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Abstract 

 

In the present work we show the generalities of the classical field theory (CFT), we study its extension to the quantum 

field theory (QFT), where as an example of numerical analysis and combination with the field theory technique, we 

solve a system Klein-Gordon type (KGS) in two space-time dimensions (1+1) studying its stability through the spectral 

parameter λ(k), principle of convergence due to the parameters of the numerical network and the solution for the field 

ф (x;t), obtaining novel results. Also, we briefly study the technique of creation and destruction ladder operators from 

the perspective of the quantum harmonic oscillator, to define some properties and extensions to the problem in 

canonical quantization. Finally, we apply the topics studied to a problem of unconventional superconductivity in 

Nickelates compounds by solving the system of Bogoliubov-deGennes (BdG) Equations in the mean expansion of the 

field, obtaining the superconducting energy band. 

 

Keywords: Quantum theory; Second quantization; Canonical quantization; Second order transformation; Bogoliubov-

de Gennes; Superconductivity. 

 

Resumen 

 

En el presente trabajo mostramos las generalidades de la teoría clásica de campos (CFT), estudiamos su extensión a la 

teoría cuántica de campos (QFT), donde como ejemplo de análisis numérico y combinación con la técnica de la teoría 

de campos, resolveremos un sistema tipo Klein-Gordon (KGS) en dos dimensiones espacio temporales (1+1) 

estudiando su estabilidad mediante el parámetro espectral λ(k), principio de convergencia debido a los parámetros de 

la red numérica y la solución para el campo ф (x;t), obteniendo resultados novedosos. Además, analizamos brevemente 

la técnica de operadores de Escalera creación y destrucción desde la perspectiva del oscilador armónico cuántico, para 

definir algunas propiedades y extensiones al problema en cuantización canónica. Finalmente, aplicamos los temas 

estudiados a un problema de superconductividad no convencional en compuestos Niquelatos solucionando el sistema 

de Ecuaciones de Bogoliubov-deGennes (BdG) en la expansión media del campo, obteniendo la banda energética 

superconductora. 

https://creativecommons.org/licenses/by-nd/4.0/deed.es
https://doi.org/10.18273/revuin.v22n2-2023011
https://doi.org/10.18273/revuin.v22n2-2023011
https://revistas.uis.edu.co/index.php/revistauisingenierias
https://orcid.org/0000-0001-8064-6351
mailto:cristian@ﬁsica.ufmt.br
https://orcid.org/0000-0002-6909-0417
mailto:julian@templeuniversity.edu.us
https://orcid.org/0000-0003-3415-1811
mailto:jjbarbao@unal.edu.co


130   
 
 

C. A. Aguirre, J. Faundez, J. Barba-Ortega 

Palabras clave: Quantum theory; Second quantization; Canonical quantization; Second order transformation; 

Bogoliubov-deGennes; Superconductivity. 

 

1. Introduction 

 

In general, in classical mechanics, there are several ways 

to study the dynamics of particle systems [1], [2], [3], [4]. 

This really depends on the problem to be addressed and 

the possible connections with various methods to be 

applied. In particular, the main connection between 

classical mechanics and classical field theory is due to 

Lagrange’s or Hamilton’s formulations. By means of the 

first, a scalar function is defined, whose dependence as a 

functional is due to the coordinates, generalized 

velocities and the tim 𝔏 (𝔮, 𝔮, 𝑡)  in addition, the 

canonical momentum, 𝜌
𝜕𝔏

𝜕𝔮
. From variational calculus, to 

find a stable value, the action integral satisfie 𝔰 [2]: 

 

δ𝔰 = δ ∫ f𝐿
𝑡

𝑡0

𝑑𝑡 = ∫
∂𝔏

∂𝑞
δ𝑞

𝑡

𝑡0

+
∂𝔏

∂𝑞̇
δ𝑞̇ +

∂𝔏

∂𝑡
δ𝑡

= 0 

(1) 

For the problem to be well defined, the boundary 

conditions δ(𝑞(𝑡0)) =  δ(𝑞(𝑡)) =  0  must be found, and 

performing the integration we obtain: 
 

δ𝔰 = ∫
∂𝔏

∂q
δq

t

t0

−
d

dt
(

∂𝔏

∂q̇
) δq +

∂𝔏

∂t
δt = 0 

 

(2) 

Taking into account the fundamental lemma of the 

variational calculus [5], [6], the so-called Euler Lagrange 

equation is obtained: 
 

𝜕𝔏

𝜕𝑞
−

𝑑

𝑑𝑡
(

𝜕𝔏

𝜕𝑞̇
) +

𝜕𝔏

𝜕𝑡
𝛿𝑡 = 0 

 

