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Abstract 

 

In this document we will study and solve the nonlinear partial differential equation, with initial conditions for vehicle 

entry that serves to model the dynamics of traffic flow. To find a numerical solution to the dynamics that govern the 

behavior of traffic flow, the Finite Element Method in a spatial dimension was used. In accordance with the temporal 

dynamics, simulations were developed to know the flow in terms of time. The numerical solution is interesting for 

predicting the number of vehicles at the entrance to a high-flow road. Some theorems are enunciated that guarantee 

the existence of the solution and the uniqueness is given by the boundary conditions. 

 

Keywords: combination linear; Dirichlet conditions; Neumann conditions; Robin conditions; contour; partial 

differential equation; traffic Flow; positive semidefinite matrix; finite element method; numerical solution; tridiagonal. 

 

Resumen 

 

En este documento estudiaremos y resolveremos la ecuación diferencial parcial no lineal, con condiciones iniciales de 

entrada de vehículos   que sirve para modelar la dinámica del flujo de tráfico. Para encontrar una solución numérica 

de la dinámica que gobierna el comportamiento del flujo de tráfico, se usó el Método de Elementos Finitos en una 

dimensión espacial. De acuerdo con la dinámica temporal se desarrollaron simulaciones para conocer el flujo en 

términos del tiempo. La solución numérica resulta interesante para la predicción de la cantidad de vehículos a la entrada 

de una vía de alto flujo. Se enuncian algunos teoremas que garantizan la existencia de la solución y la unicidad viene 

dada por las condiciones de contorno. 

 

Palabras clave: combinación lineal; condiciones de Dirichlet; condiciones de Neumann; condiciones de Robin; 

contorno; ecuación diferencial parcial; flujo de tráfico; matriz semidefinida positiva; método de elementos finitos; 

solución numérica; tridiagonal. 

 

1. Introduction 

 

The dynamics of traffic flow have been extensively 

studied in the literature. The conservation equations of 

the model (dynamics) come from a nonlinear partial 

differential equation. The solution develops under the 

initial conditions of the vehicle input density [1]. These 

initial conditions allow decoupling each of the equations 
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for each input and solving independently. The function 

that determines the initial condition for the one-

dimensional problem is known and defined on the 

solution interval, giving the solution to the Cauchy 

problem [2], [3]. Velocity is a function that depends on 

density. This scalar conservation law must be 

complemented with adequate initial conditions and with 

boundary conditions as developed in this document.  

 

Traffic flow models and simulation tools are often used 

for traffic state estimation and prediction [4]. Traffic flow 

models such as the kinematic-wave model, "higher 

order" models, and car tracking models are more or less 

accurate representations of reality. In a simulation tool, 

the model equations are solved using numerical methods, 

again with near precision. On the other hand, the 

development of the finite element method in a spatial 

dimension allows calculating, from the point of 

numerical analysis, a system of linear equations that 

allows finding the value or prediction of flow in each of 

the points in space. The system of linear equations has 

the property of forming a tridiagonal positive 

semidefinite matrix whose inverse does not entail a 

higher computational cost. The formulation of the 

numerical solution to the traffic problem is obtained by 

comparing it to the fluid mechanics problem, reaching 

highly accurate results [5], [6]. By the similarity between 

fluid dynamics, traffic flow dynamics, and Newton's 

second law, the one-dimensional finite element method 

for velocity estimation is proposed as a numerical 

solution as an application of motion fluids mechanics [7]. 

Due to the nonlinearity in the temporal variable, the 

behavior of the solution from specific points of the spatial 

variable is evaluated in several temporal lines.  

 

The theorems that allow us to guarantee the existence and 

uniqueness of the solution given by the Dirichlet [8], [9], 

[10], Robin [11] and Neumann boundary conditions will 

be presented in section 2 of this document. 

 

2. Content 

 

2.1. Problem model 

 

In the domain Ω = (𝑥0, 𝑥𝑛), find 𝑢 with 𝑢(𝑥0) =

𝑢(𝑥𝑛) = 𝑢𝑐 for a given function 𝑓, such they satisfy the 

Dirichlet initial conditions. 

