOI: 10.1146/ annurev.en.36.010191.002331.

63. Benedict MQ, Levine RS, Hawley WA, Lounibos LP. Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector-Borne and Zoonotic Diseases. 2007; 7(1): 76-85. DOI: 10.1089/vbz.2006.0562.

64. Medlock JM, Hansford KM, Schaffner F, Versteirt V, Hendrickx G, Zeller H, et al. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis. 2012; 12(6): 435-447. DOI: 10.1089/ vbz.2011.0814.

65. Waldock J, Chandra NL, Lelieveld J, Proestos Y, Michael E, Christophides G, et al. The role of environmental variables on Aedes albopictus biology and chikungunya epidemiology. Pathog Globa Health. 2013; 107(5): 224-241. DOI: 10.1179/2047773213Y.0000000100.

66. Powell JR, Tabachnick WJ. History of domestication and spread of Aedes aegypti-A Review. Mem Inst Oswaldo Cruz. 2013; 108(Supp 1): 11-17. DOI:

10.1590/0074-0276130395.

67. IRAC. Prevention and Management of Insecticide Resistance in Vectors of Public Health Importance. Second Edition ed: Insecticide Resistance Action Committee (IRAC); 2011.

68. Žitko T, Kovačić A, Yves D, Puizina J. Genetic variations of the Asian tiger mosquito, Aedes albopictus (Skuse)(Diptera: Culicidae) in EastAdriatic populations inferred from NADH5 and COI sequence variability. Eur J Entomol. 2011; 108(4): 501-508. DOI: 10.14411/eje.2011.065.

69. Zawani MKN, Abu HA, Sazaly AB, Zary SY, Darlina MN. Population genetic structure of Aedes albopictus in Penang, Malaysia. Genet Mol Res. 2014; 13(4): 8184-8196. DOI: 10.4238/2014.

70. Vontas J, Kioulos E, Pavlidi N, Morou E, della Torre A, Ranson H. Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pestic Biochem Physiol. 2012; 104(2): 126-131. DOI:  https://doi.org/10.1016/j.pestbp.2012.05.008.

71. Ranson H, Burhani J, Lumjuan N, Black W. Insecticide resistance in dengue vectors. TropIKA Net. 2010; 1(1):1-12.

72. Aguirre-Obando O, Dalla Bonna A, Duque Luna J, Navarro-Silva M. Insecticide resistance and genetic variability in natural populations of Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Colombia. Zoologia (Curitiba). 2015; 32(1): 14-22. DOI: http://dx.doi.org/10.1590/S198446702015000100003.

73. Bona ACD, Piccoli CF, Leandro AdS, Kafka R, Twerdochilib AL, Navarro-Silva MA. Genetic profile and molecular resistance of Aedes (Stegomyia) aegypti (Diptera: Culicidae) in Foz do Iguaçu (Brazil), at the border with Argentina and Paraguay. Zoologia (Curitiba). 2012; 29(6): 540-548. DOI: http://dx.doi.org/10.1590/S198446702012000600005.

74. Yáñez P, Manami E, Valle J, Garcia M, León W, Villaseca P, et al. Variabilidad genética del Aedes aegypti determinada mediante el análisis del gen mitocondrial ND4 en once áreas endémicas para dengue en el Perú. Rev Peru Med Exp Salud Publica. 2013; 30(2): 246-250.

75. Ayres C, Melo-Santos M, Prota J, Solé-Cava A, Furtado A. Genetic structure of natural populations of Aedes aegypti at the micro- and macro geographic levels in Brazil. J Am Mosq Control Assoc. 2004; 20(4): 350-356.

76. Paupy C, Vazeille-Falcoz M, Mousson L, Rodhain

F, Failloux A-B. Aedes aegypti in Tahiti and Moorea (French Polynesia): isoenzyme differentiation in the mosquito population according to human population density. Am J Trop Med Hyg. 2000; 62(2): 217-224.

