DOI: http://dx.doi.org/10.18273/revsal.v49n3-2017001
Artículo Científico
How
much is known about the genetic diversity of the Asian tiger mosquito? A
systematic review
¿Cuánto
se conoce acerca de la diversidad genética del mosquito tigre? Una revisión
sistemática
Oscar
Alexander Aguirre-Obando1
Mário
Antônio Navarro-Silva1
1Universidade
Federal do Paraná. Curitiba, Brasil
Correspondence:
Mário Antônio Navarro-Silva. Address: Laboratório de Entomologia Médica e
Veterinária, Universidade Federal do Paraná, Setor de Ciências Biológicas,
Departamento de Zoologia. 81531-980 Curitiba, Paraná, Brasil. E-mail: mnavarro@ufpr.br Telephone:+554133611640.
Introduction:
Aedes (Stegomyia) albopictus (Skuse, 1894) is a vector for dengue and
chikungunya viruses in the field, along with around 24 additional arboviruses
under laboratory conditions. Knowledge of the genetic diversity of insect vectors
is critical for the effective control and elimination of vector-borne diseases.
Objective: We
determined the current scenario of the genetic diversity in natural populations
of A. albopictus through a systematic review.
Methodology: It
was possible to establish the first reports and distribution of A. albopictus
populations in the world, as well as its genetic diversity, population genetic
structure and molecular markers used to determine its genetic diversity.
Results: A.
albopictus is distributed worldwide with genetically structured populations and
low diversity; however, 89.5% of the genetic diversity known is based on the
use of RFLP, allozymes, isozymes, and mtDNA molecular markers that exhibit
significant problems according to the literature. After the results were
obtained, a critical analysis was carried out and existing shortcomings were
detected.
Conclusion: The
current knowledge of genetic diversity of A. albopictus is based on genetic
markers that exhibit significant problems reported in the literature;
therefore, vector control programs targeting A. albopictus populations, may be
compromised.
Keywords:
Aedes albopictus, Genetic, Markers, Gene, Flow.
Introducción:
Aedes (Stegomyia) albopictus (Skuse, 1894) es un vector para los virus del
dengue y chicunguña en la naturaleza, junto con cerca de 24 arbovirus en
condiciones de laboratorio. El conocimiento de la diversidad genética de los
insectos vectores es fundamental para el control eficaz y la eliminación de
enfermedades transmitidas por estos.
Objetivo:
Aquí se determinó el escenario actual de la diversidad genética en poblaciones
naturales de A. albopictus a través de una revisión sistemática.
Metodología:
Se
pudieron establecer los primeros registros y distribución de las poblaciones de
A. albopictus en el mundo, así como su diversidad genética, estructura genética
poblacional y marcadores moleculares utilizados para determinar su diversidad
genética.
Resultados: A.
albopictus se distribuye en todo el mundo con poblaciones genéticamente
estructuradas y baja diversidad; Sin embargo, el 89,5% de la diversidad
genética conocida se basa en el uso de RFLP, aloenzimas, isoenzimas y
marcadores moleculares mitocondriales que presentan problemas significativos
según la literatura. Una vez obtenidos los resultados, se realizó un análisis
crítico y se detectaron deficiencias existentes.
Conclusión:
El
conocimiento actual de la diversidad genética de A. albopictus se basa en
marcadores genéticos que presentan problemas significativos reportados en la
literatura; Por lo tanto, los programas de control de vectores dirigidos a las
poblaciones de A. albopictus pueden verse comprometidos.
Palabras
clave: Aedes albopictus, Marcadores moleculares, Flujo genético
Recibido: 20/06/2017
Aprobado: 15/07/2017
Publicado online: 21/07/2017
Aedes albopictus, also known
as the Asian tiger, is a mosquito from Southeast Asia, the Pacific and Indian
Ocean Islands. It has spread and colonized every continent except Antarctica in
the past 30–40 years, primarily by trading of tires, and is expected to
continue to disperse(1-2). A. albopictus is commonly found in
sub-urban, rural, semi-rural and savage environments from tropical, subtropical
and temperate regions(2,3,4). The Asian tiger mosquito has been
linked to the transmission of arboviral and filarial infectious diseases of
humans and animals(5-6). Its high potential to carry a wide range of
human pathogens is consequently of wide concern.
A. albopictus presents vector
competence for 26 arboviruses from the families Flaviviridae (e.g., Dengue
virus, Nile virus, yellow fever, Japanese encephalitis), Bunyaviridae (e.g.,
Potosí, LaCrosse virus), Togaviridae (e.g., Chikungunya and Ross River virus)
and Reoviridae (e.g., Orungo and Nodamura virus)(7,8,9). Naturally,
A. albopictus is able to transmit important diseases such as dengue and
chikungunya fever. The Asian tiger mosquito has played a significant role in
Chikungunya virus (CHIKV) outbreaks in Central Africa, Asia and Europe(10,11,12,13).
In addition to CHIKV, A. albopictus, a species that is sympatrically
distributed with Aedes aegypti, is epidemiologically important in transmitting
the dengue viruses (DENV) throughout areas of Southeast Asia, Africa, North
America and Europe(14,15).
Worldwide, Aedes aegypti is
the primary vector for the DENV, a disease that remains a serious public health
problem in many tropical and subtropical countries(16). In the
Americas, A. aegypti is the only confirmed natural dengue virus vector(17).
Although its geographical distribution is more limited, A. albopictus is
considered a potential vector in the Americas due to the high level of vector
competence of local populations for DENV(18-19). A meta-analysis of
14 studies on the relative susceptibility of A. albopictus and A. aegypti for
DENV suggests that A. albopictus is more susceptible to midgut infections than
A. aegypti; however, the ability of the virus to disseminate in the latter
mosquito is considerable, suggesting a greater potential for transmission in
nature(20). Nevertheless, currently A. aegypti is the primary vector
for the DENV in the Americas(21,22).
Given the sanitary and
epidemiological importance of A. albopictus, the understanding of the patterns
of genetic structure and gene flow among A. albopictus populations is pivotal
for the development of rational vector control programs(23).
Population genetics studies of A. albopictus have been carried out globally as
the species continues to spread and displace A. aegypti in some áreas(4).
Different genetic markers have been used to study the population genetic
structure of A. albopictus, such as Isozymes/Allozymes(24-25),
Restriction Fragment Length polymorphism (RFLP(26)), Random
Amplified Polymorphic DNA (RAPD(27)), Mitochondrial DNA (mtDNA((28,29,30))
sequence haplotype, ribosomal DNA (rDNA((31)) and
Microsatellites(32).
Genetic studies with early
populations of A. albopictus, using Isozymes/Allozymes, indicated that
populations cluster by continent or country of collection(24,25,33,34).
Subsequent researches examined variation at smaller and/or wider geographic
scales using molecular markers such as RAPD, mtDNA, rDNA and microsatellite;
these genetic studies report varying levels of population differentiation at
both local and continental scales(29,35,36).
Population genetic studies
provide insights into the basic biology of arthropod disease vectors by
estimating dispersal patterns and their potential to spread pathogens(37).
Significant progress has been made in understanding insect diversity and
ecology by using protein markers such as isozymes/allozymes(38). The
isozymes, developed in the late 70s, were originally defined as multiple
molecular forms of enzymes with identical or similar functions and that are
present in the same individual(39-40). The isozymes may have
different allelic forms known as allozymes(41). The isozymes
application is guided for quantifying heterozygosity, genetic diversity,
genetic differentiation and other measures of genetic variation within and
among populations. However, one of the problems of the protein markers is the
lack of ability to detect polymorphisms between related species, since the
proteins are the result of gene expression, which may differ from one tissue to
another, from one stage of development to another, or from one environment to
another(42).
Protein markers made a
significant contribution in the early periods when DNA technologies were not as
advanced as it is now. However, with the development of DNA-based marker
systems, such as RFLP, RAPD, mtDNA and microsatellites, it was found that a
greater level of polymorphism could be obtained by using DNA rather than
protein markers in many cases(43). The RFLP was the first DNA marker
used in population studies(44) and is used to detect DNA fragments
from different molecular weights (by digestion with the same restriction
enzyme) in different organisms, usiny electrophoresis on agarose or
polyacrylamide gel(38). The RFLP has been used for constructing
genetic maps, cloning of genes based on maps and for helping to resolve
taxonomic and phylogenetic problems45. However, the main
disadvantage of the RFLP is the requirement of large amounts of high quality
DNA to recognize loci single copies, which only detect a fraction of the
variability of existing sequences in the genome, which means the information is
limited(46).