 

𝑢 = arg min
𝜙 ∈ 𝑋

𝐽(𝜙) 

 

𝑋 = 𝐻0
1(Ω) 

(1) 

 

Dirichlet minimization statement [5]. 

 

𝐽(𝜙) =
1

2
∫ (

𝑑𝜙

𝑑𝑥
)

2

𝑑𝑥
𝑥𝑛

𝑥0
− ∫ 𝑓𝜙𝑑𝑥

𝑥𝑛

𝑥0
  (2) 

 

To find  𝜙 ∈ 𝑋 such that: 

 

𝛿𝐽𝑣(𝜙) = 0,         ∀𝑣 ∈ 𝑋 (3) 

  

∫
𝑑𝜙

𝑑𝑥

𝑥𝑛

𝑥0

𝑑𝑣

𝑑𝑥
𝑑𝑥 = ∫ 𝑓𝜙𝑑𝑥

𝑥𝑛

𝑥0
    ∀𝑣 ∈ 𝑋    (4) 

 

Noticing, 

𝑎(𝜙, 𝑣) = ∫
𝑑𝜙

𝑑𝑥

𝑥𝑛

𝑥0

𝑑𝑣

𝑑𝑥
𝑑𝑥  (5) 

  

𝑙(𝑣) = ∫ 𝑓𝜙𝑑𝑥
𝑥𝑛

𝑥0
   (6) 

 

Should be minimized, 

 

𝑢 = arg min
𝜙 ∈ 𝑋

   
1

2
𝑎(𝜙, 𝑣) − 𝑙(𝑣)  

 

𝑢 ∈ 𝑋:   𝑎(𝜙, 𝑣) =  𝑙(𝑣) ,   ∀𝑣 ∈ 𝑋 

 

(7) 

Without losing generality, for any 𝑙(𝑣)    ∈  𝐻−1(Ω),  

then it is required to find 𝑢 ∈ 𝐻0
1(Ω) [6] such that: 

 

𝑢 = arg min
𝜙 ∈ 𝐻−1(Ω)

   
1

2
𝑎(𝜙, 𝜙) − 𝑙(𝜙)  (8) 

 

For example, 𝑙(𝑣) = 〈𝛿𝑥0, 𝑣〉 = 𝑣(𝑥0) is admissible. 

 

With the regularity theorems for boundary problems, the 

model takes the following form [7]: 

 

Theorem 1. Let Ω ∈  ℝ𝑛 be an open of class 𝐶2 with 

bounded frontier, 𝑢 ∈ 𝐿2(Ω) and 𝑓 ∈ 𝐻0
1(Ω) be the 

solution of the Dirichlet problem. So, 𝑓 ∈ 𝐻0
2(Ω) given 

the fact that: 

 

{
𝜕𝑓

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑓(𝑥, 𝑡)𝑢(𝑥)) = 0     𝑖𝑛 Ω

𝑓 = 0       𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝜕Ω
  (9) 

  

‖𝑓‖𝐻2(Ω) ≤ 𝐶‖𝑢‖𝐿2(Ω)   (10) 

 

With a constant 𝐶 > 0 that only depends on Ω. 

 

Furthermore, if Ω is of class 𝐶𝑚+2 and 𝑢 ∈ 𝐻𝑚(Ω), with 

𝑚 ≥ 1 integer, then 𝑓 ∈ 𝐻𝑚+2(Ω) and there is a 

constant 𝐶𝑚 > 0 that only depends on 𝑚 and 𝛺, in such 

a way that: 

 
‖𝑓‖𝐻𝑚+2(𝛺) ≤ 𝐶𝑚‖𝑢‖𝐻𝑚(𝛺)  (11) 
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If we have that 𝑚 > 𝑛/2   then 𝑓 ∈ 𝐶2(𝛺̅), giving way 

to the following two theorems given the initial conditions 

of the problem [11]. 