(3) 

With which, given a Lagrangian function, it is possible to 

find the equations of motion that describe the state of the 

system. Now, in the Lagrangian description, the 

dynamics of the movement is in the configuration space, 

where each point accounts for the state of the system at a 

given time. However, it is more general to study the 

system depending on the coordinates and generalized or 

conjugate moments. It is in this way that the Hamiltonian 

is defined, as the Legendre transform of the Lagrangian 

function  H = ∑ qi̇ pi
n
i − 𝔏, i goes over the degrees of 

freedom. By varying the Hamiltonian, the Hamilton [3], 

[4] equations are obtained:   𝑞̇ =
∂𝐻

∂𝑝
, 𝑝̇ = −

∂𝐻

∂𝑞
 . Suppose 

a functional A, dependent on generalized positions and 

moments A(q,p) and take its total derivative: 
 

𝑑𝐴

𝑑𝑡
=

𝜕𝐴

𝜕𝑞

𝑑𝑞

𝑑𝑡
+

𝜕𝐴

𝜕𝑝

𝑑𝑝

𝑑𝑡
=

𝜕𝐴

𝜕𝑞
𝑞̇ +

𝜕𝐴

𝜕𝑝
𝑝̇ 

(4) 

Now, it is possible to define the Poisson bracket: 
 

{𝐴, 𝐵}𝑃𝑜𝑖𝑠𝑠𝑜𝑛 =
∂𝐴

∂𝑞

∂𝐵

∂𝑝
−

∂𝐵

∂𝑝

∂𝐴

∂𝑞
 

 

(5) 

Finally arriving at the time evolution equation, for 

any dynamic quantity [4], [5]. 
 

𝑑𝐴

𝑑𝑡
= {𝐴, 𝐻}𝑃𝑜𝑖𝑠𝑠𝑜𝑛 +

∂𝐴

∂𝑡
 

 

(6) 

This is the classical perspective, for the treatment of 

fields, with finite freedom degrees. Now, the extension 

that interests us to systems with infinite degrees of 

freedom is done as follows, initially with the relativistic 

notation, the index υ = 0;1;2;3, being υ = υ0 temporal 

dependence and other indices responsible for spatial 

coordinates, additional Einstein notation be used. Thus, 

the extension of the Euler-Lagrange equation is written: 
 

∂υ

∂𝔏

∂(∂υϕ)
−

∂𝔏

∂ϕ
= 0;   υ = 0,1,2,3 

 

(7) 

With the dependence of the Lagrangian 

functional 𝔏(ϕ, ϕ̇, 𝑡) and the field ϕ(𝑥, 𝑡) and the 

extension to the continuum of the Hamiltonian density: 
 

ℌ = ∫ 𝑑4 𝑥 (Π(𝑥)𝜙̇(𝑥) − 𝔏(𝜙, 𝜙̇)) ; Π

=
𝜕

𝜕𝜙̇
∫ f𝐿 𝑑3𝑥 

(8) 

in addition, with the derivation notation ∂υ
2 = ∂𝑡

2 − ∇2, 

that is, given a Lagrangian as a function of a given field, 

the Euler-Lagrange equation is used and the equation of 

motion is obtained. 

 

2. Numerical analysis of a Klein-Gordon system 

 

As a particular example of how field theory is applied, 

we study the system described by the KGL in one 

dimension and we study its numerical bidimensional 

solution under that conditions where the system is 

unconditionally stable. Thus, we start with the 

Lagrangian, which describes a KGS [6], [7] type system: 
 

𝔏(ϕ, ϕ̇) = 1/2ϕ2̇ − 1/2(∇ϕ)2 − 1/2𝑚2ϕ2 

 

(9) 

where ф (x;t) represents the field. With this, the 

application of the Euler-Lagrange equation generates the 

following derivatives, proceeding with the construction 

of the equation of motion of the system: 
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∂𝔏

∂ϕ
= 𝑚2ϕ;  ∇ ⋅ ∇ϕ = ∂𝑡

∂𝔏

∂((∂υϕ))
= ϕ̈ (10) 

 

obtaining the following equation of motion: 
 

ϕ̈ − ∇2ϕ + 𝑚2ϕ = 0 
 

(11) 

where ϕ̈, represents the second time derivative. With 

this, to address the numerical solution of the KGS, we 

identify that it is a partial differential equation, of the 

hyperbolic [7], [8], [9] type. For these equations, the 

initial conditions are of the Gaussian type ϕ(x, 0) =

e−x2
[8], [10] and for the boundaries, the following are 

applied: boundary conditions ϕ(1, t) = ϕ(L, t) =
f(t) in general these conditions are Gaussian too, in 

addition we study a rectangular domain, whose size is 

L. With this, we discretize the system using the finite 

difference method, where we use a stencil (numerical 

scheme) to discretize the temporal and spatial 

derivative. Initially by notation, we define ϕ(𝑥𝐽, 𝑡𝑛) =

ϕJ
nwith 0 < x < 𝐽 and 0 < t <  𝑛 which be used to 

discretize the space and time of the field ϕ(x, 𝑡), in 

each one of the points in the domain to be studied. 