The RAPD markers method has
been reported to be an efficient tool to differentiate geographically and
genetically isolated population. The RAPD technique uses the PCR principle for
random amplification of DNA sequences. The RAPD-PCR is a dominant type of
molecular marker, that is unable tt differentiate heterozygotes from
homozygotes(43). These markers allow the study of a large number of
loci and provide a random sampling of DNA, therefore, present high levels of
polymorphism compared to RFLP and protein markers(46). However, they
have significant limitations when compared to codominant markers (e.g.,
microsatellites) and/or haploid (e.g., mtDNA), since, the amplified fragments
often do not correspond to DNA bound to a character, but to one repeated, and
it does not provide information about the number of copies of genomic DNA
containing the amplified sequence(43).
The mtDNA is used for marker
analyses largely because of their maternal inheritance, haploid status, and
high rate of evolution(47). The mtDNA is a type of marker used for
the recognition of cryptic species, phylogenetic studies and/or genetic
structure of populations(48,49,50). One of the disadvantages of
using mtDNA in population and phylogenetic studies is the presence of nuclear
mitochondrial pseudogenes (NUMTs)(51-52). NUMTs are
non-functional copies of mitochondrial sequences that have become incorporated
into the nuclear genome(53). Samples containing mixtures of mtDNA
and NUMT sequences are expected to significantly affect the outcome of
genealogy- and frequency-based analyses. This is because mtDNA and NUMTs have
separate genealogies and thus, evolutionary history(52).
The ribosomal DNA (rDNA) can
be found in the mitochondria, chloroplast and nucleus. The rDNA has been
analyzed at the structural level in a large number of multicellular eukaryotes,
including insects(54). The rRNA occurs in tandem repetitions and it
consists of three highly conserved subunits (18rDNA, 5.8rDNA and
28rDNA),dseparated by two External Transcribed Spacers (ITS1 e ITS2) with high
replacement rates(55). Due to the low rate of substitution present,
these sequences are useful in phylogenetic studies on taxa with old divergence
time(56). Nevertheless, it has been found NUMTs in A. aegypti
derived from the tRNA and rRNA genes throughout the mtDNA genome(53).
Microsatellites are also used
as popular markers in insect studies because of the high abundance and highly
variable nature of their loci in genome(57). However, in contrast to
most other arthropods (e.g., Anopheles gambiaes.(58)),
microsatellites appear to be underrepresented within some members of the
mosquito subfamily Culicinae (e.g., Culex pipiens, C. pipiens quinquefasciatus,
and A. aegypti(59-60)). Nevertheless, in A. aegypti for instance,
microsatellites are commonly used in population genetics studie(61).
Regarding these marker systems
(Isozymes, RFLP, etc.), some details about A. albopictus movement, gene flow
patterns and genetic structure has been inferred. However, no published article
has focused on analyzing the current scenario of the genetic diversity from
natural populations of the Asian tiger mosquito. Hence, the objective of this
systematic review was to defind the current scenario of the genetic diversity
of natural populations of A. albopictus. For this purpose, data from the first
record and distribution of the vector was compiled and included; besider,
discussion as focused on the current knowledge of genetic diversity through
different molecular techniques. Finally, some important gaps of knowledge, that
needed to be addressed, were identified for further research.
Throughout May 2014, a systematic review
was carried out on articles about: The first records of the vector, Genetic
diversity, and distribution of natural populations of A. albopictus.
Distribution data of the vector was considered from the reviews authored by:
Rai(62), Benedict et al.(63), Caminade et al.(2),
Medlock et al.(64) and Bonizzoni et al.(1). The
database used for the research of the early records of the vector and the
genetic diversity, sere: Web of Knowledge (“all databases”, including
Biological Abstracts, Biosis, Current Contents Connect, Web of Science, and Zoological Records) by
Thomson Reuters and the Google search engine (limited to the first five pages
of results). The Google search engine was used to identify reports, conference
abstracts, guidelines, etc. Data research was performed including all dates
andelimite to sources i: English, Spanish and Portuguese. keywords used for the
research on the early records of the vector was, ‘Aedes albopictus’ followed by
the phrase ‘first record’. Only the first record for country was considered.
Regarding the research on genetic diversity, the keyword used was: ‘Aedes
albopictus’ followed by the terms ‘genetic diversity’, ‘gene flow’, ‘population
structure’ ‘population genetics’, ‘mtDNA’ and ‘nuclear DNA’. From the results
of the research, all the titles and abstracts found were read, and from these,
only articles related to the search criteriasweretconsidered. After reading the
title and abstract, replicas and items that did not meet the inclusion
criteria, were removed from the search. The publications included in the
analysis were summarized using a data extraction tool developed from Microsoft
Excel 2010. Two data matrices were constructed: one related to the first
record-distribution and the other on genetic diversity. The first matrix on the
first record-distribution contained data such as: Location (state, city,
region, county, district, and street), year, geographic coordinates,
distribution, and references. The second one, on the genetic diversity,
included data like: Location (state, city, region, county, district, and
street), geographic coordinates, genetic diversity (polymorphic diversity /
haplotype / gene / nucleotide), molecular technique, genetic structure (p-value
that indicate genetic structure such as: X2 test (Isozymes/
Allozyme)/GST (RAPD)/FST (mtDNA,
Microsatellites)) and references. Maps were designed based om the geographical
coordinates of the two matrices and the molecular techniques. The georeferencing
data were calculated using Google Earth 7.1.
A total of 65 published
articles between 1987 and 2014 were analyzed. From these articles, 63% referreg
to the first record of the vector and the other 37% on genetic diversity (Table 1-2). The first record of A.
albopictus outside Asia (place of origin of the vector) was registered in 1979
in Europe (Albania). Since then, the Asian tiger has been dispersed in the
continents of Oceania, Africa, Europe and America during the last 36 years (Figure 1a, Table 1). In Oceania, the
vector is present in 10 of the Torres Strait Islands, since its appearance in
Brisbane (Queensland, Australia) in 1988. In Africa, there are records of A.
albopictus from 1991 in Nigeria (Delta State) and South Africa (Cameroon).
However, nowadayt, there are no records of the vector along the African
continent. In Europe, A. albopictus has been confirmed in 16 countries from the
continent after its appearance in Albania (1979), and later in Genova (Italy)
in 1990. In America, A. albopictus was initially introduced in the middle of
the decade of the 1980 in United States (Texas). Consequently, the Asian tiger
has been registered in South America and Central America since 1980 until 1990,
primarily in Brazil (1986, Rio de Janeiro) and Mexico (1988, Coahuila), and
subsequently in the remaining countries (Table
1).
Literaturs
on genetic diversity showed that the Asian tiger populations have been studied
in all ite distribution arear (Figure 1b).
A total of 267 vector populations have been studied throughout the world. The
largest number of populations studied was founs in the American continent (37%)
followed by Europe (21%), Africa (20%), Asia (16%) and Oceania (6%). The 37% in
the American continent is distributed into: 56% in North America (United
States), 41% in South America (mainly Brazil) and 3% Central America (Dominican
Republic, Guatemala and Cayman Islands; Figure
1b, Table 2).
In general, most of the
populations of A. albopictus have hat genetic structure studies at regional and
global levels. The genetic diversity (Hd) of the Asian tiger populations ranged
from 0.0 (Central Africa) to 0.83 (China, Singapore, Japan, Italy, United
State), rnonetheless, most of the Hd studies results were lower than 0.7.
Furthermore, the haplotype diversity (π) of the Asian tiger populations ranged
from 0.00 to 0.30 (Table 2).
The data were obtained from the published literature (Table 1-2). The colors indicate vector distribution: Gray (Unknown or no data), Red (Indigenous) and Blue (Current distribution range).
Figure 1. Political
maps indicating: A. The first record
and distribution of A. albopictus, and B.
The A. albopictus populations used in genetic diversity studies.
Table 1. First
records (in chronological order) of natural populations of A. albopictus in the
world.
findings indicate that molecular
techniques used in studies on genetic diversity of A. albopictus are: RFLP,
Allozymes, Isozymes, RAPD, mtDNA (Cytb, COI, ND5), microsatellites and ITS2.
However, there were also found studies in which more than one molecular
technique was used such as: mtDNA and microsatellite and mtDNA and ITS2 and (Table 2). From the total of the
population studied, 50.9% have been analyzed using mtDNA, 24.7% allozymes, 7.5%
isozymes, 6.4% RFLP, 4.5% mtDNA and microsatellites, 3.0% mtDNA and ITS2, 2.6%
RAPD and 0.4% microsatellites (Figure 2).
