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Abstract 

 

Specific rate of breakage (Sj) is an important parameter for grinding kinetics behavior due to it is reverse related with 

the process energy consumption. Size grinding media, viscosity medium, and fine particle formation are some of 

modifiable variable for to reduce the energy in the grinding process. Nowadays, there is no model that explains the 

relationship among Sj and parameters described above. A classification model based on linear discriminant analysis 

for quartz wet grinding was proposed to identify conditions with the high Sj. Three grinding kinetic behavior groups 

have been found through cluster analysis and two discriminant functions that explicate difference among groups. The 

first function was the most powerful differentiating dimension with 89.01% of prediction percentage, and the second 

one represented an additional significant dimension with 10.99% of prediction. 
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Resumen 
 

La velocidad específica de fractura (Sj) es un parámetro determinante para el comportamiento cinético de la molienda 

debido a la relación inversa que tiene con el consumo energético del proceso. Tamaño de bolas, viscosidad del medio 

y formación de partículas finas son algunas variables que se pueden modificar para reducir el consumo energético en 

los procesos de molienda. No obstante, no existe un modelo que explique la relación entre la Sj y los parámetros 

descritos anteriormente. Se propone un modelo de clasificación basado en el análisis discriminante para identificar las 

condiciones que permitan obtener las mayores Sj en una molienda húmeda de cuarzo. Se obtuvieron tres grupos del 

comportamiento cinético mediante el análisis de clúster y dos funciones discriminantes que explican la diferencia entre 

los grupos. La primera función discriminante fue la más poderosa con 89.01 % de predicción y la asegunda función 

representa la dimensión adicional con un 10.99% de predicción. 

 

Palabras clave: análisis discriminante; cuarzo; molienda; molino de bolas; velocidad específica de fractura. 

 

1. Introduction 

 

Grinding is often the most important stage in a minerals 

processing plant, due to the fact that this process 

generates, through fracture events, minerals liberation 

than can later be separated by concentration processes, 

which is a high energy consumption process, accounting 

between 30-50% of total mineral processing plant [1], 
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[2]. A fine size obtained by ball mill grinding usually is 

carried out by wet or dry processes; the difference lies in 

terms of energy consumption, inasmuch as dry grinding 

is around 15-50% higher than wet grinding [3]–[5]. Wet 

grinding modifies breakage behavior and energy 

condition of the milling process [6], [7], presenting it 

differently to dry grinding. When a grinding process is 

carried out, the small particles size formation increases 

the number of particles for a constant volume inside ball 

mill, the formation of fine particles will transform the 

flow behavior from Newtonian fluid to shear thinning or 

to shear thickening fluid. Wet grinding has been 

implemented using quartz ore as a reference because it 

covers some of the most commercial value minerals such 

as gold and silver [8], and using a Newtonian 

polyacrylamide (PAM) solution as a suspending medium 

to prepare the final slurry . The use of PAM solutions are 

extensively used as chemical additives or processing aids 

in the manufacturing of paper [9], [10]. The first order 

law for batch model describes the grinding kinetic as 

shown in equation (1), [11], [12]. Nevertheless, 

rheological behavior can change grinding scenery and 

move from normal to abnormal region altering specific 

rate of breakage and energy efficiency as well. 

 

𝑑𝑤𝑖(𝑡)

𝑑𝑡
=∑𝑏𝑖𝑗𝑆𝑗𝑤𝑖(𝑡)

𝑖−1

𝑗=1

− 𝑆𝑗𝑤𝑖(𝑡) (1) 

 

The analysis of equation (1) for wet grinding does not 

include some parameters, resulting in a bivariable 

correlation [8], [2]. 

 

A linear discriminant analysis (LDA) is proposed in order 

to find relationships that involve rheological variables in 

the breakage kinetic behavior, to achieve process 

optimization and proper models to describe specific rate 

of breakage, which is the most important variable in 

breakage kinetic. To achieve accuracy it, was necessary 

to define principal component analysis (PCA), -a 

mathematical tool employed as an exploratory data 

technique to obtain an overview of the variable-. PCA 

transforms the original correlated data into uncorrelated 

new variables to reduce the dimension to interpret data 

while retaining as much information present in the 

original dataset as possible [13]. A cluster analysis (CA) 

was used to search patterns in the dataset by grouping the 

observations into clusters. This technique allows finding 

a natural structure among objects. By grouping 

individuals, the goal of each cluster obtained is to 

maximize homogeneity within the groups and 

heterogeneity among groups based on the response 

variable distance [13], [14]. 

 

LDA aims at seeking discriminant projection axes that 

separate patterns with different class labels, in this case, 

discriminant analysis is used to identify some individuals 

that exhibit different behavior in terms of breakage 

kinetics or normal fracture behavior. The discriminant 

function uses two criteria to create a new axis [13]: 

 

1. Maximize the distance between means of the 

classes. 