 

Theorem 2. Let Ω ∈  ℝ𝑛 be an open of class 𝐶2 with 

bounded frontier, 𝑢 ∈ 𝐿2(Ω) 𝜎 ∈ 𝐶2(𝛺̅) and 𝑓 ∈
𝐻0

1(𝛺) be the solution to the Robin problem. So, 𝑓 ∈
𝐻0

2(𝛺) given the fact that: 

 

{

𝜕𝑓

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑓(𝑥, 𝑡)𝑢(𝑥)) = 0     𝑖𝑛 𝛺

𝜕𝑓

𝜕𝑥
+ 𝜎(𝑥)𝑓 = 0        𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  𝜕𝛺

  (12) 

  

‖𝑓‖𝐻2(𝛺) ≤ 𝐶‖𝑢‖𝐿2(𝛺) (13) 

 

With a constant 𝐶 > 0 that only depends on Ω. 

 

On the other hand, if Ω is of class 𝐶𝑚+2  and 𝑢 ∈ 𝐻𝑚(Ω) 

and 𝜎(𝑥) ∈ 𝐶𝑚+1(𝛺̅), with 𝑚 ≥ 1  integer, then 𝑓 ∈
𝐻𝑚+2(Ω) and there is a constant 𝐶𝑚 > 0  that only 

depends on 𝑚 𝑦 𝛺, such that: 

 
‖𝑓‖𝐻𝑚+2(𝛺) ≤ 𝐶𝑚‖𝑢‖𝐻𝑚(𝛺)  (14) 

 

If 𝑚 > 𝑛/2  then 𝑓 ∈ 𝐶2(𝛺̅), giving way to the 

following two theorems given the initial conditions of the 

problem [12]. 

 
‖𝑢‖𝐻𝑚+2(Ω) ≤ 𝐶𝑚‖𝑓‖𝐻𝑚(Ω)  (15) 

 

If we have 𝑚 >
𝑛

2
 then 𝑢 ∈ 𝐶2(𝛺̅). 

 

Theorem 3. Let Ω ∈  ℝ𝑛 an open of class 𝐶2 with 

bounded, 𝑢 ∈ 𝐿2(Ω) and 𝑓 ∈ 𝐻0
1(𝛺) the solution of the 

Neumann problem. So, 𝑓 ∈ 𝐻0
2(𝛺) given the fact that: 

 

{

𝜕𝑓

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑓(𝑥, 𝑡)𝑢(𝑥)) = 0     𝑖𝑛 𝛺

𝜕𝑓

𝜕𝑥
= 0        𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  𝜕𝛺

    (16) 

  

‖𝑓‖𝐻2(𝛺) ≤ 𝐶‖𝑢‖𝐿2(𝛺) (17) 

 

With a constant 𝐶 > 0 that only depends on Ω. 

 

Furthermore, if Ω is of class 𝐶𝑚+2 and 𝑢 ∈ 𝐻𝑚(Ω), with 

𝑚 ≥ 1 integer, then 𝑓 ∈ 𝐻𝑚+2(Ω) and there is a 

constant 𝐶𝑚 > 0 that only depends on 𝑚 and 𝛺, such 

that: 

 
‖𝑓‖𝐻𝑚+2(𝛺) ≤ 𝐶𝑚‖𝑢‖𝐻𝑚(𝛺)  (18) 

 

If we have that 𝑚 > 𝑛/2 then 𝑓 ∈ 𝐶2(𝛺̅), giving way to 

the following two theorems given the initial conditions of 

the problem [13].  
 

2.2. Solution using finite elements 

 

The domain is discretized through the triangulation 𝑇ℎ, in 

the space of 𝑋ℎ where it is generated by the basis 𝑋ℎ =
𝑠𝑝𝑎𝑛{𝜑1, … , 𝜑𝑛} [14], [15], [16]. 