On the other hand, the 89.5% of the known genetic diversity is based on the use
of RFLP, allozymes, isozymes, and mitochondrial molecular markers, which exhibie
problems reported on the literature. Molecular techniques (in inverse
chronological order) used to estimate genetic diversity in A. albopictus
populations are: ITS2 (2013-present), microsatellites (2011-present), mtDNA and
RAPD (2002-present), and RFLP, allozymes and isozymes (1988- 2003) (Table 2).
Table
2.
Genetic diversity worldwide observed (in chronological order) in natural
populations of A. albopictus using various molecular markers.
n =
Number of cities/towns/sampled regions; Hd
= haplotype diversity; π = nucleotide diversity; * = Genetic structuring (p < 0.05); MD = missing data; A =
RFLP/Isozymes/Allozymes; B = RAPD; C = Cytb; D = COI; E = ND5; F = Microsatellites; G = ITS2.
Figure 2. Political
maps showing the populations of A. albopictus analyzed in genetic diversity
studies using the molecular techniques: A.
Isozymes, Allozyme, RFLP and RAPD; B.
mtDNA (Cytb, COI and ND5); C.
Microsatellite; and D. ITS2. The
colors indicate vector distribution: Gray (Unknown or no data), Red
(Indigenous) and Blue (Current distribution range).
This study revealed that A.
albopictus is distributed globally wity structured populations exhibiting low
genetic diversit,; most of the genetic diversity known is based on genetic markers
that present witw significant problemse. For the last 36 years, the Asian tiger
has spread form Asia (place of origin) to Oceania, Africa, Europe and the
Americ as. However, mathematical models of distribution indicate that A.
albopictus will continue spreading all over the world due to factors such as
transportation means, the environment and climate change(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65).
Successful dispersion of A. albopictus is associated mainly to its ecological
plasticity (i.e., the vast array of breeding habitats ranging from treeholes
and cut bamboo to a wide variety of man-made containers), and also, to its
passive transport of eggs through the international trade of semi-new tires,
plants shipping (Dracaena spp.) from Asia, accidental transportation of adults
in aircrafts and other means of transportation(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64).These
situations make A. albopictus a highly invasive species, and also link the gene
flow among A. albopictus populations to the human transportation, as it was
globally observed in A. aegypti populations(66).
The pattern observed of
genetic variation in populations of A. albopictus may be attributed to the
chemical measures used in vector control programs(67). Worldwide,
extensive and repeated insect control activities have involved source reduction
and insecticide application, leading to the reduction and/or eradication of A.
albopictus populations(68-69). As a result, reduced levels of
genetic variation were observed in the current study. Increased use of
insecticides for agricultural pest control, for direct control of A. albopictus
or for control of sympatric vectors (e.g., other Anophelinae and Culicinae
species), has imposed selection pressures on A. albopictus populations for
increased resistance, as it was observed in A. albopictus populations from
Asia, Africa, Central America and South America(70-71). In these
resistant populations, genetic polymorphisms could have decreased quickly on
any part of the mosquito genome due to the use of insecticides, thereby showing
a low genetic diversity.
Low genetic diversity is
most likely a result of a decline in population size caused by insecticide use,
as it was observed in American A. aegypti populations(72,73,74).
However, some studies have revealed the presence of greater genetic diversity
in areas that are frequently treated with insecticides, as shown in A. aegypti
populations from French Polynesia and Brazil(75-76). In our
findings, most of the genetic diversity of the Asian tiger populations were
lower than 0.7. Those results were lower than in other studies on the mtDNA ND4
gene of A. aegypti, a genetic marker widely used in genetic diversity studies
in A. aegypti.(47,77,78). For instance, in 36 locations
in the Americas, Asia and Africa (Hd = 0.80) (79) and five states in
Brazil (Hd = 0.80)(80) showed higher genetic diversity than the
observed in A. albopictus populations.
Most Asian tiger populations
were genetically structured, a trend also found on A. aegypti populations from
Asia, Africa, and America(23,61,72). The genetic structure of A.
albopictus populations have implications for vector control program, since,
studies on selection pressure in A. aegypti populations using insecticides such
as organophosphates and/ or pyrethroids under laboratory conditions, show the
fixation of the population resistance phenotype in only a few generations(81,82,83,84,85).
For the development of
control programs, it is important to know the dispersal patterns and genetic
diversity of the vector(79,86). Genetic markers are widely used to
understand the biology and population dynamics of disease vectors(87).
However, in our study, the 89.5% of the known genetic diversity is based on the
use of RFLP, allozymes, isozymes, and mitochondrial molecular markers, which
have problems reported in the literature. For instance, the RFLP, allozymes and
isozymes markers (developed in the late 70s) are no longer employed in genetic
diversity studies, since they present significant limitations when compared to
microsatellites and/or mtDNA, due to these show little variation, need
sufficient training time and also are poorly reproducible in the laboratory(88,89).
Nevertheless, the main
concern is that most of the genetic diversity found in the Asian tiger mosquito
populations (51%) is through the use of mtDNA markers. In the last decade, the
use of mtDNA has been widely used in population genetics studies for
reconstructing historical patterns of population demography, admixture,
biogeography and speciation in arthropods, included A. albopictus(47,69).
However, integration of mitochondrial sequences in nuclear DNA (referred to as
NUMTs) has been discovered in many eukaryotes, including A. aegypti(53,90,91,92,93).
Thus, PCR amplification using mtDNA marker loci using total genomic DNA can
potentially amplify these nuclear copies. These sequences complicate the
employment of mtDNA as a molecular marker in genetic studies. In insects,
because of the relative small genome size, high copy number of NUMTs sequences
may interfere in effective separation of mtDNA from its nuclear paralogs(52,94).
This has been evident among 85 sequenced eukaryotic genomes where the NUMTs
sequences were found to have different mitochondrial origin(95).
Thus, population studies using mitochondrial markers derived from these loci
can potentially mislead the results.
Another problematic issue of
using mtDNA markers has been identified in cases where the host insect harbours
maternally inherited microorganisms such as Wolbachia. It is a gram-negative
endosymbiotic bacterium that causes many developmental defects such as
cytoplasmic incompatibility, feminization and sex ratio distortion(96).
As the Wolbachia infection sweeps through an insect species, the frequency of
mitochondria from infected individuals also increases in the population due to
the similar mode of transmission used by Wolbachia and the mitochondria. As a
result, the spread of the mtDNA from infected individuals reaches high
prevalence in these populations, phenomenon commonly referred to as ‘genetic
hitchhiking’. Thus, inferring evolutionary history of populations solely based
on use of mtDNA markers in insect species harboring such maternally inherited
microorganisms may be misleading(97). Wolbachia is commonly found in
mosquitoes including A. albopictus. This species naturally carries two strains
of the bacterium Wolbachia, wAlbA and wAlbB(98). Wolbachia inherited
bacteria are able to invade insect populations using cytoplasmic
incompatibility and provide new strategies for controlling mosquito-borne tropical
diseases, such as dengue and Chikungunya fever, as shown by Blagrove, et al.(99)
and Mousson, et al.(98) in their works.
Currently, there is no
presence of NUMTs in A. albopictus, therefore, further studies should be done
in order to reduce the error caused by NUMTs in the published mtDNA (COI, Cytb,
ND5) sequences. Here, we suggest the search for heterozygous sites in the
chromatogram and additional termination codons. Common analysis applied on
population genetics studies in A. aegypti when mtDNA markers are used (see:
Gonçalves, et al.(47); Aguirre-Obando, et al.(72).
Despite the mtDNA markers
have been widely used in vector genetic diversity studies, including A.
albopictus(29,100), these are not as sensitive to detect genetic
variation as microsatellites and/or SNPs (Single Nucleotide Polymorphism) are(61,87).
Microsatellites have been used as genetic markers for a number of arthropod
vectors of human diseases, including A. albopictus(32). However,
there are a few studies using microsatellites in A. albopictus as our findings
show. Nevertheless, the use of microsatellites in A. albopictus populations has
shown they are highly polymorphic. Delatte et al.(32) using 10
microsatellites (two of them previously used in A. aegypti) in A. albopictus
populations from Reunion Island, in the southwest Indian Ocean, found
population genetic structuring. An alternative to increase the number of
polymorphic microsatellites in population genetics studies in A. albopictus
would evaluate the microsatellites described for A. aegypti (33 microsatellite
loci(60)), as some of them has proved to be highly polymorphic(32).
On the other hand, the SNPs,
are the most common way of molecular variation in vertebrates and invertebrates(101,102,103,104).