DOI: 10.4269/ajtmh.2000.62.217.

77. Caldera S, Jaramillo S, Cochero S, Pérez-Doria A, Bejarano E. Diferencias genéticas entre poblaciones de Aedes aegypti de municipios del norte de Colombia, con baja y alta incidencia de dengue.

Biomedica 2013; 33(1) :89-98. DOI: http://dx.doi. org/10.7705/biomedica.v33i0.1573.

78. Twerdochlib A, Dalla A, Leite S, Chitolina R, B W, Navarro-Silva MA. Genetic variability of a population of Aedes aegypti from Paraná, Brazil, using the mitochondrial ND4 gene. Rev Bras Entomol. 2012; 56(2): 249-256. DOI: http://dx.doi. org/10.1590/S0085-56262012005000030.

79. Bracco JE, Capurro ML, Lourenço-de-Oliveira R, Sallum MAM. Genetic variability of Aedes aegypti in the Americas using a mitochondrial gene: evidence of multiple introductions. Mem Inst Oswaldo Cruz. 2007; 102(5): 573-580. DOI: 10.1590/S0074-02762007005000062.

80. Paduan KDS, Ribolla PEM. Mitochondrial DNA polymorphism and heteroplasmy in populations of Aedes aegypti in Brazil. J Med Entomol. 2008 ;45(1): 59-67. DOI: 10.1603/0022-2585(2008)45[59:MDP AHI]2.0.CO;2.

81. Saavedra-Rodriguez K, Suarez A, Salas I, Strode C, Ranson H, Hemingway J, et al. Transcription of detoxification genes after permethrin selection in the mosquito Aedes aegypti. Insect Mol Biol. 2012; 21(1): 61-77. DOI: doi: 10.1111/j.13652583.2011.01113.x.

82. García GP, Flores AE, Fernández-Salas I, SaavedraRodríguez K, Reyes-Solis G, Lozano-Fuentes S, et al. Recent rapid rise of a permethrin knock down resistance allele in Aedes aegypti in Mexico. PLoS Negl Trop Dis. 2009; 3(10): e531. DOI: 10.1371/ journal.pntd.0000531.

83. Chaverra-Rodríguez D, Jaramillo-Ocampo N, Fonseca-Gonzalez I. Selección artificial de resistencia a lambda-cialotrina en Aedes aegypti y resistencia cruzada a otros insecticidas. Rev Colomb Entomol. 2012; 38(1): 100-107.

84. Rodríguez M, Bisset J, Díaz C, Soca L. Resistencia cruzada a piretroides en Aedes aegypti de Cuba inducido por la selección con el insecticida organofosforado malation. Rev Cubana Med Trop. 2003; 55(2): 105-111.

85. Melo-Santos M, Varjal-Melo J, Araújo A, Gomes T, Paiva M, Regis L, et al. Resistance to the organophosphate temephos: mechanisms, evolution and reversion in an Aedes aegypti laboratory strain from Brazil. Acta Trop. 2010; 113(2): 180-189. DOI: 10.1016/j.actatropica.2009.10.015.

86. Hiragi C, Simões K, Martins E, Queiroz P, Lima L, Monnerat R. Variabilidade genética em populações de Aedes aegypti (L.) (Diptera: Culicidae) utilizando marcadores de RAPD. Neotrop Entomol. 2009; 38(4): 542-547. DOI: http://dx.doi.org/10.1590/ S1519-566X2009000400018.

87. Rašić G, Filipović I, Weeks A, Hoffmann A. Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC Genomics. 2014; 15(275): 1-12. Doi: 10.1186/14712164-15-275.

88. Becerra V, Paredes M. Uso de marcadores bioquímicos y moleculares en estudios de diversidad genética. Agric Téc. 2000; 60(3): 270-281. DOI: http://dx.doi.org/10.4067/S036528072000000300007.