Thus, in the central derivative scheme [8], [11], [12]: 
 

ϕ̈ = ∂𝑡𝑡ϕ =
1

(Δ𝑡)2
(𝑢𝐽

𝑛+1 − 2ϕ𝐽
𝑛 + ϕ𝐽

𝑛−1); 

ϕ𝑥𝑥 =
1

(Δ𝑥)2
(𝑢𝐽+1

𝑛 − 2ϕ𝐽
𝑛 + ϕ𝐽−1

𝑛 ) 

 

(12) 

Where we consider ∇2ϕ = ∂𝑥𝑥 , just in one dimension: 
 

1

(Δ𝑡)2
(𝑢𝐽

𝑛+1 − 2ϕ𝐽
𝑛 + ϕ𝐽

𝑛−1)

−
1

(Δ𝑥)2
(𝑢𝐽+1

𝑛 − 2ϕ𝐽
𝑛

+ ϕ𝐽−1
𝑛 ) + 𝑚2ϕ𝐽

𝑛 = 0 

 

(13) 

using the implicit solution scheme [8], [13], to find the 

propagation of the solution at points n + 1, given the 

values n, n -1,…, i.e 𝜙𝐽
𝑛+1 given the interior points of the 

lattice, we obtain: 
 

ϕ𝑗
𝑛+1 = (2(1 − υ2) − 𝑚2Δ𝑡2)ϕ𝑗

𝑛 + 

υ2(ϕ𝑗+1
𝑛 + ϕ𝑗−1

𝑛 ) − ϕ𝑗
𝑛−1 

 

(14) 

where 𝜐 = (Δ𝑡/Δ𝑥)2. This stencil accounts for the 

temporal evolution of the solution of the field ϕ𝐽
𝑛. 

However, at this point it is not known whether the system 

is stable, unstable or chaotic. The standard method is to 

perform the amplifier calculation of the number system 

[13], [15]. Thus, we consider Newmann’s method as the 

basis of this analysis. Suppose that the solution of the 

system is separable, using the Fourier method [8], [14], 

[15]. 
 

ϕ𝑗
𝑛 = λ𝑛𝑒𝑖𝑘𝐽Δ𝑥 

(15) 

 

where k, is a constant and  Δ𝑥 the size of the network.  

We define 𝜙𝐽
𝑛+1  =  𝜆𝜆𝑛𝑒𝑖𝐽𝑘Δ𝑥 , 𝜙𝐽+1

𝑛 =

 𝜆𝑛𝑒𝑖𝐽𝑘Δ𝑥𝑒𝑖𝑘Δ𝑥 ,  𝜙𝐽−1
𝑛 =               𝜆𝑛𝑒𝑖𝐽𝑘Δ𝑥𝑒−𝑖𝑘Δ𝑥 , 𝜙𝐽

𝑛−1 =

 𝜆𝑛 𝜆 −1𝑒−𝑖𝐽𝑘Δ𝑥  and for simplification in the notation we 

call a (2(1 − 𝜐2) − 𝑚2Δ𝑡2) = 𝑚̃2. We get the algebraic 

equation for the amplifier: 𝜆2(𝑘) − 𝜆(𝑘)(𝑚̃2 +
2𝜐 cos(𝑘Δ𝑥)) + 1 = 0. Since the roots are complex for 

every value of 𝑘(|𝜆(𝑘)| < 1), in general the scheme is 

conditionally stable, if 𝜐 > 1. Where for simplicity we 

take 𝑎 = 𝑚̃2 + 2𝜐 cos(𝑘Δ𝑥) and the possible values for 

λ(k) are found by solving the equation:                                     

λ1 =
1

2
(𝑎 − √𝑎2 − 4), λ2 =

1

2
( 𝑠𝑞𝑟𝑡𝑎2 − 4 + 𝑎) with 

𝑎 = 𝑚̃2 + 2υ cos(𝑘Δ𝑥), these values of the 

amplification factor, realize that the system is 

conditionally stable, this conditioning depends on 

geometric parameters of the network or numerical mesh. 

 

To analyze the KGS problem, we initially consider the 

coefficient m2 and find the non negative values as 

follows: (2(1 − υ2) − 𝑚2Δ𝑡2) > 0, and Δ𝑡 > √
2(1−υ2)

𝑚2 . 

