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Abstract 

 

This research addresses the optimal phase-balancing problem by applying a master-slave optimization methodology. 

The master stage defines the load connections per node using a discrete codification, while the slave stage evaluates 

each load configuration provided by the master stage via a three-phase power flow. For the master stage, the salp 

swarm algorithm (SSA) was selected, which is an efficient bio-inspired technique to deal with continuous and discrete 

nonlinear optimization problems. The slave stage employed the matricial backward/forward power flow method for 

three-phase asymmetric networks. Numerical simulations in IEEE test feeders composed of 8, 25, and 37 nodes 

confirm the effectiveness of the SSA approach in finding efficient solutions regarding the expected grid power losses 

after optimal load phase-swapping. Numerical comparisons with the vortex search algorithm, the Chu & Beasley 

genetic algorithm, and the crow search algorithm demonstrate the effectiveness of the proposed methodology in dealing 

with the studied problem. All numerical validations were carried out in the MATLAB programming environment. 

 

Keywords: Optimal phase-balancing; Grid power losses; Salp swarm algorithm; Asymmetric distribution systems; 

Three-phase power flow. 

 

Resumen 

 

Esta investigación aborda el problema del equilibrio de fase óptimo a través de la aplicación de una metodología de 

optimización maestro-esclavo. La etapa maestra define las conexiones de carga por nodo utilizando una codificación 

discreta, mientras que la etapa esclava evalúa cada configuración de carga proporcionada por la etapa maestra mediante 

un flujo de potencia trifásico. Para la etapa maestra, se seleccionó el algoritmo de enjambre de salpas (SSA), una 

técnica bioinspirada eficiente para lidiar con problemas de optimización no lineal continuos y discretos. La etapa 

esclava empleó el método matricial de flujo de potencia hacia atrás y hacia adelante para redes trifásicas asimétricas. 

Las simulaciones numéricas llevadas a cabo en alimentadores de prueba IEEE compuestos por 8, 25 y 37 nodos 

confirman la eficacia del enfoque SSA para encontrar soluciones eficientes con respecto a las pérdidas de energía 

esperadas en la red después del cambio de fase de carga óptima. Las comparaciones numéricas realizadas con el 

algoritmo de búsqueda de vórtices, el algoritmo genético Chu & Beasley y el algoritmo de búsqueda de cuervos 
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demuestran la eficacia de la metodología propuesta para abordar el problema de estudio. Todas las validaciones 

numéricas se realizaron en el entorno de programación MATLAB. 

 

Palabras clave: balance óptimo de fases; pérdidas de potencia; algoritmo de enjambre de salpas; redes de distribución 

asimétricas; flujo de potencia trifásica. 

 

1. Introduction 

 

1.1. General context 

 

The provision and maintenance of electric energy 

services must consider the set of generation and 

transmission plants involved, as well as the energy 

distribution chain and its corresponding energy 

commercialization [1]. In particular, distribution 

networks are a component of the electrical system, as 

they are responsible for reaching the end user via medium 

transformers that convert medium voltages to low ones 

[2]. They are made up of feeders, transformer 

substations, lines, and loads, which are connected by 

means of nodes [3]. In addition to being the largest part 

of the power system, distribution grids tend to have 

longer line lengths than transmission systems [4]. 

Traditionally, these networks have a radial topology [5], 

unlike transmission systems, which have a mesh 

configuration, in association with the reliability required 

for highvoltage power supplies [6]. These networks 

regularly have a radial configuration in both rural and 

suburban areas, and they generally have a primary feeder 

and lateral branches that, given their topology, have 

higher energy losses than transmission systems due to 

heavy loads and voltage collapse [7]. 

 

Power flow analysis is used to determine the steady-state 

operating conditions of distribution networks [8]. The 

analysis of these grids has been mostly focused on single- 

phase equivalents. However, this may not be the case for 

all distribution systems, since some of them cannot be 

  

transformed into this equivalent due to the non-

transposition of distribution lines, in addition to the fact 

that they may have unbalanced loads with delta (△) and 

star (Y) con- nections [9]. Studies have been recently 

conducted on this asymmetry, which is due to the nature 

of the loads and the configuration of the network [10]. 