89. Eguiarte L, Souza V, Aguirre X. Ecología molecular. México: Instituto Nacional de Ecología; 2007. 608 p.

90. Bensasson D, Zhang D, Hartl D, Hewitt G. Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends Ecol Evol. 2001; 16(6): 314-321. DOI: 10.1016/S0169-5347(01)02151-6

91. Richly E, Leister D. NUMTs in sequenced eukaryotic genomes. Mol Biol Evol. 2004; 21(6): 1081-1084. DOI: https://doi.org/10.1093/molbev/msh110.

92. Arthofer W, Avtzis D, Riegler M, Stauffer C. Mitochondrial phylogenies in the light of pseudogenes and Wolbachia: re-assessment of a bark beetle dataset. ZooKeys. 2010 (56): 269-280. DOI: 10.3897/zookeys.56.531.

93. Black I, Bernhardt S. Abundant nuclear copies of mitochondrial origin (NUMTs) in the Aedes aegypti genome. Insect Mol Biol. 2009;18(6): 705-713. DOI: 10.1111/j.1365-2583.2009.00925.x.

94. Leite L. Mitochondrial pseudogenes in insect DNA barcoding: differing points of view on the same issue. Biota Neotropica. 2012; 12(3): 301-308. DOI: 10.1590/S1676-06032012000300029.

95. Hazkani-Covo E, Zeller R, Martin W. Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet.

2010; 6(2): e1000834. DOI: 10.1371/journal. pgen.1000834.

96. Serbus LR, Casper-Lindley C, Landmann F, Sullivan W. The genetics and cell biology of Wolbachia-host interactions. Annu Rev Genet. 2008; 42: 683-707. DOI: 10.1146/annurev.genet.41.110306.130354.

97. Hurst GD, Jiggins FM. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc R Soc B. 2005; 272(1572): 15251534. DOI: 10.1098/rspb.2005.3056.

98. Mousson L, Zouache K, Arias-Goeta C, Raquin V, Mavingui P, Failloux A-B. The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus. PLoS Negl Trop Dis. 2012; 6(12): e1989. DOI: 10.1371/journal.pntd.0001989.

99. Blagrove MS, Arias-Goeta C, Failloux A-B, Sinkins SP. Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. PNAS. 2012; 109(1): 255-260. DOI: 10.1073/pnas.1112021108.

100. Navarro J, Quintero L, Zorrilla A, González R. Molecular Tracing with Mitochondrial ND5 of the Invasive Mosquito Aedes (Stegomyia) albopictus (Skuse) in Northern South America. 2013. J. Entomol Zool Stud. 2013; 1 (4): 32-39.

101. Taillon-Miller P, Gu Z, Li Q, Hillier L, Kwok P. Overlapping genomic sequences: a treasure trove of single-nucleotide polymorphisms. Genome Res. 1998; 8(7): 748-754. DOI: 10.1101/gr.8.7.748.

102. Wang D, Fan J, Siao C, Berno A, Young P, Sapolsky R, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998; 280(5366): 1077-1082. DOI: 10.1126/science.280.5366.1077.

103. Sachidanandam R, Weissman D, Schmidt S, Kakol J, Stein L, Marth G, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2001; 409(6822): 928-933. DOI: 10.1038/35057149.

104. Wondji C, Hemingway J, Ranson H. Identification and analysis of single nucleotide polymorphisms (SNPs) in the mosquito Anopheles funestus, malaria vector. BMC Genomics. 2007; 8(1): 5. DOI: 10.1186/1471-2164-8-5.

105. Evans BR, Gloria-Soria A, Hou L, McBride C, Bonizzoni M, Zhao H, et al. A Multipurpose High Throughput SNP Chip for the Dengue and Yellow Fever Mosquito, Aedes aegypti. G3: Genes| Genomes| Genetics. 2015; 5(5): 711-718. DOI: 10.1534/g3.114.016196.

106. Paduan K, Ribolla P. Characterization of eight single nucleotide polymorphism markers in Aedes aegypti. Mol Ecol Resour. 2009; 9(1): 114-116. DOI: 10.1111/j.1755-0998.2008.02282.x.