This is the mesh size in the temporal direction, which 

depends on the eigenvalues of the studied system, this 

indicates the values that must be taken into account for 

the solution of the system. Now with the information of 

the system, the size of the network, initial conditions and 

boundary conditions, for 𝜙(𝑥, 𝑡) we proceed to present 

the numerical solution of the KGS type system. So, we 

take as initial condition 𝜙(𝑥, 0) = 𝑒(−(𝑥−0.2)2) and 

boundary conditions ϕ(1, 𝑡) = ϕ(𝐿, 𝑡) =

𝑒(−(𝑥𝑖−𝑡−0.2)2) with 𝑥𝑖 = 1, 𝐿. We present in Figure 1 the 

solution for 𝜙(𝑥, 𝑡) and its temporal evolution for 

different times t, where the constants were taken as m = 

1, dx = 0;02, dt = 0;1, 𝜐 = 0;2 and total points in time        

Nt= 100. We observe the agreement of the solution for 

the field 𝜙(𝑥, 𝑡), with respect to other techniques used 

for its solution [16], [17]. 

 

We observe that the coincidence between the method 

used and other techniques, which involve greater 

refinement of the network and extensions, is almost 

complete. Additionally, in Figure 2, we present the 

projection of the solution for a fixed time t = 0;01, which 

is consistent with the hyperbolic behavior of the KGS.  
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Additionally lím𝑡→∞𝜙(𝑥, 𝑡) =  0 which defines the 

asymptotic behavior of the complex scalar field [14]. As 

an aside, we reaffirm the importance of the sample size in 

the time direction Δt, since this condition is highly 

unstable, i.e for values close to said step for time, the 

system becomes unstable and possibly chaotic, this study 

for the size and for the spectral factor, have not been 

studied before [18], therefore, this is a novel result in this 

work.  

 

  

Figure 1. (a) Numerical solution of KGS for the field 𝜙(𝑥, 𝑡) with initial condition 𝜙(𝑥, 0) = 𝑒(−(𝑥−0.2)2) and 

boundary conditions 𝜙(1, 𝑡) = 𝜙(𝐿, 𝑡) = 𝑒(−(𝑥𝑖−𝑡−0.2)2) with 𝑥𝑖 = 1, 𝐿 according to its border. (b) Same solution, 

with difference in size in the domain and (c) projection for of the solution. 

 
Figure 2. Projection of the numerical solution of KGS for the field 𝜙(𝑥, 𝑡), with initial condition 𝜙(𝑥, 0) =

𝑒(−(𝑥−0.2)2) and boundary conditions 𝜙(1, 𝑡) = 𝜙(𝐿, 𝑡) = 𝑒(−(𝑥𝑖−𝑡−0.2)2), with 𝑥𝑖 = 1, 𝐿 according to its 

boundary. 
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Finally, in the Figure 3, we present the difference 

between |ϕ𝐽+1
𝑛+1 − ϕ𝐽

𝑛|, for different iterations, we observe 

that in general for the first iterations the error is relatively 

large and then begins a marked decrease for values 

greater than 14, having a first minimum for the iteration 

23 and then an increase in this difference for values 39 < 

i < 49, followed by an increase, this behavior is common 

for conditionally stable systems, where this maximum 

oscillatory difference. 

 

3. Application of quantum field theory, 

Bogoliubov-deGennes equations and mean field 

 

One of the most fruitful theories since its appearance for 

the study of quantum field theory in systems with second 

order phase transformation; i.e superconductors, it was 

the BCS (Bardeen-CooperSchrieffer) theory, this was the 

first theory to study the phenomenon of 

superconductivity from the microscopic view of the 

phenomenon and to be the first to correctly describe the 

superconducting gap in function of temperature [19], 

[20]. However, the extensions of said theory have been 

widely applied in different contexts; such as the 

expressions of BdG, Migdal-Eliasberg and extensions to 

phenomenological descriptions, such as those due to 

GinzburgLandau (TDGL) and Gross-Pitaevskii (BEC). 

To do this, we start from the Fourier transform between 

the creation and destruction operators, from the real 

space to the space of moments. 

 

𝑎̂(𝑟σ) = ∑ 𝑒𝑖𝑘𝑟

𝑘,σ

𝑎̂𝑘,σ;  𝑎̂†(𝑟σ)

= ∑ 𝑒−𝑖𝑘𝑟

𝑘,σ

𝑎̂†
𝑘,σ   

With 𝑎̂ (𝑎̂†) destroys (creates) a particle at position i, 

additional, σ , represents the spin operator (up ↑ σ, 
𝑑𝑜𝑤𝑛 ↓ σ´), in conjunction with the normalization rule 

already used ∫ 𝑢∗(𝑥)𝑢(𝑥)𝑑3 𝑥 = 1we proceed to the 

construction of the Hamiltonian density, with                           

𝐻̂ =
𝑝2

2𝑚
+ 𝑈̂. 