 

Be 

𝑢ℎ(∈   𝑋ℎ) = ∑ 𝑢ℎ𝑗𝜑𝑗(𝑥)𝑛
𝑗=1   (19) 

 

Set 𝑢ℎ𝑗  such that: 

 

𝛿𝐽𝑣(𝑢ℎ) = 0,   ∀𝑣 ∈ 𝑋ℎ 

 

𝑎(𝑢ℎ, 𝑣) =  𝑙(𝑣) ,   ∀𝑣 ∈ 𝑋ℎ  

(20) 

 

 

Since any 𝑣 ∈ 𝑋ℎ can be written as a linear combination 

of the form: 

 

𝑣 = ∑ 𝑣𝑖𝜑𝑖(𝑥)𝑛
𝑖=1   

 

𝑎(𝑢ℎ, 𝑣) =  𝑙(𝑣) ,   ∀𝑣 ∈ 𝑋ℎ  
  

(21) 

𝑎(𝑢ℎ, ∑ 𝑣𝑖𝜑𝑖(𝑥)𝑛
𝑖=1 ) =

 𝑙(∑ 𝑣𝑖𝜑𝑖(𝑥)𝑛
𝑖=1 ) , ∀𝑣 ∈ ℝ𝑛  

(22) 

 

Knowing that: 𝑢ℎ = ∑ 𝑢ℎ𝑗𝜑𝑗(𝑥)𝑛
𝑗=1 , then we have: 

 

 𝑎(∑ 𝑢ℎ𝑗𝜑𝑗(𝑥)𝑛
𝑗=1 , ∑ 𝑣𝑖𝜑𝑖(𝑥)𝑛

𝑖=1 ) =

 𝑙(∑ 𝑣𝑖𝜑𝑖(𝑥)𝑛
𝑖=1 ) ,   ∀𝑣 ∈ ℝ𝑛  

(23) 

 

Written in matrix form, we get: 

 

𝑣𝑡𝐴ℎ𝑢ℎ = 𝑣𝑡𝐹ℎ,     ∀𝑣 ∈ ℝ𝑛  (24) 

 

Taking the following expansion, the above equations (24) 

can be developed as follows: 

 

𝑣 = [1 0 … 0]𝑡  (25) 

 

We have: 

 
∑ 𝐴ℎ1𝑗𝑢ℎ𝑗 = 𝐹ℎ1

𝑛
𝑗=1   (26) 

 

Then taking: 

 

𝑣 = [0 1 … 0]𝑡  (27) 

 

We have: 
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∑ 𝐴ℎ2𝑗𝑢ℎ𝑗 = 𝐹ℎ2
𝑛
𝑗=1   (28) 

 

And so on 𝑣𝑡𝐴ℎ𝑢ℎ = 𝑣𝑡𝐹ℎ,     ∀𝑣 ∈ ℝ𝑛 , with 𝐴ℎ𝑢ℎ =
𝐹ℎ 

 

The elements of the Matrix 𝐴ℎ [17] are constructed with 

𝜑𝑖 as linear functions (Figure 1) and the derivatives of 

𝜑𝑖, 
𝑑𝜑𝑖

𝑑𝑥
  for i=1 without losing generality (Figure 2). 

 

 
 

Figure 1. Functions in a linear way [17]. 

 

 
Figure 2. Derivative of the shape functions on the 

intervals 
𝑑𝜑𝑖

𝑑𝑥
=

1

ℎ
,
𝑑𝜑𝑖+1

𝑑𝑥
= −

1

ℎ
  [17]. 

 

The 𝐴ℎ𝑖𝑗 elements are given by: 

 

𝐴ℎ𝑖𝑗 = ∫
𝑑𝜑𝑖

𝑑𝑥

𝑑𝜑𝑗

𝑑𝑥
𝑑𝑥

𝛺
  

= ∬
𝑑𝜑𝑖

𝑑𝑥

𝑑𝜑𝑗

𝑑𝑥
𝑑𝑥

𝑇ℎ𝑖
+ ∬

𝑑𝜑𝑖

𝑑𝑥

𝑑𝜑𝑗

𝑑𝑥
𝑑𝑥

𝑇ℎ𝑖+1
  

(29) 