This imbbalance has negative repercussions on power 

distribution systems, as there is a current increase in 

different phases of the system and in the neutral current, 

as well as over- voltages in the less loaded phases, which 

will directly increase the power losses and deteriorate the 

power qua- lity [11]. When comparing these asymmetric 

networks against symmetric ones, a much higher increase 

in losses is evidenced in the former [12]. In addition, after 

measuring the customers’ energy consumption, it is 

necessary to ensure the best billing practices [13]. This 

may entail an increase in the bill charged to end users, 

which can grow to a value of up to 8 % due to energy 

losses. In the case of the Colombian electricity market, 

the entity in charge of regulating this energy distribution 

service is the Energy and Gas Regulatory Commission 

(CREG) [14]. 

 

1.2. Motivation 

 

Energy distribution companies receive economic 

incentive if they succeed in reducing energy losses, 

which adds to the high interest in reducing investment 

costs [15]. Therefore, there is a continuous search for 

implementing different methodologies in order to reduce 

energy losses in asymmetric networks. There are long- 

and short-term approaches that include compensation 

through shunt de- vices [16], feeder reconfiguration, and 

phase balancing, among others [12]. Phase balancing has 

sparked great interest as one of the most efficient 

methodologies, as it can provide a higher-quality and 

lower-cost electric service [17], reduce energy losses, 

and improve voltage profiles [18], with the advantage of 

using existing facilities [19]. Therefore, this research 

work is motivated by the need to propose a new strategy 

to address the problem of phase balancing in unbalanced 

three-phase distribution systems. 

 

This is why the proposed methodology defined the active 

power losses described in Equation (1) as the objective 

function. This equation correctly models the behavior of 

an asymmetric three-phase system in a (Y) load 

configuration. The strategy was able to minimize the 

active power losses in three asymmetrical test systems, 

which are detailed in section 4, while decreasing the 

calculation times with respect to other methodologies 

applied to phase imbalances in the same networks. 

 

The main drawbacks are outlined in section 2 and pertain 

to the implementation of functions and constraints with 

binary, integer, and continuous variables to describe the 

behavior of different load types in distribution net- 

works. Consequently, the development through matrices 

that will condense the analyzed IEEE test systems is 

presented. 

 

1.3. Literature review 

 

To address the problem regarding optimal phase 

balancing in distribution systems, optimization strategies 
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of the master-slave type are generally implemented. In 

the- se solution methodologies, a combinatorial 

optimization algorithm is used to define the best set of 

connections for each of the load nodes, using discrete 

encoding in the master stage [20]. Subsequently, the 

power flow method for unbalanced three-phase systems 

is implemented in the slave stage, with the aim to 

evaluate each configuration provided by the master stage. 

In the specialized literature, multiple master-slave 

algorithms have been pro- posed to solve the phase 

balancing problem, some of which are presented below. 

 

The work by [21] proposed a mixed-integer linear 

programming formulation for determining the optimal 

phase exchange scheme. The proposed mathematical 

formulation was evaluated in a 4-node system, and the 

results showed that it is an effective tool to solve the 

phase- balancing problem, which can provide better 

results with respect to the trial-and-error method. 

 

The authors of [22] developed a proposal based on gene- 

tic algorithms for solving this optimization problem 

while improving the phase voltage imbalance, reducing 

the neutral current in the main transformer, and 

minimizing energy losses in the system. 

 

In [23], the phase-balancing problem in unbalanced 

distribution systems was addressed via the antcolony 

optimization algorithm. The main objective of this work 

was to reduce the technical losses of the grid, in addition 

to improving the quality, safety, and reliability of the ser- 

vice. This approach was evaluated in an IEEE 37-node 

test system located in the state of California, which 

comprises subway lines, residential loads, and an 

unbalanced transformer. The results indicate a losses 

reduction of 9.15 % when compared to the losses of the 

original system, and they were corroborated by means of 

the tabu search method, with similar calculation times. 

 

The authors of [24] proposed an optimization 

methodology that simultaneously considers the phase-

balancing problem and the reconfiguration of the 

network. The methodology applied for reconfiguration 

was simulated annealing, while the phase-balancing 

problem was addressed via the ant colony algorithm. To 

evaluate the proposed methodology, an IEEE test system 

was used, which had a high imbalance and single- and 

three-phase loads. The system also had subway lines, a 

voltage regulator, and a three-phase transformer. The 

results were compared against those of the separate 

application of network re- configuration and with a fully 

balanced system, showing that reconfiguration, when 

coordinated with other loss reduction methodologies 

such as phase balancing, can lead to more economical 

and efficient solutions. 