 

ℌ = ∫ 𝑑3 𝑟𝑎̂†𝐻̂𝑎̂

= ∫ 𝑑3 𝑟 ∑ 𝑒−𝑖𝑘𝑟

𝑘,σ

𝑎̂†
𝑘,σ  (

 𝑃̂2

2𝑚
+ 𝑈̂) 𝑒𝑖𝑘𝑟𝑎̂𝑘,σ 

(16) 

and 
 

ℌ = ∑ 𝑎̂†
𝑘,σ

𝑘,σ

(
 𝑃̂2

2𝑚
+ 𝑈̂) 𝑎̂𝑘,σ ∫ 𝑑3 𝑟𝑒−𝑖𝑘𝑟𝑒𝑖𝑘𝑟

= ∑ 𝑎̂†
𝑘,σ

𝑘,σ

(
 𝑃̂2

2𝑚
+ 𝑈̂) 𝑎̂𝑘,σ 

(17) 

 

Which is the so-called free Hamiltonian, where the 

potential 𝑈̂, represents impurities or deformations in the 

crystal lattice of the system used. The second part of the 

Hamiltonian, was included by the authors of BCS, by 

means of this addition the interaction behavior of the 

electrons due to the possible oscillations of the network 

is explained, these paired electrons were called Cooper 

pairs. 
 

ℌ2 = −
𝑉

2
∑ 𝑎̂†

𝑘,σ

𝑘,𝑘,,σ,σ,

 𝑎̂†
𝑘 ,,σ,𝑎̂𝑘,,σ,𝑎̂𝑘,σ (18) 

 

 

  
Figure 3. Oscillatory difference for |ϕ𝐽+1

𝑛+1 − ϕ𝐽
𝑛|, as a function of iteration. 
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Whereupon the BCS Hamiltonian is completely rewritten 

as follows: 
 

ℌ2

= ∑ 𝑎̂†
𝑘,σ𝐻̂𝑎̂𝑘,σ

𝑘,σ

−
𝑉

2
∑ 𝑎̂†

𝑘,σ

𝑘,𝑘 ,,σ,σ,

 𝑎̂†
𝑘 ,,σ,𝑎̂𝑘 ,,σ,𝑎̂𝑘σ 

(19) 

 

n the initial BCS theory, the repulsion potential between 

electrons is defined as negative and constant and is 

present in the repulsion term as V.  With this, 5 the 

solution of the eigenstates of the Hamiltonian BCS 

accounts for the variation of the coupling between the 

free electrons, i.e there is a frequency that describes the 

union of this coupling between electrons, this energy 

value is called superconducting Gap. The idea in the BdG 

theory is to carry out the mean field expansion of the BCS 

Hamiltonian generating the spatial study of the Gap, thus: 
 

ℌ𝐵𝑑𝐺 =<=  ℌ𝐵𝑐𝑠 =>=< ∑ 𝑎̂†
𝑘,σ𝐻̂𝑎̂𝑘,σ

𝑘,σ

> −

<
𝑉

2
∑ 𝑎̂†

𝑘,σ

𝑘,𝑘 ,,σ,σ,

 𝑎̂†
𝑘 ,,σ,𝑎̂𝑘 ,,σ,𝑎̂𝑘σ > 

(20) 

 

The first term accounts for the energy of the system, the 

second term describes the interaction between the  

electrons, we study this mean value using Wick’s 

theorem [7]. 

−<
𝑉

2
∑ 𝑎̂†

𝑘,𝜎

𝑘,𝑘,,𝜎,𝜎,

 𝑎̂†
𝑘,,𝜎,𝑎̂𝑘,,𝜎,𝑎̂𝑘𝜎 >= 

−<
𝑉

2
∑ [< 𝑎̂†

𝑘,𝜎𝑎̂†
𝑘,,𝜎, > 𝑎̂𝑘,,𝜎,𝑎̂𝑘𝜎 + 𝑎̂†

𝑘,𝜎𝑎̂†
𝑘,,𝜎,

𝑘,𝑘,,𝜎,𝜎,

< 𝑎̂𝑘,,𝜎,𝑎̂𝑘𝜎 > +< 𝑎̂†
𝑘,𝜎𝑎̂†

𝑘,,𝜎, > 

< 𝑎̂𝑘,,𝜎,𝑎̂𝑘𝜎 >]  

 