 

The nonzero elements are 𝑗 = 𝑖 − 1, 𝑖, 𝑖 + 1 

 

𝐴ℎ𝑖𝑖 =
1

ℎ2 ℎ +
1

ℎ2 ℎ =
2

ℎ
   (30) 

 

𝐴ℎ𝑖𝑖−1 =
1

ℎ
(

−1

ℎ
) ℎ = −

1

ℎ
  

 

(31) 

 

𝐴ℎ𝑖𝑖+1 = (
−1

ℎ
)

1

ℎ
ℎ = −

1

ℎ
  (32) 

 

The border lines  

𝐴ℎ11 =
2

ℎ
 ,     𝐴ℎ12 =

−1

ℎ
,  

 

(33) 

 

𝐴ℎ 𝑛 𝑛 =
2

ℎ
 ,     𝐴ℎ 𝑛 𝑛−1 =

−1

ℎ
  (34) 

 

The formation of the elements of the 𝐴ℎ  matrix 

characterizes this matrix as being positive definite [18] 

(𝐴ℎ ≻ 0), diagonally dominant, sparse, and tridiagonal 

as shown below: 

 

𝐴ℎ =
1 

ℎ

[
 
 
 
 
 

2 −1
−1 2

0 0
−1 0

… 0
… 0

0 −1
0 0

2 −1
−1 ⋱

… 0
⋱ ⋮

⋮ ⋮
0 0

⋱ ⋱
0 0

2 −1
−1 2 ]

 
 
 
 
 

  (35) 

 

The "charge" vectors are constructed in the general case 

as: 

𝑙(𝑣): 𝐹ℎ𝑖 = 𝑙(𝜑𝑖)  

 

(36) 

 

𝑙(𝑣) = ∫ 𝑓𝑣𝑑𝑥
𝛺

  (37) 

 

𝐹ℎ𝑖 = ∫ 𝑓𝜑𝑖𝑑𝑥
𝑇ℎ𝑖

+ ∫ 𝑓𝜑𝑖𝑑𝑥
𝑇ℎ𝑖+1

,      

   𝑖 = 1, … , 𝑛  

(38) 

 

 

Figure 3 describes the integration of 𝑓 on 𝑖   𝑒  𝑖 + 1. On 

the other hand, we have that 𝑢ℎ ∈ ℝ𝑛  satisfies: 

 

 

Figure 3. Integration of 𝑓 in the elements 𝑖, 𝑖 + 1. 
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1 

ℎ

[
 
 
 
 
 

2 −1
−1 2

0 0
−1 0

… 0
… 0

0 −1
0 0

2 −1
−1 ⋱

… 0
⋱ ⋮

⋮ ⋮
0 0

⋱ ⋱
0 0

2 −1
−1 2 ]

 
 
 
 
 

[
 
 
 
 
 
𝑢ℎ1

𝑢ℎ2

⋮
𝑢ℎ𝑖

⋮
𝑢ℎ𝑛]

 
 
 
 
 

=

[
 
 
 
 
 
𝐹ℎ1

𝐹ℎ2

⋮
𝐹ℎ𝑖

⋮
𝐹ℎ𝑛]

 
 
 
 
 

  (39) 

 

To form the orthogonal basis of linear functions, we have 

the “mass” matrix, which has the property 𝑀ℎ ∈ ℝ𝑛𝑥𝑛 ≻
0 to be positive semidefinite [19], the terms of this matrix 

are obtained by integrating the functions in a way, like 

this: 

 

𝑀ℎ𝑖𝑗 = ∫ 𝜑𝑖𝜑𝑗𝑑𝑥
Ω

  

 

(40) 

 

𝑣𝑡𝑀ℎ𝑣 = ∑ 𝑣𝑖
𝑛
𝑖=1 ∑ 𝑣𝑗

𝑛
𝑗=1 ∫ 𝜑𝑖𝜑𝑗𝑑𝑥

𝛺𝑖
  

 

(41) 