107. Morlais I, Severson W. Intraspecific DNA variation in nuclear genes of the mosquito Aedes aegypti. Insect Mol Biol. 2003; 12(6): 631-639. DOI: 10.1046/j.1365-2583.2003.00449.x.

108. Adhami J, Murati N. The presence of the mosquito Aedes albopictus in Albania. Rev Mjekesore. 1987 (1): 13-16.

109. Toto JC, Abaga S, Carnevale P, Simard F. First report of the oriental mosquito Aedes albopictus

on the West African island of Bioko, Equatorial Guinea. Med Vet Entomol. 2003; 17(3): 343-346. DOI: 10.1046/j.1365-2915.2003.00447.x.

110. Le Maitre A, Chadee DD. Arthropods collected from aircraft at Piarco International airport, Trinidad, West Indies. Mosq News. 1983; 43(1): 21-23.

111. Mousson L, Dauga C, Garrigues T, Schaffner F, Vazeille M, Failloux A-B. Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse)(Diptera: Culicidae) based on mitochondrial DNA variations. Genet Res. 2005; 86(1): 1-11. DOI: 10.1017/S0016672305007627.

112. Sprenger D, Wuithiranyagool T. The discovery and distribution of Aedes albopictus (Skuse) in Harris Country, Texas. J Am Mosq Control Assoc. 1986; 2(2): 217–219.

113. Scholte E-J, Schaffner F. 14. Waiting for the tiger: establishment and spread of the Aedes albopictus mosquito in Europe. Emerging pests and vectorborne diseases in Europe. 2007;1:241.

114. Forattini O. Identificação de Aedes (Stegomyia) albopictus (Skuse) no Brasil. Rev Saúde Publ. 1986; 20(3): 244-245.

115. ISID. Panama detects new dengue carrying mosquito ProMED-mail: http://www.promedmail. org; 2002 [cited 2014 19/05/2014]. Available from: http://www.promedmail.org/direct. php?id=20021108.5753.

116. Ibanez-Bernal S, Martinez-Campos C. Aedes albopictus in Mexico. J Am Mosq Control Assoc. 1994; 10(2 Pt 1): 231-232.

117. Flacio E, Lüthy P, Patocchi N, Guidotti F, Tonolla M, Peduzzi R. Primo ritrovamento di Aedes albopictus in Svizzera. STSN. 2004; 92(1-2): 141142.

118. Kay B, Ives W, Whelan P, Barker-Hudson P, Fanning I, Marks E. Is Aedes albopictus in Australia?. Med J Austral. 1990; 153(1): 31-34.

119. Lugo EDC, Moreno G, Zachariah MA, López MM, López JD, Delgado MA, et al. Identification of Aedes albopictus in urban Nicaragua. J Am Mosq Control Assoc. 2005; 21(3): 325-327. DOI:  10.2987/8756-971X(2005)21[325:IOAAIU]2.0. CO;2.

120. Sabatini A, Raineri V, Trovato G, V. T, Coluzzi M. Aedes albopictus in Italia e possible diffusione della specie nell’area mediterranea. Parassitologia. 1990; 32(3): 301–304.

121. Rossi GC, Martínez M. MOSQUITOS (DIPTERA: CULlCIDAE) DEL URUGUAY. Entomol Vect.  2003; 10(4): 469·478.

122. Savage H, Ezike V, Nwankwo A, Miller B. First record of breeding populations of Aedes albopictus  in continental Africa: Implications for arboviral transmission. J Am Mosq Control Assoc. 1992; 8(1): 101–103.

123. Pener H, Wilamowski A, Schnur H, Orshan L, Shalom U, Bear A. Aedes albopictus in Israel. Europ Mosq Bull. 2003; 14:32.

124. Cornel A, Hunt R. Aedes albopictus in Africa? First records of live specimens in imported tires in Cape Town. J Am Mosq Control Assoc. 1991; 7(1): 107108.