Currently, SNPs have become one of the selectable markers for studies on
population genetics, characterization of genes or disease to elucidate the
evolutionary processes at the molecular level, since they are easy to detect
when compared, for example, with microsatellites(87,105). In vectors
diseases such as Anopheles gambiae, A. funestus (vectors of malaria in Africa)
and A. aegypti, SNPs have been highly polymorphic(87,104,106-107).
For A. aegypti, Paduan & Ribolla(106) sequenced seven genes of
16 Brazilian populations of this species. These genes revealed the existence of
53 individual SNPs; eight of them are independent and highly polymorphic to be
used in genetic diversity studies. Since, our search did not find any work
related to the use of SNPs in A. albopictus, we suggest to test the polymorphic
SNPs described for A. aegypti in A. albopictus, since other molecular markers
developed in A. aegypti like microsatellites, have shown highly polymorphic in
A. albopictus(32). It can be concluded then, that the current
scenario of genetic diversity in A. albopictus populations, is based on genetic
markers that present significant problems reported in the literature, thus
vector control programs, understanding of the vectors transmission, and the
spread of genetic traits, such as vector competence and insecticide resistance,
may be compromised.
We thank Angélico Asenjo for
his useful comments on the manuscript. This work was funded by Conselho Nacional
de Desenvolvimento Científico e Tecnológico (CNPq, process 140224/2013-0).
CONFLICT OF INTEREST
We
declared there is no potential conflict of interest.
1. Bonizzoni M, Gasperi G, Chen X, James
AA. The invasive mosquito species Aedes albopictus: current knowledge and
future perspectives. Trends Parasitol. 2013; 29(9): 460-468. DOI: 10.1016/j.
pt.2013.07.003.
2. Caminade C, Medlock JM, Ducheyne E,
McIntyre KM, Leach S, Baylis M, et al. Suitability of European climate for the
Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J
Royal Soc Interface. 2012; 2708-2017. DOI: 10.1098/rsif.2012.0138.
3. Carvalho RG, Lourenço-de-Oliveira R,
Braga IA. Updating the geographical distribution and frequency of Aedes
albopictus in Brazil with remarks regarding its range in the Americas. Mem Inst
Oswaldo Cruz. 2014; 109(6): 787-796.
4. Rey JR, Lounibos P. Ecología de Aedes
aegypti y Aedes albopictus en América y la transmisión de enfermedades.
Biomédica. 2015; 35(2). DOI:https://doi.org/10.7705/biomedica.v35i2.2514.
5. Genchi C, Kramer LH, Rivasi F.
Dirofilarial infections in Europe. Vector Borne Zoonotic Dis. 2011; 11(10):
1307-1317. DOI: 10.1089/ vbz.2010.0247.
6. Vega-Rúa A, Zouache K, Girod R,
Failloux A-B, Lourenço-de-Oliveira R. High level of vector competence of Aedes
aegypti and Aedes albopictus from ten American countries as a crucial factor in
the spread of Chikungunya virus. J Virol. 2014; 88(11): 6294-6306. DOI:
http://dx.doi.org/10.1128/ JVI.00370-14.
7. Martins VEP, Alencar CH, Kamimura MT,
de Carvalho Araujo FM, De Simone SG, Dutra RF, et al. Occurrence of natural
vertical transmission of dengue-2 and dengue-3 viruses in Aedes aegypti and
Aedes albopictus in Fortaleza, Ceará, Brazil. PLoS One. 2012; 7(7): e41386.
DOI: 10.1371/journal.
pone.0041386.
8. Rúa-Uribe GL, Suárez-Acosta C, Rojo
RA. Implicaciones epidemiológicas de Aedes albopictus (Skuse) en Colombia. Rev
Fac Nac Salud Pública. 2012; 30(3).
9. Higgs S, Vanlandingham DL.
Chikungunya: here today, where tomorrow? Int Health. 2015; 7(1): 1-3. DOI:
10.1093/inthealth/ihu092.
10. de Alencar CHM, de Albuquerque LM,
de Aquino TMF, Soares CB, Ramos Júnior AN, Lima JWdO, et al. Potencialidades do
Aedes albopictus gomo vetor de arboviroses no brasil: um desafio para a atenção
primária. Rev Atencao Prim Saude. 2008; 11(4).
11. Dubrulle M, Mousson L, Moutailler S,
Vazeille M, Failloux A-B. Chikungunya virus and Aedes mosquitoes: saliva is
infectious as soon as two days after oral infection. PLoS One. 2009; 4(6):
e5895. DOI: 10.1371/journal.pone.0005895.
12. Vazeille M, Martin E, Mousson L,
Failloux A, editors. Chikungunya, a new threat propagated by the cosmopolite
Aedes albopictus. BMC Proc; 2011: BioMed Central Ltd.
13. Ravi V. Re-emergence of chikungunya
virus in India. Indian J Med Microbiol. 2006; 24(2): 83-84.
14. Paupy C, Ollomo B, Kamgang B,
Moutailler S, Rousset D, Demanou M, et al. Comparative role of Aedes albopictus
and Aedes aegypti in the emergence of Dengue and Chikungunya in central Africa.
Vector-Borne Zoonotic Dis. 2010; 10(3): 259-266. DOI: 10.1089/vbz.2009.0005.
15. Enserink M. Entomology. A mosquito goes global. Science.
2008; 320(5878): 864–866. DOI: 10.1126/ science.320.5878.864.
16. WHO. Dengue and
severe dengue. 2014.
17. Lourenço-de-Oliveira R, Vazeille M,
de Filippis A, Failloux A. Aedes aegypti in Brazil: genetically differentiated
populations with high susceptibility to dengue and yellow fever viruses. Trans
R Soc Trop Med Hyg. 2004; 98(1): 43-54. DOI: 10.1016/ S0035-9203(03)00006-3.
18. Ibáñez-Bernal S, Briseno B, Mutebi
JP, Argot E, Rodriguez G, Martinez-Campos C, et al. First record in America of
Aedes albopictus naturally infected with dengue virus during the 1995 outbreak
at Reynosa, Mexico. Med Vet Entomol. 1997; 11(4): 305-309. DOI:
10.1111/j.1365-2915.1997. tb00413.x.
19. Mendez F, Barreto M, Arias JF,
Rengifo G, Munoz J, Burbano ME, et al. Human and mosquito infections by dengue
viruses during and after epidemics in a dengue–endemic region of Colombia. Am J
Trop Med Hyg. 2006; 74(4): 678-683. DOI: 10.4269/ ajtmh.2006.74.678.
20. Lambrechts L, Scott TW, Gubler DJ.
Consequences of the expanding global distribution of Aedes albopictus for
dengue virus transmission. PLoS Negl Trop Dis. 2010; 4(5): e646. DOI: 10.1371/
journal.pntd.0000646.
21. OPS. Descripción de la situación
epidemiologica actual del dengue en las Américas United States of America;
2013.
22. OPS. Number of Reported Cases of
Dengue and Severe Dengue (SD) in the Americas, by Country. United States of
America: Organización Mundial de la Salud; 2015.
23. Urdaneta-Marquez L, Failloux A-B.
Population genetic structure of Aedes aegypti, the principal vector of dengue
viruses. Infect Genet Evol.
2011; 11(2): 253-261.
DOI: 10.1016/j.
meegid.2010.11.020.
24. Black IV WC, Ferrari JA, Rai KS,
Sprenger D. Breeding structure of a
colonizing species: Aedes albopictus (Skuse) in the United States. Heredity
(Edinb). 1988; 60(Pt 2): 173-181. DOI: 10.1038/ hdy.1988.29.
25. Kambhampati S, Black WC, Rai KS.
Geographic origin of the US and Brazilian Aedes albopictus inferred from
allozyme analysis. Heredity (Edinb). 1991; 67(Pt 1): 85-93. DOI:
10.1038/hdy.1991.67.
26. Kambhampati S, Rai KS. Mitochondrial
DNA variation within and among populations of the mosquito Aedes albopictus.
Genome. 1991; 34(2): 288-292. DOI: 10.1139/g91-046.
27. Ayres C, Romão T,
Melo-Santos M, Furtado A. Genetic diversity in Brazilian populations of Aedes
albopictus. Mem Inst Oswaldo Cruz. 2002; 97(6): 871-875. DOI:
10.1590/S007402762002000600022.
28. Birungi J, Munstermann LE. Genetic
structure of Aedes albopictus (Diptera: Culicidae) populations based on
mitochondrial ND5 sequences: evidence for an independent invasion into Brazil
and United States. Ann Entomol Soc Am. 2002; 95(1): 125-132. DOI: https://doi.org/10.1603/00138746(2002)095[0125:GSOAAD]2.0.CO;2.