2. Minimize the variation within each class 

 

The first function maximizes the differences between the 

values of the dependent variable. The other functions 

maximize the differences between values of the 

dependent variable, controlling for the first factor [15]. 

 

2. Methods and materials 

 

2.1. Experimental test 

 

Wet grinding of quartz (SiO2) ore was carried out in a 

laboratory steel ball mill, Figure 1. The apparent 

viscosity of the slurry was determined using a Brookfield 

DV-II+Pro viscosimeter with a RV-1 HA/HB-1 spindle 

which shear rate is 66 s-1, the size of product passing 80% 

(P80) of accumulated mass using the Schuhmann 

adjustment [16], the Grindability Index (GI) using the 

Napier Munn criteria [6], Bond Work Index (BWI) with 

Bond mill [17], and the specific rate of breakage (Sj) 

through a monozise test [2]. In total 36 kinetic 

experiments were developed under different operating 

conditions. See Table 1. 

 

 
Figure 1.Wet grinding process in a laboratory ball mill. 

Source: Mill room SIU - UdeA 

 

2.2. Materials 

 

A typical quartz from Antioquia, Colombia was used for 

this research; its chemical composition was determined 

by X ray fluorescence (XRF) and presented in Table 2. 

Three different sizes were employed, 53, 45, and 38 μm, 

corresponding to mesh 270, 325, and 400 [18], 

respectively. Polyacrylamide (PAM) solutions of, 0.00, 
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0.02, 0.035, and 0.05 % percentages w/w, prepared with 

drinking water were used as dispersant agent. Finally, 

monodispersed suspensions of quartz were prepared with 

PAM solutions at 60% percentage w/v of solids for each 

size. 

Table 1. Wet grinding conditions 

Materials  Quartz  

Solids concentration, ϕ (%w/v)  60 

Mill length, L (m)  0.18 

Mill diameter, D (m)  0.16 

Ratio L/D  1.16 

Fraction of critical speed, ϕC  0.75 

Ball filling fraction, J  0.3 

Hole fraction, U  1.0 

Bed normal porosity  0.4 

Slurry viscosity (cp) 1, 4,6,8 

Feed size (μm) 53, 45, 38 

Liquid 
Polyacrylamide 

solution 

Source: Own source. 

 

Table 2. Chemical composition of Quartz 

Oxides SiO2 Al2O3 Fe2O3 TiO2 

Percentage (%) 94-96 2.0-4.5 0.2 0.2 

Oxides CaO MgO Na2O K2O 

Percentage (%) 0.1 0.1 0.1 0.1 

Source: Spectroscopy laboratory-UdeA. 

 

2.3. Statistical Analysis 

 

A statistical analysis was performed with an open 

statistical software, R studio 3.6.1. A principal 

component analysis (PCA) was used to reduce 

dimensions and to compare different variables involved 

in the study and to look for the correlation among them. 

To find grouping observations, the cluster analysis (CA) 

was proposed and finally a linear discriminant analysis 

(LDA) was employed as supervised method to represent 

a sample from the population and obtain discriminant 

functions for define the best kinetic setting of breakage 

as show in Figure 2. 

 

3. Results and discussions 

In Table 3, the experimental test summary of some of the 

kinetic tests, which allowed determining five 

fundamental different variables after 216 grinding tests 

and 36 kinetic tests for the statistical analysis, is shown. 

 

 

Figure 2.Statistical methodology to determine LDA. 

Source: Own source. 

Table 3.Summary of different kinetic tests 

Kinetic tests 1 25 36 

P80(μm) 44.41 41.50 36.14 

Sj(min-1) 0.205 0.199 0.053 

Ap.viscosity(cp) 25 60.35 61.9 

Bond Work Index 

(kwh/ tonc) 15.17 7.49 6.73 

Grinding Index 86.79 60.01 35.35 

Source: Own source 

 

3.1. Principal components analysis (PCA) 

 

The principal component analysis (PCA) results of 5 

variables in a wet grinding for 36 tests are shown in Table 

4. It is necessary to select the number of components so 

the accumulated variance is at least 80 % or the 

eigenvalues are greater than one [19]. For this analysis, 

two principal components describe the behavior of five 

initial variables as observed in equations (2) and (3).  

 

The first principal component (PC1) is highly correlated 

with breakage function (Sj), Bond work index, and 

Grinding Index loading, and  explains 57,39% of the total 

variance, which indicates that PC1 can represent the 

effect of overall breakage of particles across the mill in 

the grinding process. PC2 accounts for 26.95% of the 

total variance and it evidences an inverse relation 

between fine particle formation (P80) and relative 

viscosity of grinding scenery. It can be mentioned that 

the second principal component include the rheological 

information due to the fact that, the hold up of slurry 

remains in steady state for a batch grinding, but the 

particle size distribution changes during the residential 

time inside the mill. Therefore, the small particle 

formation may cause a hydrodynamic effect, which 
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increases the viscosity, improves the particle-particle 

interactions, resulting in a high flow resistance and a 

great apparent viscosity [20]. 