125. Schaffner F, Van Bortel W, Coosemans M. First record of Aedes (Stegomyia) albopictus in Belgium. J Am Mosq Control Assoc. 2004; 20(2): 201-203.

126. Reiter P. Aedes albopictus and the world trade in used tires, 1988-1995: the shape of things to come? J Am Mosq Control Assoc. 1998; 14(1): 83-94.

127. Aranda C, Eritja R, Roiz D. First record and establishment of the mosquito Aedes albopictus in Spain. Med Vet Entomol. 2006; 20(1): 150-152. DOI: 10.1111/j.1365-2915.2006.00605.x.

128. Peña C. First report of Aedes (Stegomyia) albopictus (Skuse) from the Dominican Republic. Soc Vector Ecol.. 1993; 24(4): 4-5.

129. Klobučar A, MERDIC E, BENIC N, BAKLAIC Ž, KRČMAR S. First record of Aedes albopictus in Croatia. J Am Mosq Control Assoc. 2006; 22(1): 147-148. DOI: 10.2987/8756-971X(2006)22[147:F ROAAI]2.0.CO;2.

130. Broche R, Borja E. Aedes albopictus in Cuba. J Am Mosq Control Assoc. 1999; 15(4): 569-570.

131. Scholte E-J, Jacobs F, Linton Y-M, Dijkstra E, Fransen J, Takken W. First record of Aedes (Stegomyia) albopictus in the Netherlands. Eur Mosq Bull. 2007; 22: 5-9.

132. Ogata K, Lopez S. Discovery of Aedes albopictus in Guatemala. J Am Mosq Control Assoc. 1996; 12(3 Pt 1): 503-506.

133. Samanidou-Voyadjoglou A, Patsoula E, Spanakos

G, Vakalis N. Confirmation of Aedes albopictus (Skuse) (Diptera: Culicidae) in Greece. Eur Mosq Bull. 2005; 19: 10-12.

134. Petric D, Zgomba M, Ignjatovic A, Pajovic I, Merdic E, Boca I, et al., editors. Invasion of the Stegomyia albopicta to a part of Europe. Presentation at the 15th European Society for Vector Ecology Meeting; 2006.

135.Pluskota B, Storch V, Braunbeck T, Beck M,  Becker N. First record of Stegomyia albopicta (Skuse)(Diptera: Culicidae) in Germany. Eur Mosq Bull. 2008; 26: 1-5.

136. Gatt P, Deeming JC, Schaffner F. First record of Aedes (Stegomyia) albopictus (Skuse) (Diptera:

Culicidae) in Malta. Eur Mosq Bull. 2009; 27: 56-

64.

137. Rossi GC, Pascual N, Krsticevic FJ. First record of Aedes albopictus (Skuse) from Argentina. J Am Mosq Control Assoc. 1999; 15: 422.

138. Calderón-Arguedas O, Avendaño A, LópezSánchez W, Troyo A. Expansion of Aedes albopictus Skull in Costa Rica. Revista Ibero-Latinoamericana de Parasitología. 2010; 9(2): 220-222.

139. Vélez ID, Quiñones ML, Suárez M, Olano V, Murcia LM, Correa E, et al. Presencia de Aedes albopictus en Leticia, Amazonas, Colombia. Biomédica. 1998; 18(3): 192-198. DOI: 10.7705/ biomedica.v18i3.990.

140. Navarro J, Zorrilla A, Moncada N. Primer registro de Aedes albopictus (Skuse) en Venezuela. Importancia como vector de dengue y acciones a desarrollar. Bol Mal Salud Amb. 2009; 49(1): 161166.

141. Marquetti Fernández Md, Jean YS, Fuster Callaba CA, Somarriba López L. The first report of Aedes  (Stegomyia) albopictus in Haiti. Mem Inst Oswaldo Cruz. 2012; 107(2): 279-281. DOI: 10.1590/S007402762012000200020.