29. Kamgang B, Ngoagouni C, Manirakiza
A, Nakouné E, Paupy C, Kazanji M. Temporal patterns of abundance of Aedes
aegypti and Aedes albopictus (Diptera: Culicidae) and mitochondrial DNA
Analysis of Ae. albopictus in the Central African Republic. PLoS Negl Trop Dis.
2013; 7(12): e2590. DOI: 10.1371/journal.pntd.0002590.
30. Haddad N, Mousson L, Vazeille M,
Chamat S, Tayeh J, Osta MA, et al. Aedes albopictus in Lebanon, a potential risk
of arboviruses outbreak. BMC Infect Dis. 2012; 12(1): 300. DOI:
10.1186/1471-2334-12300.
31. Shaikevich E, Talbalaghi A. Molecular
Characterization of the Asian Tiger
Mosquito Aedes albopictus (Skuse)(Diptera: Culicidae) in Northern Italy. ISRN Entomology.
2013; 2013. DOI: http:// dx.doi.org/10.1155/2013/157426.
32. Delatte H, Toty C, Boyer S, Bouetard
A, Bastien F, Fontenille D. Evidence of habitat structuring Aedes albopictus
populations in Réunion Island. PLoS Negl Trop Dis. 2013; 7(3): e2111. DOI:
10.1371/ journal.pntd.0002111.
33. Urbanelli S, Bellini R, Carrieri M,
Sallicandro P, Celli G. Population structure of Aedes albopictus (Skuse): the
mosquito which is colonizing Mediterranean countries. Heredity (Edinb). 2000;
84(Pt 3): 331337. DOI: 10.1046/j.1365-2540.2000.00676.x.
34. De Oliveira RL, Vazeille M, De
Filippis AMB, Failloux A-B. Large
genetic differentiation and low variation in vector competence for dengue and
yellow fever viruses of Aedes albopictus from Brazil, the United States, and
the Cayman Islands. Am J Ttrop Med Hyg. 2003; 69(1): 105-114. DOI:
10.4269/ajtmh.2003.69.105.
35. Gupta S, Preet S.
Genetic differentiation of invasive Aedes albopictus by RAPD-PCR: implications
for effective vector control. Parasitol Res. 2014; 113(6): 2137-2142. DOI:
10.1007/s00436-014-3864-2.
36. Usmani-Brown S, Cohnstaedt L,
Munstermann LE. Population genetics of Aedes albopictus (Diptera: Culicidae)
invading populations, using mitochondrial nicotinamide adenine dinucleotide
dehydrogenase subunit 5 sequences. Ann Entomol Soc Am. 2009; 102(1): 144-150.
DOI: 10.1603/008.102.0116.
37. Araya-Anchetta A, Busch JD, Scoles
GA, Wagner DM. Thirty years of tick population genetics: a comprehensive
review. Infect Genet Evol. 2015; 29: 164-179. DOI: 10.1016/j.meegid.2014.11.008.
38. Behura SK. Molecular marker systems
in insects: current trends and future avenues. Mol Ecol. 2006; 15(11):
3087-3113. DOI: 10.1111/j.1365294X.2006.03014.x.
39. Hunter R, Markert C. Histochemical
demonstration of enzymes separated by zone electrophoresis in starch gels.
Science. 1957; 125 (3261): 1294-1295. DOI: 10.1126/science.125.3261.1294-a.
40. Markert C, Møller
F. Multiple forms of enzymes: tissue, ontogenetic, and species specific
patterns. Proc Natl Acad Sci USA. 1959; 45(5): 753-763.
41. Lewontin R, Hubby J. A molecular
approach to the study of genic heterozygosity in natural populations. II.
Amount of variation and degree of heterozygosity in natural populations of
Drosophila pseudoobscura. Genetics. 1966; 54(2): 595-609.
42. Jonah P, Bello L, Lucky O, Midau A,
Moruppa S. The importance of molecular markers in plant breeding programmes.
Global J Sci Frontier Res. 2011; 11(5): 5-12.
43. Jain SK, Neekhra B, Pandey D, Jain
K. RAPD marker system in insect study: a review. Indian J Biotechnol. 2010;
9(1): 7-12.
44. Parker P, Snow A, Schug M, Booton G,
Fuerst P. What molecules can tell us about populations: choosing andusing a
molecular marker. Ecology. 1998; 79(2): 361-382. DOI: 10.1890/0012-9658(1998)079[0361:WMCTUA]2. 0.CO;2.
45. Murray TE, Fitzpatrick U, Brown MJ,
Paxton RJ. Cryptic species diversity in a widespread bumble bee complex
revealed using mitochondrial DNA RFLPs. Conservation Genetics. 2008; 9(3):
653666. DOI: 10.1007/s10592-007-9394-z.
46. Finger A, Klank C. Review Molecular
Methods: Blessing or Curse? Relict Species: Springer; 2010. p. 309-320. DOI:
10.1007/978-3-540-92160-8_18.
47. Gonçalves A,
Cunha I, Santos W, Luz S, Ribolla P, Abad-Franch F. Gene flow networks among
American Aedes aegypti populations. Evol Appl. 2012; 5(7): 664-676. DOI:
10.1111/j.17524571.2012.00244.x.
48. Silva-Brandão KL,
Santos TV, Cônsoli FL, Omoto C. Genetic Diversity and Structure of Brazilian
Populations of Diatraea saccharalis (Lepidoptera: Crambidae): implications for
pest management. J Econ Entomol. 2015;108(1): 307-316. DOI: 10.1093/jee/tou040.
49. Sharma M, Singh
D, Sharma AK. Mitochondrial DNA based identification of forensically important
Indian flesh flies (Diptera: Sarcophagidae).
Forensic Sci Int. 2015; 247: 1-6. DOI: 10.1016/j. forsciint.2014.11.017.
50. Kocher A, Guilbert É, Lhuillier É,
Murienne J. Sequencing of the mitochondrial genome of the avocado lace bug
Pseudacysta perseae (Heteroptera, Tingidae) using a genome skimming approach. C
R Biol. 2015; 338(3): 149-160. DOI: 10.1016/j. crvi.2014.12.004.
51. Ribeiro L. Mitochondrial pseudogenes
in insect DNA barcoding: differing points of view on the same issue. Biota
Neotrop. 2012; 12(3): 301308. DOI:
http://dx.doi.org/10.1590/S167606032012000300029.
52. Haran J, Koutroumpa F, Magnoux E,
Roques A, Roux G. Ghost mtDNA haplotypes generated by fortuitous NUMTs can
deeply disturb infra-specific genetic diversity and phylogeographic pattern. J
Zool Syst Evol Res. 2015; 53(2): 109-115. DOI: 10.1111/jzs.12095.
53. Hlaing T, Tun-Lin W, Somboon P,
Socheat D, Setha T, Min S, et al. 53. Mitochondrial pseudogenes in the nuclear
genome of Aedes aegypti mosquitoes: implications for past and future population
genetic studies. BMC Genet. 2009; 10(1): 11. DOI: 10.1186/1471-2156-10-11.
54. Collins F, Paskewitz S. A review of
the use of ribosomal DNA (rDNA) to differentiate among cryptic Anopheles
species. Insect Mol Biol. 1996; 5(1):
1-9. DOI: 10.1111/j.1365-2583.1996. tb00034.x.
55. Musters W, Boon K, Van der Sande C,
Van Heerikhuizen H, Planta R. Functional analysis of transcribed spacers of
yeast ribosomal DNA. EMBO J. 1990; 9(12): 3989-3996.
56. Hillis D, Dixon M. Ribosomal DNA:
molecular evolution and phylogenetic inference. Q Rev Biol. 1991; 66(4):
411-453. DOI: 10.1086/417338.
57. Stevens L, Monroy MC, Rodas AG,
Hicks RM, Lucero DE, Lyons LA, et al. Migration and gene flow among domestic
populations of the chagas insect vector Triatoma dimidiata (Hemiptera:
Reduviidae) detected by microsatellite Loci. J Med Entomol. 2015; 52(3): 419-428.
DOI: 10.1093/jme/ tjv002.
58. Zheng L, Benedict M, Cornel A,
Collins F, Kafatos F. An integrated genetic map of the African human malaria
vector mosquito, Anopheles gambiae. Genetics. 1996; 143(2): 941-952.