Table 4. Rotated factor loadings of principal 

components 

Variables 
Dim.

1 

Dim.

2 

Dim.

3 

Dim.

4 

Dim.

5 

P80 -0.37 0.55 -0.53 -0.48 0.21 

Sj -0.52 -0.1 -0.42 0.74 -0.07 

Viscosity -0.01 -0.8 -0.46 -0.37 0.06 

Bond Work 

Index 
-0.56 -0.08 0.3 -0.3 -0.71 

Grinding 

index 
-0.53 -0.19 0.49 -0.06 0.66 

Eigenvalues 2.90 1.95 0.46 0.24 0.08 

Cumulative 

variance 

(%) 

57.4 84.3 93.4 98.3 100 

Source: Own source 

PC1=0.3747 P80-0.5197 Sj-0.0120 μ                    
-0.5559 BWI -0.5293GI 

(2) 

 

PC2=0.5502 P80 -0.0973 𝑆𝑗-0.8029 𝜇 

-0.0798 BWI -0.1918GI 
(3) 

  

3.2. Hierarchical cluster analysis (HCA)  

 

Cluster analysis goal is to group individuals. Each cluster 

obtained assure a maximal homogeneity withing groups 

and maximal heterogeneity among groups based on the 

distance [13]. To define the number of clusters of 

variables due to similarity, a hierarchical cluster analysis 

was performed based on principal components analysis 

(PCA). In this case, the grouping was formed with the 

results obtained in 36 kinetic tests.  As shown in Figure 

3, the phenon line -imaginary horizontal line-, was 

defined in 20, forming 3 groups of different kinetic 

behaviors.  

 

3.3. Linear Discriminant Analysis (LDA) 

 

The linear discriminant analysis was used to identify 

kinetic behaviors of quartz slurry, to improve wet 

grinding process, and to seek a discriminant function to 

separate the groups, which characterized the milling 

scenery and to find hidden patterns among samples on 

dataset (Figure 4). 

Figure 3. Cluster analysis. Source: Own source. 

 
Figure 4. The statistical analysis found the existence of 

three groups, and clearly shows how each kinetic test 

has a different behavior. 

 

As shown Figure 5, the group one clustered the maximum 

grindability index, the lowest apparent viscosity, the 

biggest P80, highest specific rate of breakage, and the 

highest Bond work index, considering a normal breakage 

region. This group contained the highest feed size of the 

population and according with the failure theory, it is 

easier to break greater size than lower size particles. 

Group two shows a transitory behavior containing the 

minimum grindability index, but in this case the apparent 

viscosity starts to increase, whilst P80 decreases and the 

specific rate of breakage and Bond work index present 

the lowest value for this group, situation not common in 

grinding process because Bond work index would be 

expected to increase as long as there exists a low capture 

probability. It can be said that the particle size and PAM 

concentration do not present a good relationship, 

favoring the runoff of particle effect inside the mill, 

consequently, the kinetic scenery would have an 



                           139 
 

 

Quartz grinding specific rate of breakage (Sj) classification by discriminant analysis 

abnormal behavior and the breakage rate is not described 

by first order equation. Finally, group three collects the 

maximum grindability index, the highest apparent 

viscosity, the lowest P80, and a high specific rate of 

breakage with middle size particles. It is observed that 

the reduction of the particle size of solids promotes an 

increase in the apparent viscosity of the slurry [20]; 

however, the kinetic parameters are not affected by the 

rheological behavior, ensuring for this group optimal 

breakage in wet grinding conditions without a loss in the 

specific rate of breakage for this group, thus staying in 

the normal region. 

 

 

Figure 5. Groups obtained by LDA. Source: Own 

source. 

Equations (4) and (5) show the coefficients of the linear 

discriminant analysis which allows differencing among 

groups  it also show the proportion of trace or separation 

percentage achieved by each discriminant axes. LD1 is 

strongest with 89.01% of the separation, in this case, the 

second discriminant LD2, supplements the separation 

criterion with 10.99%.  

 

LD1=1.301PC1-0.382PC2 Trace:89.01% (4) 

 

LD2=-0.1404PC1-1.017PC2 Trace:10.99% (5) 

 

4. Conclusions 

 

▪ Discriminant analysis allows classifying a wet 

grinding process in three groups according to 

different breakage kinetic behaviors, namely, group 

one and group three have a normal breakage region, 

instead group two exhibit an abnormal breakage 

region. 

▪ Linear discriminant analysis identified hidden pattern 

in a wet grinding process, which involves rheological 

variables and the overall breakage of particles 

parameter inside the mill.  

▪ Although group three evidenced a viscosity increased 

tendency, the specific breakage rate, Bond Work 

Index, and Grinding Index have a similar order to 

group one.  

▪ The group three viscosity increases in comparison 

with group one. But this difference neither affects the 

specific rate of breakage under different grinding 

conditions nor the normal region classification.  
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