Where the gap is defined as Δ(r) = −V/2 <
𝑎̂𝑘 ,,𝜎,𝑎̂𝑘𝜎𝑠𝑖𝑔𝑚𝑎 > y Δ∗ = −V/2 < 𝑎̂†

𝑘,𝜎𝑎̂†
𝑘,,𝑠𝑖𝑔𝑚𝑎, >, 

with which equating in the previous expression, we  btain 

the first form of the Hamiltonian BdG: 
 

ℌ𝐵𝑑𝐺 = ∑ 𝑎̂†
𝑘,σ𝐻̂𝑎̂𝑘,σ

𝑘,σ

> + ∑ [Δ(r)𝑎̂†
𝑘,𝜎𝑎̂†

𝑘 ,,𝜎,

𝑘,𝑘 ,,σ,σ,

+ Δ∗(r)𝑎̂𝑘 ,,𝜎,𝑎̂𝑘𝜎 + |Δ(r)|2] 

 

(21) 

Where it is observed that there is a spatial dependence of 

the Gap Δ(r). Now, with the use of canonical 

quantization, for fermions (see equation 24), where we 

observe that the BdG Hamiltonian can be written as a 

quadratic version in the base of the occupations, so we 

define it as the effective Hamiltonian: 

 

ℌ𝔢𝔣𝔣 = 𝐸𝑔 + ∑ 𝐸𝑛

𝑛,σ

Γ𝑛,σ
† Γ𝑛,σ (14) 

 

(22) 

{Γ𝑛,σ, Γ𝑛′,σ
† } = 𝛿𝑛,𝑛′𝛿𝜎, 𝜎′ (23) 

{Γ𝑛,𝜎
† , Γ𝑛′,𝜎

† } = {Γ𝑛,𝜎 , Γ𝑛′,𝜎} = 0 (24) 

With which, we proceed to develop the properties of the 

anti-commutators between the effective Hamiltonian and 

the operators Γ𝑛,σ and Γ𝑛,𝜎
†

: 

{𝐻̂eff, Γn,σ} = {Eg + ∑ En

n,σ

Γ𝑛,𝜎
† Γn,σ, Γn,σ} = 

{Eg, Γn,σ} + {∑ En

n,σ

Γn,σ
† Γn,σ, Γn,σ} = 

∑ En

n,σ

{Γn,σ
† Γn,σ, Γn,σ} = 

∑ En(Γn,σ
† {Γn,σ, Γn,σ} − Γn,σ{Γn.σ, Γn,σ

† })

n,σ

=  

{𝐻̂𝑒𝑓𝑓, Γ𝑛,𝜎} = −EnΓn,σ 

 

For the construction of the BdG equation system, we 

proceed to calculate the anti-commutation relation 

between the Hamiltonian of the equation 28 with the 

operators 𝑎̂𝑘σ y 𝑎̂†
𝑘,σ: 

 

{𝑎̂𝑘σ, ℌ𝔅𝔡𝔊} = {𝑎̂𝑘,σ, ∑ [Δ(𝑟)𝑎̂†
𝑘,σ 𝑎̂†

𝑘,,σ,

𝑘,𝑘′σ,σ′\

+ Δ∗(𝑟)𝑎̂𝑘,σ,𝑎̂𝑘,σ |Δ(r)|2 +]} = 

∑ {𝑎̂𝑘,σ,

𝑘,𝑘′σ,σ′

Δ(𝑟)𝑎̂†
𝑘,𝜎𝑎̂†

𝑘,,𝜎,} + {𝑎̂𝑘,σ, Δ∗(𝑟)𝑎̂𝑘,σ,𝑎̂𝑘,σ} + 

{𝑎̂𝑘,σ, |Δ(𝑟)|2} 

 

applying the anti-commutation rules, we settle on the last 

three terms of this expression, where Δ(𝑟) and Δ†y have 

no direct dependency on k(k´) or σ (σ´): 

∑ Δ(𝑟){𝑎̂𝑘,σ,

𝑘,𝑘′σ,σ′

𝑎̂†
𝑘,𝜎𝑎̂†

𝑘,,𝜎,} + Δ∗(𝑟){𝑎̂𝑘,σ, 𝑎̂𝑘,σ,𝑎̂𝑘,σ} + 

{𝑎̂𝑘,σ, |Δ(𝑟)|2} 

= ∑ Δ(𝑟){𝑎̂𝑘,σ,

𝑘,𝑘′σ,σ′

𝑎̂†
𝑘,𝜎𝑎̂†

𝑘,,𝜎,}) 

{𝑎̂𝑘,𝑛, ℌ𝔅𝔡𝔊} = + ∑ Δ(𝑟)