59. Smith J, Keyghobadi N, Matrone M,
Escher R, Fonseca D. Cross-species comparison of microsatellite loci in the
Culex pipiens complex and beyond. Mol Ecol Notes. 2005; 5(3): 697-700. DOI:
10.1111/j.1471-8286.2005.01034.x.
60. Slotman M, Kelly N, Harrington L,
Kitthawee S, Jones J, Scott T, et al. Polymorphic microsatellite markers for
studies of Aedes aegypti (Diptera: Culicidae), the vector of dengue and yellow
fever. Mol Ecol Notes. 2007;7(1):168-171. DOI:
10.1111/j.1471-8286.2006.01533.x.
61. Monteiro F, Shama R, Martins A,
Gloria-Soria A, Brown J, Powell J. Genetic Diversity of Brazilian Aedes
aegypti: Patterns following an Eradication Program. PLoS Negl Trop Dis. 2014;
8(9): e3167. DOI: 10.1371/journal.pntd.0003167.
62. Rai KS. Aedes
albopictus in the Americas. Annu Rev Entomol. 1991; 36(1): 459-484. DOI:
10.1146/ annurev.en.36.010191.002331.
63. Benedict MQ, Levine RS, Hawley WA,
Lounibos LP. Spread of the tiger: global risk of invasion by the mosquito Aedes
albopictus. Vector-Borne and Zoonotic Diseases. 2007; 7(1): 76-85. DOI:
10.1089/vbz.2006.0562.
64. Medlock JM, Hansford KM, Schaffner
F, Versteirt V, Hendrickx G, Zeller H, et al. A review of the invasive
mosquitoes in Europe: ecology, public health risks, and control options. Vector
Borne Zoonotic Dis. 2012; 12(6): 435-447. DOI: 10.1089/ vbz.2011.0814.
65. Waldock J, Chandra NL, Lelieveld J,
Proestos Y, Michael E, Christophides G, et al. The role of environmental
variables on Aedes albopictus biology and chikungunya epidemiology. Pathog
Globa Health. 2013; 107(5): 224-241. DOI: 10.1179/2047773213Y.0000000100.
66. Powell JR, Tabachnick WJ. History of
domestication and spread of Aedes aegypti-A Review. Mem Inst Oswaldo Cruz.
2013; 108(Supp 1): 11-17. DOI:
10.1590/0074-0276130395.
67. IRAC. Prevention and Management of
Insecticide Resistance in Vectors of Public Health Importance. Second Edition
ed: Insecticide Resistance Action Committee (IRAC); 2011.
68. Žitko T, Kovačić A, Yves D, Puizina
J. Genetic variations of the Asian tiger mosquito, Aedes albopictus
(Skuse)(Diptera: Culicidae) in EastAdriatic populations inferred from NADH5 and
COI sequence variability. Eur J Entomol. 2011; 108(4): 501-508. DOI:
10.14411/eje.2011.065.
69. Zawani MKN, Abu HA, Sazaly AB, Zary
SY, Darlina MN. Population genetic structure of Aedes albopictus in Penang, Malaysia.
Genet Mol Res. 2014; 13(4): 8184-8196. DOI: 10.4238/2014.
70. Vontas J, Kioulos E, Pavlidi N,
Morou E, della Torre A, Ranson H. Insecticide resistance in the major dengue
vectors Aedes albopictus and Aedes aegypti. Pestic Biochem Physiol. 2012; 104(2):
126-131. DOI:
https://doi.org/10.1016/j.pestbp.2012.05.008.
71. Ranson H, Burhani J, Lumjuan N,
Black W. Insecticide resistance in dengue vectors. TropIKA Net. 2010;
1(1):1-12.
72. Aguirre-Obando O, Dalla Bonna A,
Duque Luna J, Navarro-Silva M. Insecticide resistance and genetic variability
in natural populations of Aedes (Stegomyia) aegypti (Diptera: Culicidae) from
Colombia. Zoologia (Curitiba). 2015; 32(1): 14-22. DOI:
http://dx.doi.org/10.1590/S198446702015000100003.
73. Bona ACD, Piccoli CF, Leandro AdS,
Kafka R, Twerdochilib AL, Navarro-Silva MA. Genetic profile and molecular
resistance of Aedes (Stegomyia) aegypti (Diptera: Culicidae) in Foz do Iguaçu
(Brazil), at the border with Argentina and Paraguay. Zoologia (Curitiba). 2012;
29(6): 540-548. DOI: http://dx.doi.org/10.1590/S198446702012000600005.
74. Yáñez P, Manami E, Valle J, Garcia
M, León W, Villaseca P, et al. Variabilidad genética del Aedes aegypti
determinada mediante el análisis del gen mitocondrial ND4 en once áreas
endémicas para dengue en el Perú. Rev Peru Med Exp Salud Publica. 2013; 30(2):
246-250.
75. Ayres C, Melo-Santos M, Prota J,
Solé-Cava A, Furtado A. Genetic structure of natural populations of Aedes
aegypti at the micro- and macro geographic levels in Brazil. J Am Mosq Control
Assoc. 2004; 20(4): 350-356.
76. Paupy C, Vazeille-Falcoz M, Mousson
L, Rodhain
F, Failloux A-B. Aedes aegypti in Tahiti
and Moorea (French Polynesia): isoenzyme differentiation in the mosquito
population according to human population density. Am J Trop Med Hyg. 2000;
62(2): 217-224.
DOI:
10.4269/ajtmh.2000.62.217.
77. Caldera S, Jaramillo S, Cochero S,
Pérez-Doria A, Bejarano E. Diferencias genéticas entre poblaciones de Aedes
aegypti de municipios del norte de Colombia, con baja y alta incidencia de
dengue.
Biomedica 2013; 33(1) :89-98. DOI:
http://dx.doi. org/10.7705/biomedica.v33i0.1573.
78. Twerdochlib A, Dalla A, Leite S,
Chitolina R, B W, Navarro-Silva MA. Genetic variability of a population of
Aedes aegypti from Paraná, Brazil, using the mitochondrial ND4 gene. Rev Bras
Entomol. 2012; 56(2): 249-256. DOI: http://dx.doi.
org/10.1590/S0085-56262012005000030.
79. Bracco JE, Capurro ML,
Lourenço-de-Oliveira R, Sallum MAM. Genetic variability of Aedes aegypti in the
Americas using a mitochondrial gene: evidence of multiple introductions. Mem
Inst Oswaldo Cruz. 2007; 102(5): 573-580. DOI: 10.1590/S0074-02762007005000062.
80. Paduan KDS,
Ribolla PEM. Mitochondrial DNA polymorphism and heteroplasmy in populations of
Aedes aegypti in Brazil. J Med Entomol. 2008 ;45(1): 59-67. DOI:
10.1603/0022-2585(2008)45[59:MDP AHI]2.0.CO;2.
81. Saavedra-Rodriguez K, Suarez A,
Salas I, Strode C, Ranson H, Hemingway J, et al. Transcription of
detoxification genes after permethrin selection in the mosquito Aedes aegypti. Insect
Mol Biol. 2012; 21(1): 61-77. DOI: doi: 10.1111/j.13652583.2011.01113.x.
82. García GP, Flores AE,
Fernández-Salas I, SaavedraRodríguez K, Reyes-Solis G, Lozano-Fuentes S, et al.
Recent rapid rise of a permethrin knock down resistance allele in Aedes aegypti
in Mexico. PLoS Negl Trop Dis. 2009; 3(10): e531. DOI: 10.1371/
journal.pntd.0000531.
83. Chaverra-Rodríguez D,
Jaramillo-Ocampo N, Fonseca-Gonzalez I. Selección artificial de resistencia a
lambda-cialotrina en Aedes aegypti y resistencia cruzada a otros insecticidas.
Rev Colomb Entomol. 2012; 38(1): 100-107.
84. Rodríguez M, Bisset J, Díaz C, Soca
L. Resistencia cruzada a piretroides en Aedes aegypti de Cuba inducido por la
selección con el insecticida organofosforado malation. Rev Cubana Med Trop.
2003; 55(2): 105-111.
85. Melo-Santos M, Varjal-Melo J, Araújo
A, Gomes T, Paiva M, Regis L, et al. Resistance to the organophosphate
temephos: mechanisms, evolution and reversion in an Aedes aegypti laboratory
strain from Brazil. Acta Trop. 2010; 113(2): 180-189. DOI:
10.1016/j.actatropica.2009.10.015.
86. Hiragi C, Simões K, Martins E,
Queiroz P, Lima L, Monnerat R. Variabilidade genética em populações de Aedes
aegypti (L.) (Diptera: Culicidae) utilizando marcadores de RAPD. Neotrop
Entomol. 2009; 38(4): 542-547. DOI: http://dx.doi.org/10.1590/
S1519-566X2009000400018.
