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Abstract

This contribution presents optimal control over a double extractor induction motor using formalism through variational
model. The criterion is subject to non-stationary equations of a reduced order (Dynamics equations of a reduced order
model (DSIM)). As is well know, in this model the state variables are the rotor flow and motor speed in a circuit
mechanical process. For non-stationary and stationary states, based on the theory of optimal control, this limit provides
a high expensive function given as a weighted contribution of a DSIM theory. To order to acquire a lowest energy
rotor flow path, the idea is to minimize the function to a dynamic of two equations of the motor speed and rotor flow.
This problem is solved using with the Hamilton-Jacobi-Bellman equation and a time dependent solution for the rotor
flow is determined analytically.

Keywords: dynamic programmic; optimal control theory; cost function; subderivates.
Resumen

Esta contribucién presenta un control 6ptimo sobre un motor de induccién de doble extractor usando formalismo a
través del modelo variacional. El criterio esta sujeto a ecuaciones no-estacionarias de orden reducido (Ecuaciones
Dindmicas de un Modelo de Orden Reducido (DSIM)). Como es bien sabido, en este modelo las variables de estado
son el flujo del rotor y la velocidad del motor en un proceso mecénico de circuito. Para estados no-estacionario y
estacionarios, basados en la teoria del control dptimo, este limite proporciona una funcién costosa dada como una
contribucion ponderada de una teoria DSIM. Para adquirir una ruta de flujo de rotor de energia mas baja, la idea es
minimizar la funcién a una dinamica de dos ecuaciones de la velocidad del motor y el flujo del rotor. Este problema
se resuelve utilizando la ecuacion de Hamilton-Jacobi-Bellman y se determina analiticamente una solucién
dependiente del tiempo para el flujo del rotor.

Palabras clave: programacion dindmica; teoria optima de control; funcién de costo; subderivadas.
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1. Introduction

Variational problems have stimulated, in the last decade,
theoretical and analytical research in several topics in
mathematical physics. The variational model has
disadvantages when the method is applied for analysis in
high order plants. However, unrestricted design may not
work properly in practice. Due to the limited variables
and the restricted control could cause serious
performance deterioration. The controllers must be
synthesized to achieve the desired one. A great attempt
was made in non-linear minimization and development
on this system attracting a big attention of the scientific
community. The objective is to design a controller for a
type of systems with limitations on states and control.
The model gives a practical model in which the designer
can resume the limited controllers to get the goals of the
synthesis below is the Jacobi-Bellman equation [6].

Let a systems be simulated by the equation:

x = a(x(t),u(t),t) 1)

The measure to be minimized is:
T
J= k()i + [ ge@u@nder @
to

h and g are specified functions, t, and t; are bounded
andt is a phantom integration variable now it is
considered longer problems and subdividing the interval
is:

t+At
_mmuo=f g(@)dr

¢
+f ! g(t)dr 3)

+At

+-h(x(tf),tf)
The principle of optimality is:

t+At

J*(x(t),t) = min {+f g@dr + J*(x(t
t

(4)
+ At), t + At}

Where J*(x(t + At), t + At is the minimum process cost
for a time interval ¢ + At < 7 < t; with an initial state
X(t + At). Assuming that the second partial derivative of
J* exists and that it is limited J*(x(t + At), t + At can be
expanded, t + At in Taylor series around one point
(x (t),t) is obtained.
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J (x(6),6) =
min {+ ftHAt g@dr + J*(x(@),t) +

[Z_C (x(), t)] At + [Z—C (x (1), t)]T [x(t + (5)
At — x(t)]} + o(At)

Now for little ones At

J7=(x(),1)
= min {g(x(t), u(t), )At + J*(x(t), t)
+ ¢ (x(t), )At (6)
+ 1 (x (@), O)alx(t), u(®), t]At + 0(AD}

Where 0(At) denotes the terms contained [At]? of the
highest order of At that arise from the approximation of
the integral and the truncation produced from the
expansion in Taylor series, now removing the terms

J*(x (8),8) and J," (x(2), ).

Minimization is obtained:

Je*(x(8), Hmin {g(x(t), u(t), H)At +
J'x@®,0) + ] (x (@), Olalx (@), u(@®), t]ac +  (7)
o(At)} =0
Dividing by At taking the limit when At — 0 gives:

0 = J¢*(x(t), t) + min {g(x(t), u(t), t) + (®)
J (e (®), 0) + " (x (), ) [aCx(®), u(®), t] }

To find the limits for this differential equation let t = t,
give:

J*(x(tr) tr) = h(x(tr), t) ©)
The Hamiltonian is defined as:
(x(®),u(t), ;' t) = gx(®), u(®), t)
J (x (@), )[a(x (:)-, u(t), t]
(x(®),u(t), /', t) = min(x(t), u(t), /", t) (11)

(10)

Since the minimization of the control will depend on
x,/,", and t using those definitions the Hamilton-Jacobi
equation is obtained:

0 =Je* (@), )+ (x (O, w"(®), Jx" 1) (12)
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This equation is the analog in continuous time to the
Bellman's recurrence equation, however it will refer to
(12) as the Hamilton-Jacobi- Bellman equation [7].