𝑣𝑡𝑀ℎ𝑣 = ∫ ∑ 𝑣𝑖
𝑛
𝑖=1 𝜑𝑖 ∑ 𝑣𝑗𝜑𝑗

𝑛
𝑗=1

𝑥𝑖+1

𝑥𝑖
𝑑𝑥  

 

(42) 

 

𝑣𝑡𝑀ℎ𝑣 = ∫ (∑ 𝑣𝑖
𝑛
𝑖=1 𝜑𝑖)

2𝑥𝑖+1

𝑥𝑖
𝑑𝑥 > 0  

 

(43) 

∑ 𝑣𝑖
𝑛
𝑖=1 𝜑𝑖 → 𝑣 ∈ 𝑋ℎ  (44) 

 

If 𝑣 ≠ 0, then 𝜑𝑖 are the bases in linear form. Therefore, 

for linear elements the nodal linear basis is given by the 

“mass” matrix [20]: 

 

𝑀ℎ = ℎ

[
 
 
 
 
 
2/3 1/6
1/6 2/3

0 0
1/6 0

… 0
… 0

0 1/6
0 0

2/3 1/6
1/6 ⋱

… 0
⋱ ⋮

⋮ ⋮
0 0

⋱ ⋱
0 0

2/3 1/6
1/6 2/3]

 
 
 
 
 

 (45) 

 

In the temporary variable it is discretized with the 

recurrence equation: 

 
𝑑𝑓𝑖

𝑑𝑡
=

𝑓𝑖+1−𝑓𝑖−1

2∆𝑡
  (46) 

 

In the case of linear basis elements with equal time 

division, the finite element approximation provides a 

coupled linear system of equations for each of the 𝑓𝑖 with 

𝑖 = 2,… , 𝑛. In this way we arrive at the numerical 

solution of the finite element expansion, as shown below: 

 

𝑢(𝑥, 𝑡) = ∑ 𝑓𝑖(𝑡)𝜑𝑖(𝑥)𝑛
𝑖=1    (47) 

 

3. Analysis and results 

 

Figure 4 shows the dynamics of the density. In the case 

study of this document, this function is taken as the initial 

condition for the Cauchy problem, posed through 

equations (9) and (24). 

 

 

{
𝜕𝑣

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑣(𝑥, 𝑡)𝑢(𝑥)) = 0     𝑖𝑛 Ω

𝑢 = 0        𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  𝜕Ω
    (48) 

 

Figure 4. Initial density conditions. 

 

v is the known velocity (initial conditions), and 𝑢 is the 

density (𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠/𝑚). 

The behavior of the velocity at different points in the 

spatial domain is shown in Figure 5, i.e., (𝑡, 𝑥), (𝑡, 0)  

blue curve, (𝑡, 1) black curve, (𝑡, 5) green curve, and 

(𝑡, 10) red curve. 

 

 

Figure 5. Velocity 𝑣(𝑡). 

 

Using Figure 6, the numerical solution of the density of 

vehicles per meter can be verified. This solution is 

subject to the initial conditions established by the 

function proposed in Figure 4. 
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Figure 6. Input density 𝑓(𝑥). 

 

4. Conclusions 

 

Due to the velocity limit that must be met for the 

theorems outlined in this document, the solution is 

bounded between 0 and 1 vehicles/meter as shown in 

Figures 4 to 6. On the other hand, the non-linear solution 

given by the temporal variable is estimated by means of 

finite elements for 5 specific points in the space of the 

velocity dynamics. 

 

The theorems described above are satisfied if Ω = ℝ𝑛 

and the solution obtained by any numerical method 

converges to the initial conditions and meets the initial 

conditions determined according to the problem posed 

(Dirichlet, Robin, or Neumann). 

 

Due to the velocity of propagation, to solve the Cauchy 

problem for traffic flow in a whole network, it is 

proposed to build a local solution in a neighborhood. The 

solution found meets the conditions of the problem posed 

with equations (9) and (24) and the numerical solution 

given by equation (39). 
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