87. Rašić G, Filipović I, Weeks A,
Hoffmann A. Genome-wide SNPs lead to strong signals of geographic structure and
relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC Genomics.
2014; 15(275): 1-12. Doi: 10.1186/14712164-15-275.
88. Becerra V, Paredes M. Uso de
marcadores bioquímicos y moleculares en estudios de diversidad genética. Agric
Téc. 2000; 60(3): 270-281. DOI:
http://dx.doi.org/10.4067/S036528072000000300007.
89. Eguiarte L, Souza V, Aguirre X.
Ecología molecular. México: Instituto Nacional de Ecología; 2007. 608 p.
90. Bensasson D, Zhang D, Hartl D,
Hewitt G. Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends
Ecol Evol. 2001; 16(6): 314-321. DOI: 10.1016/S0169-5347(01)02151-6
91. Richly E, Leister D. NUMTs in
sequenced eukaryotic genomes. Mol Biol Evol. 2004; 21(6): 1081-1084. DOI:
https://doi.org/10.1093/molbev/msh110.
92. Arthofer W, Avtzis D, Riegler M,
Stauffer C. Mitochondrial phylogenies in the light of pseudogenes and
Wolbachia: re-assessment of a bark beetle dataset. ZooKeys. 2010 (56): 269-280.
DOI: 10.3897/zookeys.56.531.
93. Black I, Bernhardt S. Abundant
nuclear copies of mitochondrial origin (NUMTs) in the Aedes aegypti genome.
Insect Mol Biol. 2009;18(6): 705-713. DOI: 10.1111/j.1365-2583.2009.00925.x.
94. Leite L. Mitochondrial pseudogenes
in insect DNA barcoding: differing points of view on the same issue. Biota
Neotropica. 2012; 12(3): 301-308. DOI: 10.1590/S1676-06032012000300029.
95. Hazkani-Covo E, Zeller R, Martin W.
Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear
genomes. PLoS Genet.
2010; 6(2): e1000834.
DOI: 10.1371/journal. pgen.1000834.
96. Serbus LR,
Casper-Lindley C, Landmann F, Sullivan W. The genetics and cell biology of
Wolbachia-host interactions. Annu Rev Genet. 2008; 42: 683-707. DOI:
10.1146/annurev.genet.41.110306.130354.
97. Hurst GD, Jiggins FM. Problems with
mitochondrial DNA as a marker in population, phylogeographic and phylogenetic
studies: the effects of inherited symbionts. Proc R Soc B. 2005; 272(1572):
15251534. DOI: 10.1098/rspb.2005.3056.
98. Mousson L, Zouache K, Arias-Goeta C,
Raquin V, Mavingui P, Failloux A-B. The native Wolbachia symbionts limit
transmission of dengue virus in Aedes albopictus. PLoS Negl Trop Dis. 2012;
6(12): e1989. DOI: 10.1371/journal.pntd.0001989.
99. Blagrove MS, Arias-Goeta C, Failloux
A-B, Sinkins SP. Wolbachia strain wMel induces cytoplasmic incompatibility and
blocks dengue transmission in Aedes albopictus. PNAS. 2012; 109(1): 255-260.
DOI: 10.1073/pnas.1112021108.
100. Navarro J, Quintero L, Zorrilla A,
González R. Molecular Tracing with Mitochondrial ND5 of the Invasive Mosquito
Aedes (Stegomyia) albopictus (Skuse) in Northern South America. 2013. J.
Entomol Zool Stud. 2013; 1 (4): 32-39.
101. Taillon-Miller P, Gu Z, Li Q,
Hillier L, Kwok P. Overlapping genomic sequences: a treasure trove of
single-nucleotide polymorphisms. Genome Res. 1998; 8(7): 748-754. DOI:
10.1101/gr.8.7.748.
102. Wang D, Fan J,
Siao C, Berno A, Young P, Sapolsky R, et al. Large-scale identification,
mapping, and genotyping of single-nucleotide polymorphisms in the human genome.
Science. 1998; 280(5366): 1077-1082. DOI: 10.1126/science.280.5366.1077.
103. Sachidanandam R, Weissman D,
Schmidt S, Kakol J, Stein L, Marth G, et al. A map of human genome sequence
variation containing 1.42 million single nucleotide polymorphisms. Nature.
2001; 409(6822): 928-933. DOI: 10.1038/35057149.
104. Wondji C, Hemingway J, Ranson H.
Identification and analysis of single nucleotide polymorphisms (SNPs) in the
mosquito Anopheles funestus, malaria vector. BMC Genomics. 2007; 8(1): 5. DOI:
10.1186/1471-2164-8-5.
105. Evans BR, Gloria-Soria A, Hou L,
McBride C, Bonizzoni M, Zhao H, et al. A Multipurpose High Throughput SNP Chip
for the Dengue and Yellow Fever Mosquito, Aedes aegypti. G3: Genes| Genomes|
Genetics. 2015; 5(5): 711-718. DOI: 10.1534/g3.114.016196.
106. Paduan K,
Ribolla P. Characterization of eight single nucleotide polymorphism markers in
Aedes aegypti. Mol Ecol Resour. 2009; 9(1): 114-116. DOI:
10.1111/j.1755-0998.2008.02282.x.
107. Morlais I,
Severson W. Intraspecific DNA variation in nuclear genes of the mosquito Aedes
aegypti. Insect Mol Biol. 2003; 12(6): 631-639. DOI:
10.1046/j.1365-2583.2003.00449.x.
108. Adhami J, Murati N. The presence of
the mosquito Aedes albopictus in Albania. Rev Mjekesore. 1987 (1): 13-16.
109. Toto JC, Abaga S, Carnevale P,
Simard F. First report of the oriental mosquito Aedes albopictus
on the West African
island of Bioko, Equatorial Guinea. Med Vet Entomol. 2003; 17(3): 343-346. DOI:
10.1046/j.1365-2915.2003.00447.x.
110. Le Maitre A, Chadee DD. Arthropods
collected from aircraft at Piarco International airport, Trinidad, West Indies.
Mosq News. 1983; 43(1): 21-23.
111. Mousson L, Dauga C, Garrigues T,
Schaffner F, Vazeille M, Failloux A-B. Phylogeography of Aedes (Stegomyia)
aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse)(Diptera: Culicidae) based
on mitochondrial DNA variations. Genet Res. 2005; 86(1): 1-11. DOI:
10.1017/S0016672305007627.
112. Sprenger D, Wuithiranyagool T. The
discovery and distribution of Aedes albopictus (Skuse) in Harris Country,
Texas. J Am Mosq Control Assoc. 1986; 2(2): 217–219.
113. Scholte E-J,
Schaffner F. 14. Waiting for the tiger: establishment and spread of the Aedes
albopictus mosquito in Europe. Emerging pests and vectorborne diseases in
Europe. 2007;1:241.
114. Forattini O.
Identificação de Aedes (Stegomyia) albopictus (Skuse) no Brasil. Rev Saúde
Publ. 1986; 20(3): 244-245.
115. ISID. Panama detects new dengue
carrying mosquito ProMED-mail: http://www.promedmail. org; 2002 [cited 2014
19/05/2014]. Available from: http://www.promedmail.org/direct. php?id=20021108.5753.
116. Ibanez-Bernal S,
Martinez-Campos C. Aedes albopictus in Mexico. J Am Mosq Control Assoc. 1994;
10(2 Pt 1): 231-232.
117. Flacio E, Lüthy P, Patocchi N,
Guidotti F, Tonolla M, Peduzzi R. Primo ritrovamento di Aedes albopictus in
Svizzera. STSN. 2004; 92(1-2): 141142.
118. Kay B, Ives W, Whelan P,
Barker-Hudson P, Fanning I, Marks E. Is Aedes albopictus in Australia?. Med J
Austral. 1990; 153(1): 31-34.
119. Lugo EDC, Moreno G, Zachariah MA,
López MM, López JD, Delgado MA, et al. Identification of Aedes albopictus in
urban Nicaragua. J Am Mosq Control Assoc. 2005; 21(3): 325-327. DOI: 10.2987/8756-971X(2005)21[325:IOAAIU]2.0.
CO;2.
120.
Sabatini A, Raineri V, Trovato G, V. T, Coluzzi M. Aedes albopictus in Italia e
possible diffusione della specie nell’area mediterranea. Parassitologia. 1990;
32(3): 301–304.