2. Application problem

The complete dynamic model of the DSIM is [1]:

(js(d,q) = _(YI + (p + pQ)])Is(d,q)

(pr(d,q) = _(al + p])(pr(d,q) + bl
K Y (13)

Where:
I _ Isld Iszd _ Is .
st — Islq ISZq - Isq '

(G 3 e () 01

Vsa,q) =

MZ
o)

M2 1 M2
(pz_l_(E), y_fP1L5+<P2LSp+(RS+Lr2Rr)’I
1 0].,_70 11.  _ R, _ .
lo 113z ol a=gyip=am;

By notation W, = p is the frequency of the motor, R and
R, are the stator and rotor resistors respectively L y L,.,
are the inductances of the stator and rotor respectively.
M is the magnetization, Ly, is the main cyclic inductance,
Jm is the moment of inertia of the rotor, K; is the constant
torque load, Lgy4, Lsaq, Ls1q Y Ls2q are the direct and
quadrature current of stator 1 and stator 2 respectively.
Vsia» Us2a» Vsiq Y Vs2q are respectively the voltages of
each stator on the dqg axes, p is the number of poles, y is
the electromagnetic torque [2].

To eliminate the non-linear terms of (13), the order of the
DSIM model of an integral proportional control (PI) is
reduced to a simple one with proportional gain and the
following is defined:

01Lg + 3L,
€ (13.1)

Ug Ls1a  Isza
v=(")= ( )
(uz) Ly1g  Iszq
Where 0 < € < 1andU isasystem command, the usual

form of reduced model is obtained as follows: the cost of
the function can be defined as:

Vs@a.q) =

(13.2)

J= fon(Isd' Isq' Dr» Q)dt (14)

The index corresponding to the weighted sum is
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f(lsd' Isq' (‘% Q) = .Ble + BZP]+.83Pm (15)

The factors S;, B,, B5, are weighted and are used to scale
the energy power while minimizing the cost function
minimizes the stored magnetic energy and minimize of
losses in the winding increasing the efficiency of the
machine [3]. The power in the rotating frame (d-q) is:

3
F, = E (vs(d,q))tls(d,q) (16)
The system (13) has that the input power is given by:

3 .
Pa = E (O-lLs + UZLsp)((Is(d,q))t(ls(d,q)))
+(Uswa) Us@) -20((@r@a) "(Iwe)) A7)
+ nPQ((pr(d.q)) t]Is(d,q)

The relationship between the stator and rotor current is
given by:

1
Ir(d,q) = L_ (Qor(d,q) - les(d,q)) (18)
T
The active power is:
0
Po= =W+ P+ Pn (19)

The equation (17) is defined as the derivative of the
stored magnetic field is given as follows:

aw _ 3 ((a1L5+a2Lsp

P 2

) (u12 + u22) + i(pTZ) (20)

Joule's losses are given by:

3 ,
P] = E [(Rs(ls(d,q))tls(d,q)

; 21
+ Rr(sa,0) (@)l @
By using equation (13) and equation (21), Power losses
can be as:

3 M\? )
P= 5 (Rs+ Ry (1) (a? +1%)
2 L,
3R,

" 2
ZLTZ(’”)

(22)

In this document, the operations of the mechanical
process are restricted to Acceleration modes to limit the
transitional study. Then the engine speed can be
expressed as follows:

Q= Cot + Cq1 (23)
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With ¢, > 0.

2.1 Determination of the Hamilton-Jacobi-Bellman
equation

To increase the readability of subsequent equations it will
be denoted x; = ¢, and x, = Q.

The dynamics of the system and the cost of the function
are defined as:

T
=2 0@ =02+ [
+ Uy’ + q(l)xl2 (24)
+ g, uyx, |dt
And
X, = axy + by,

Therefore, the function v (T,x;), which necessarily
satisfies the  boundary condition v (T,x;),=
k (x1(t)), where k (x,(t)) is the final state:

B2

k(a () = 7= (9*,.(0) = ¢* (T))

_h
L,

T (26)
(x*1(0) — x*1(T))

The optimal co-state A*(t) corresponds to the gradient of
the cost function to be optimized:
AV (T, x.*(t))

A = ~om @7)

Where —W(T';‘ @)

1
respect to x; and x; = x;* along the admissible path
u,(.) and u;*(.) corresponding sub-optimal cost
function is:

is continuously differentiable with

(v(t, x,") = k(x, () +

ftT L(x(t),u(t), t)dt (28)

Itis given as:

V(b ") =22 (62, (0) — x%,(T) +f) (rwy® +

) ) (29)
U” + @1 X" + Q@ uxx;)dt
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According to the following differential equation:

v(txy) _ v(tx1) v(tx1) _ _
i - x; + . = A(—ax; + bu,)
ov(t,xq)
o = L (0,10, 1) (30)
Thus:
ov(t,x;)

= —A(—ax; + bu,)

— L(x,(8), u (2), 1)
= — H(t, xq,uqy, A)

This is an equation for the optimal cost function, which
is called (HJB) [4] [5]. So, we found an optimum for the
variable u*(t,x;), with the subsequent state variable
x,"(t), considering of the following equation.

* . X 2 2
v(t, %) = mlnL—r(d)r 0) — &,2(1))
T

+ f(rlulz + 1yu,? (32)
t
+ g, D% + g, P,u,0) 0T

Which transfers the initial state &,(0) = &, and a final
state x; (0) = &,.(T) with the limit:

X1 = _a:xl + bu1 (33)

This determines the HIB equation:

1
H(t,xl, ul) = T1u12 + rlﬁ(At + B)Z

+ q1%,°

+ q, (At + B)(cot + ¢4) (34)
ov(t,xqp)

+ 67361 — (ax1 + ul)

The model described in (34) was simulated numerically
and the results are shown below.

4. Conclusions

We present an optimal control over a double stator
induction motor using an energy minimization model via
a DSIM model. For to obtain a minimum energy rotor
flow path, the process is to minimize this limited function
to a no-static of two equations set of the rotor flow and
motor speed. The optimum control system is analyzed by
the HJB equation and the rotor flow solution is
determined in a mathematical manner which varies over
time.
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