𝑘,𝑘′σ,σ′

𝑎̂†
𝑘,,𝜎, 

where {𝑎̂𝑘,σ, 𝑎̂𝑘,σ,𝑎̂𝑘,σ} = {𝑎̂𝑘,σ, |Δ(𝑟)|2}= 0. Thus, follo- 

wing the same process, we obtain: 

{𝑎̂†
𝑘,𝑛, ℌ𝔅𝔡𝔊} = ∑ −Δ(𝑟)∗

𝑘,𝑘′σ,σ′

𝑎̂†
𝑘,,𝜎, 
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Finally, through the Bogoliubov transformation: 

 

𝑎̂†(𝑟, σ) = ∑ 𝑢n
∗Γn,σ

† + 𝑣nΓn,σ,
n

 

𝑎̂(𝑟, σ,) = ∑ 𝑣n
∗Γn,σ

† + 𝑢nΓn,σ,
n

 
(25) 

 

and combining the results of the anti-commutators: 

 

{𝑎̂𝑘,𝑛, ℌ𝔅𝔡𝔊} = ∑ 𝐻̂𝑎̂𝑘,𝜎 + Δ(r)

𝑘,𝑘′σ,σ′

𝑎̂†
𝑘,,𝜎, 

{𝑎̂†
𝑘,𝑛, ℌ𝔅𝔡𝔊} = ∑ 𝐻̂𝑎̂𝑘,𝜎 − Δ(r)∗

𝑘,𝑘′σ,σ′

𝑎̂†
𝑘,𝜎 

 

(26) 

and equating the Bogoliubov transformation: 

 

[
𝑢n

𝑣n
] 𝐸n = [

𝐻̂
Δ∗(r) 

  Δ(r)

    −𝐻̂
∗
 
] [

𝑢n

𝑣n
] (27) 

 

What is the set of equations of BdG. Now, all that  

remains is to establish the self-consistency relationship 

for the system. Again from the Hamiltonian in the mean 

field and we perform the variation: 

𝛿 < ℌ𝔅𝔡𝔊 >= 𝛿 < ∑ 𝑎̂†
𝑘,𝜎𝐻̂𝑎̂𝑘,𝜎

𝑘,σ

> + ∑ [Δ(r)𝛿 < 𝑎̂†
𝑘,𝜎𝑎̂†

𝑘,,𝜎,

𝑘,𝑘,,σ,σ,

> +Δ∗(r)𝛿 < 𝑎̂𝑘,,𝜎,𝑎̂𝑘𝜎 >] 

 

With 𝛿|Δ(r)|2 = 0 and performing the same process for 

the BCS Hamiltonian in mean field: 

𝛿 < ℌ𝔅𝔡𝔊 >= 𝛿 < ∑ 𝑎̂†
𝑘,𝜎𝐻̂𝑎̂𝑘,𝜎

𝑘,σ

> −

−
𝑉

2
∑ [𝛿 < 𝑎̂†

𝑘,𝜎𝑎̂†
𝑘,,𝜎,

𝑘,𝑘,,σ,σ,

> 𝑎̂𝑘,,𝜎,𝑎̂𝑘,𝜎 +  𝑎̂†
𝑘,𝜎𝑎̂†

𝑘,,𝜎,

< 𝑎̂𝑘,,𝜎,𝑎̂𝑘,𝜎 > +𝛿 < 𝑎̂†
𝑘,𝜎𝑎̂†

𝑘,,𝜎,

>< 𝑎̂𝑘,,𝜎,𝑎̂𝑘,𝜎 >] 

 

4. Numerical Solution of the Klein-Gordon and 

Bogoliubov-deGennes Equations for Nickels 

 

We present the numerical solution for a system of 

extensive current importance, which are those systems 

that present coexistence of superconductivity and 

ferromagnetism, the most innovative are those materials 

known as nickelates [21], [22], [23], [24], [25], [26], [27], 

[28], [29], and superconductors [30], [31], [32]. With 

this, in Figure 4 we present the crystalline structure used 

for the study using the BdG formalism. 

 

In addition, in Figure 5, we present a side view of the 

RNiO2, compound, in order to present the locations of the 

atoms and the potentials that be taken into account for the 

construction of the BdG Hamiltonian. 

 

Given these results of quantum field theory, applied to 

condensed matter, specifically to second order phase 

transition systems, we proceed to perform a multi-band 

extension of the BdG system, by choosing the following 

Hamiltonian: 

a)                                      b)                                                   c) 

 

 
 

Figure 4. System studied using the BdG model RNiO2, where R is Nd, Yb or Pr, (b) two layers of the compound 

RNiO2, where Ni atoms are the blue circles, O the red circles and R are the orange circles. (c) First Brillouin zone of 

the RNiO2 system. 
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Figure 5. Representación esquemática de los átomos 

en una sola capa. Los átomos azules son Ni-dx2+y2, los 

rojos son O - 2p, los rosados son Nd-dx2+y2 y Sr-s. 