121. Rossi GC, Martínez M. MOSQUITOS
(DIPTERA: CULlCIDAE) DEL URUGUAY. Entomol Vect.
2003; 10(4): 469·478.
122. Savage H, Ezike V, Nwankwo A, Miller
B. First record of breeding populations of Aedes albopictus in continental Africa: Implications for
arboviral transmission. J Am Mosq Control Assoc. 1992; 8(1): 101–103.
123. Pener H, Wilamowski A, Schnur H,
Orshan L, Shalom U, Bear A. Aedes albopictus in Israel. Europ Mosq Bull. 2003;
14:32.
124. Cornel A, Hunt R. Aedes albopictus
in Africa? First records of live specimens in imported tires in Cape Town. J Am
Mosq Control Assoc. 1991; 7(1): 107108.
125. Schaffner F, Van Bortel W,
Coosemans M. First record of Aedes (Stegomyia) albopictus in Belgium. J Am Mosq
Control Assoc. 2004; 20(2): 201-203.
126. Reiter P. Aedes albopictus and the
world trade in used tires, 1988-1995: the shape of things to come? J Am Mosq
Control Assoc. 1998; 14(1): 83-94.
127. Aranda C, Eritja
R, Roiz D. First record and establishment of the mosquito Aedes albopictus in
Spain. Med Vet Entomol. 2006; 20(1): 150-152. DOI:
10.1111/j.1365-2915.2006.00605.x.
128. Peña C. First report of Aedes
(Stegomyia) albopictus (Skuse) from the Dominican Republic. Soc Vector Ecol..
1993; 24(4): 4-5.
129. Klobučar A,
MERDIC E, BENIC N, BAKLAIC Ž, KRČMAR S. First record of Aedes albopictus in
Croatia. J Am Mosq Control Assoc. 2006; 22(1): 147-148. DOI:
10.2987/8756-971X(2006)22[147:F ROAAI]2.0.CO;2.
130. Broche R, Borja
E. Aedes albopictus in Cuba. J Am Mosq Control Assoc. 1999; 15(4): 569-570.
131. Scholte E-J, Jacobs F, Linton Y-M,
Dijkstra E, Fransen J, Takken W. First record of Aedes (Stegomyia) albopictus
in the Netherlands. Eur Mosq Bull. 2007; 22: 5-9.
132. Ogata K, Lopez
S. Discovery of Aedes albopictus in Guatemala. J Am Mosq Control Assoc. 1996;
12(3 Pt 1): 503-506.
133. Samanidou-Voyadjoglou A, Patsoula
E, Spanakos
G, Vakalis N. Confirmation of Aedes
albopictus (Skuse) (Diptera: Culicidae) in Greece. Eur Mosq Bull. 2005; 19:
10-12.
134. Petric D, Zgomba M, Ignjatovic A,
Pajovic I, Merdic E, Boca I, et al., editors. Invasion of the Stegomyia
albopicta to a part of Europe. Presentation at the 15th European Society for
Vector Ecology Meeting; 2006.
135.Pluskota B, Storch V, Braunbeck T,
Beck M, Becker N. First record of
Stegomyia albopicta (Skuse)(Diptera: Culicidae) in Germany. Eur Mosq Bull.
2008; 26: 1-5.
136. Gatt P, Deeming
JC, Schaffner F. First record of Aedes (Stegomyia) albopictus (Skuse) (Diptera:
Culicidae) in Malta.
Eur Mosq Bull. 2009; 27: 56-
64.
137. Rossi GC, Pascual N, Krsticevic FJ.
First record of Aedes albopictus (Skuse) from Argentina. J Am Mosq Control
Assoc. 1999; 15: 422.
138. Calderón-Arguedas O, Avendaño A,
LópezSánchez W, Troyo A. Expansion of Aedes albopictus Skull in Costa Rica.
Revista Ibero-Latinoamericana de Parasitología. 2010; 9(2): 220-222.
139. Vélez ID, Quiñones ML, Suárez M,
Olano V, Murcia LM, Correa E, et al. Presencia de Aedes albopictus en Leticia,
Amazonas, Colombia. Biomédica. 1998; 18(3): 192-198. DOI: 10.7705/
biomedica.v18i3.990.
140. Navarro J,
Zorrilla A, Moncada N. Primer registro de Aedes albopictus (Skuse) en
Venezuela. Importancia como vector de dengue y acciones a desarrollar. Bol Mal
Salud Amb. 2009; 49(1): 161166.
141. Marquetti
Fernández Md, Jean YS, Fuster Callaba CA, Somarriba López L. The first report
of Aedes (Stegomyia) albopictus in
Haiti. Mem Inst Oswaldo Cruz. 2012; 107(2): 279-281. DOI:
10.1590/S007402762012000200020.
142. Schaffner F,
Karch S. Première observation d’Aedes albopictus (Skuse, 1894) en France
métropolitaine. Comptes Rendus de l’Académie des Sciences-Series III-Sciences
de la Vie. 2000; 323(4): 373-375. DOI: 10.1016/S0764-4469(00)00143-8.
143. Oter K, Gunay F,
Tuzer E, Linton Y-M, Bellini R, Alten B.
First record of Stegomyia albopicta in Turkey determined by active ovitrap
surveillance and DNA barcoding. Vector Borne Zoonotic Dis. 2013; 13(10):
753-761. DOI: 10.1089/vbz.2012.1093.
144. Fontenille D, Toto JC. Aedes
(Stegomyia) albopictus (Skuse), a potential new Dengue vector in southern
Cameroon. Emerg Infect Dis. 2001; 7(6): 1066-1067. DOI: 10.3201/eid0706.010631.
145. Guillaumot L,
Ofanoa R, Swillen L, Singh N, Bossin HC, Schaffner F. Distribution of Aedes
albopictus (Diptera, Culicidae) in southwestern Pacific countries, with a first
report from the Kingdom of Tonga. Parasit Vectors. 2012; 5(247): 1-6. DOI:
10.1186/1756-3305-5-247.
146. MSC. Situación epidemiológica
dengue en Isla de Pascua, Chile insular Ministerio de Salud de Chile:
Ministerio de Salud de Chile; 2000.
147. Bocková E,
Kočišová A, Letková V. First record of Aedes albopictus in Slovakia. Acta
Parasitol. 2013; 58(4): 603-606. DOI: 10.2478/s11686-013-0158-2.
148. Zhong D, Lo E, Hu R, Metzger ME,
Cummings R, Bonizzoni M, et al. Genetic analysis of invasive Aedes albopictus
populations in Los Angeles
County, California
and its potential public health impact. PLoS One. 2013; 8(7): e68586. DOI:
10.1371/journal.pone.0068586.
149. Raharimalala FN, Ravaomanarivo LH,
Ravelonandro P, Rafarasoa LS, Zouache K, Tran-Van V, et al. Biogeography of the
two major arbovirus mosquito vectors, Aedes aegypti and Aedes albopictus
(Diptera, Culicidae), in Madagascar. Parasit Vectors. 2012; 5(1): 1-10. DOI:
10.1186/1756-3305-5-56.
150. Delatte H, Bagny L, Brengue C,
Bouetard A, Paupy C, Fontenille D. The invaders: Phylogeography of dengue and
chikungunya viruses Aedes vectors, on the South West islands of the Indian
Ocean. Infect Genet Evol. 2011; 11(7): 1769-1781. DOI:
10.1016/j.meegid.2011.07.016.
151. Kamgang B, Brengues C, Fontenille
D, Njiokou F, Simard F, Paupy C. Genetic structure of the tiger mosquito, Aedes
albopictus, in Cameroon (Central Africa). PLoS One. 2011; 6(5): e20257. DOI:
10.1371/journal.pone.0020257.
152. Maia R, Scarpassa V, Maciel-Litaiff
L, Tadei W. Reduced levels of genetic variation in Aedes albopictus (Diptera:
Culicidae) from Manaus, Amazonas State, Brazil, based on analysis of the
mitochondrial DNA ND5 gene. Genet Mol Res. 2009; 8(3): 998-1007.
153. Ritchie SA, Moore P, Carruthers M,
Williams C, Montgomery B, Foley P, et al. Discovery of a widespread infestation
of Aedes albopictus in the Torres Strait, Australia. J Am Mosq Control Assoc.
2006; 22(3): 358-365. DOI: 10.2987/8756-971X(20 06)22[358:DOAWIO]2.0.CO;2.
Suggested
citation: Aguirre-Obando AO, Navarro-Silva MA. How much is known
about the genetic diversity of the Asian tiger mosquito? A systematic review.
Rev Univ Ind Satander Salud. 2017; 49(3): 422-437