142. Schaffner F, Karch S. Première observation d’Aedes albopictus (Skuse, 1894) en France métropolitaine. Comptes Rendus de l’Académie des Sciences-Series III-Sciences de la Vie. 2000; 323(4): 373-375. DOI: 10.1016/S0764-4469(00)00143-8.

143. Oter K, Gunay F, Tuzer E, Linton Y-M, Bellini  R, Alten B. First record of Stegomyia albopicta in Turkey determined by active ovitrap surveillance and DNA barcoding. Vector Borne Zoonotic Dis. 2013; 13(10): 753-761. DOI: 10.1089/vbz.2012.1093.

144. Fontenille D, Toto JC. Aedes (Stegomyia) albopictus (Skuse), a potential new Dengue vector in southern Cameroon. Emerg Infect Dis. 2001; 7(6): 1066-1067. DOI: 10.3201/eid0706.010631.

145. Guillaumot L, Ofanoa R, Swillen L, Singh N, Bossin HC, Schaffner F. Distribution of Aedes albopictus (Diptera, Culicidae) in southwestern Pacific countries, with a first report from the Kingdom of Tonga. Parasit Vectors. 2012; 5(247): 1-6. DOI: 10.1186/1756-3305-5-247.

146. MSC. Situación epidemiológica dengue en Isla de Pascua, Chile insular Ministerio de Salud de Chile: Ministerio de Salud de Chile; 2000.

147. Bocková E, Kočišová A, Letková V. First record of Aedes albopictus in Slovakia. Acta Parasitol. 2013; 58(4): 603-606. DOI: 10.2478/s11686-013-0158-2.

148. Zhong D, Lo E, Hu R, Metzger ME, Cummings R, Bonizzoni M, et al. Genetic analysis of invasive Aedes albopictus populations in Los Angeles

County, California and its potential public health impact. PLoS One. 2013; 8(7): e68586. DOI: 10.1371/journal.pone.0068586.

149. Raharimalala FN, Ravaomanarivo LH, Ravelonandro P, Rafarasoa LS, Zouache K, Tran-Van V, et al. Biogeography of the two major arbovirus mosquito vectors, Aedes aegypti and Aedes albopictus (Diptera, Culicidae), in Madagascar. Parasit Vectors. 2012; 5(1): 1-10. DOI: 10.1186/1756-3305-5-56.

150. Delatte H, Bagny L, Brengue C, Bouetard A, Paupy C, Fontenille D. The invaders: Phylogeography of dengue and chikungunya viruses Aedes vectors, on the South West islands of the Indian Ocean. Infect Genet Evol. 2011; 11(7): 1769-1781. DOI: 10.1016/j.meegid.2011.07.016.

151. Kamgang B, Brengues C, Fontenille D, Njiokou F, Simard F, Paupy C. Genetic structure of the tiger mosquito, Aedes albopictus, in Cameroon (Central Africa). PLoS One. 2011; 6(5): e20257. DOI: 10.1371/journal.pone.0020257.

152. Maia R, Scarpassa V, Maciel-Litaiff L, Tadei W. Reduced levels of genetic variation in Aedes albopictus (Diptera: Culicidae) from Manaus, Amazonas State, Brazil, based on analysis of the mitochondrial DNA ND5 gene. Genet Mol Res. 2009; 8(3): 998-1007.

153. Ritchie SA, Moore P, Carruthers M, Williams C, Montgomery B, Foley P, et al. Discovery of a widespread infestation of Aedes albopictus in the Torres Strait, Australia. J Am Mosq Control Assoc. 2006; 22(3): 358-365. DOI: 10.2987/8756-971X(20 06)22[358:DOAWIO]2.0.CO;2.

 

Suggested citation: Aguirre-Obando AO, Navarro-Silva MA. How much is known about the genetic diversity of the Asian tiger mosquito? A systematic review. Rev Univ Ind Satander Salud. 2017; 49(3): 422-437