 

   𝐻   

=    ∑ 𝜖𝜒,𝜎

𝜒𝜒′,𝑝𝜎

 (𝑝)𝑎†
𝜒,𝑝,𝜎𝑎𝜒′,𝑝,𝜎𝛿𝜒𝜒′

− ∑ 𝑉𝜒,𝜒′

𝜒𝜒′,𝑝𝑞

 (𝑝, 𝑞)𝑎†

𝜒,𝑝↑𝑎†
𝜒,−𝑝↓𝑎𝜒′,−𝑞↓𝑎𝜒′,𝑞↑ 

+ ∑(𝑒𝜎
0 − 𝜇)𝑛𝑖𝜎

𝑥

𝑖,𝜎

, 

 

(28) 

We treat this Hamiltonian in mean field approximation, 

with inter-orbital interaction only with the first few 

neighboring orbitals: 

 
   Δ𝜒,𝑝 =  Δ𝜒𝑓𝜒,𝑝  

= ∑ ∑ 𝑉𝜒𝜒′

𝑞

𝑁

𝛽

(0)𝑓𝜒,𝑝𝑓𝛽,𝑞

Δ𝜒′𝑓𝛽,𝑞

2𝐸𝛽,𝑞

tanh (
𝛽

2
𝐸𝜒′,𝑞) 

 

(29) 

Now, in the Table 1 we can define the different types of 

pairings between the orbitals, which account for the 

possible types of interaction between them, for each of 

the atoms presented in Table 1 and Figure 5, additional, 

we proceed to take a limit for a large number of particles 

in the system, as follows in spherical coordinates: 

 

∑ →

𝑝

∫ 𝑑2𝑝 (2𝜋)2 = ∫
𝑝𝑑𝑝𝑑𝜙𝑑𝜃

(2𝜋)2
→ 

𝑝𝛼(0) ∫ 𝑑𝜖𝛼,𝑝 

𝜔𝐷

0

∫
𝑑𝜙

2𝜋

2𝜋

0

∫ 𝑑𝜙,
2𝜋

0

 

 

(30) 

Thus, with the construction of the Hamiltonian, a 

tridiagonal system by blocks is obtained in the 

Hamiltonian Matrix. In general, the method used for this 

solution is by factoring LU [9]. By implementing 

diagonalization, the eigenvalues and eigenfunctions for 

said Hamiltonian are found. Thus, we make the graph of 

the superconducting gap (eigenvalues), for different 

values of temperature. These results are presented in the 

Figure 6, for different values of the mating orbital 

function as a function of temperature, results that 

coincide with the experimental results [33], [34], [35], 

[36], [37]. 

 

Tabla 1. Nearby neighbor mating functions in the 

system studied via BdG 

 

Appearance type Value 

Singlete función tipo s 𝑓𝑝 ⟶ 𝑓𝜃,𝜙 = 1 

P-type triplet 𝑓𝑝 ⟶ 𝑓𝜃,𝜙 = √
3

2
sin (𝜃) 

Type dx2-y2 𝑓𝑝 ⟶ 𝑓𝜃,𝜙 = cos (2𝜙) 

 

 
Figure 6. Gaps 𝑘𝛽Tc as a function of T/Tc for different 

types of inter-orbital interaction between potentials 𝑉𝜒𝜒′. 

The inter-orbital potential is 𝑉𝜒𝜒 = 0. 

 

5. Conclusions 

 

In this work we approach the CFT, we define its 

generalities and the way of proceeding from this theory, 

in the different physical systems. Additionally, we study 

the extension for QFT and as a special case we address a 

particular case, which is KGS, this was approached from 

the numerical perspective, finding novel solutions of the 

field psi(x,t), the amplification (λ(k)), the dependence of 

the stability in the solution with respect to the size of the 

network and the dependence of the difference               

|ϕ𝐽+1
𝑛 − ϕ𝐽

𝑛|, with iteration. Thus we show the oscillation 

of the minimum convergences depending on the iteration. 

Then, we extend these operators to quantum field theory, 

through the canonical quantization of Bosons and 

Fermions. In addition, we expand from the BCS 

Hamiltonian to the BdG extension, accounting for all its 
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main properties, which describe superconducting 

systems, in a second-order transition in quantum systems. 

Finally, we apply the BdG formulation to an extensively 

studied current problem, obtaining numerical results that 

coincide with experimental results. 
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