In [25], a multi-objective optimization model was 

presented in order to address the problem of phase 

balancing in distribution systems, aiming to minimize the 

active power losses and the costs associated with the 

changes ma- de. To solve the mathematical model, a non-

dominated sorting genetic algorithm was used. The 

methodology was evaluated on an IEEE test system with 

37 nodes, with the aim to demonstrate its robustness and 

efficiency, which yielded a set of viable balancing 

solutions with different cost levels, thus allowing the 

network operator to choose the most suitable alternative. 

 

The authors of [26] presented a solution to imbalance 

issues in a three-phase low-voltage network which uses 

fuzzy evolutionary particle swarm optimization to 

minimize the system’s technical losses, in addition to 

improving the voltage profiles and the homopolar 

component associated with the system output. In order to 

evaluate the proposed method, a system located in a 

suburban area of the city of San Carlos de Bariloche 

(Argentina) was employed, which had single-phase and 

residential loads. Their results were compared to those of 

the traditional particle swarm algorithm, with good 

results that were ex- tensible to other test systems. 

 

In [27], the phase equilibrium was solved using a novel 

method that improves the foreign bacteria algorithm by 

means of particle swarm optimization through a multi- 

objective model. This work focused on reducing power 

losses, the feeder’s neutral current, voltage drops, and the 

cost of phase balancing. The methodology was evaluated 

in a 72-node system located in Ahwaz (Iran), a network 

located in a commercial-residential area. The results we- 

re compared to those of a genetic algorithm, the immune 

optimization algorithm, and the foreign bacteria 

algorithm, yielding a better balance between the network 

phases, as well as a considerable reduction in power 

losses and better voltage profiles. 

 

The authors of [28] proposed a method based on the 

simultaneous reconfiguration and readjustment of 

distribution networks. A hybrid optimization algorithm 

called the Nelder-Mead optimizer was used, which was 

combined with a foreign bacteria algorithm in a multi-

objective fuzzy function. To demonstrate its 

effectiveness, the method was compared against the 

classical foreign bacteria algorithm, the particle swarm 

method, a genetic algorithm, and the immune algorithm. 

Numerical validations we- re performed on the 123-node 

IEEE system. The results showed the effectiveness of the 

method in reducing system costs and balancing network 

phases in comparison with the classical optimization 

methods analyzed. 
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In [29], a differential evolution algorithm was applied as 

a solution strategy in order to determine the optimal 

phase balance and size of network conductors. The 

effectiveness of this method was evaluated on two IEEE 

systems with 19 and 25 nodes. The results show 

significant improvements in system power losses and 

voltage profiles when compared to combinatorial 

optimization techniques such as genetic algorithms, 

particle swarm optimization, and the crow search 

algorithm. 

 

The authors of [30] analyzed the optimal phase-balancing 

problem using a multi-objective optimization model to 

minimize energy losses, the neutral conductor current, 

and the number of network interventions. To solve the 

mathematical model, a non-dominated sorting genetic 

algorithm was used. A 4.16 kV test system consisting of 

two 32-node radial circuits was used. The results of the 

Pareto front showed a range of options for reducing 

losses and the neutral current as a function of the number 

of network interventions. 

 

The study by [31] addressed the energy losses 

minimization problem in different unbalanced 

distribution systems. A mixed-integer nonlinear 

programming mathematical model was used to represent 

the problem, which was solved using the vortex search 

optimization algorithm. Three IEEE test systems with 8, 

25, and 37 nodes were used, with better results than those 

obtained using the Chu & Beasley genetic algorithm. 

 

1.4. Contributions and scope 

 

Considering the above, this research makes the following 

contributions: (i) the application of the salp swarm 

algorithm (SSA) to the problem regarding optimal phase 

balancing in three-phase asymmetric distribution net- 

works, using a discrete codification within the frame- 

work of a master-slave optimization methodology, whose 

slave stage uses the matricial backward/forward power 

flow method to determine the grid power losses; (ii) a 

complete comparative analysis with different algorithms 

based on combinatorial methods using the IEEE 8-, 25- 

, and 37-node test feeders, which allows demonstrating 

the effectiveness of the proposed approach. 

 

It is worth mentioning that the SSA was selected as the 

solution methodology in the master stage due to its 

excellent numerical results in similar optimization 

problems [32], in addition to the fact that it has not been 

previously used to deal with the optimal phase-balancing 

problem. 

 

 

 

1.5. Contributions and scope 

 

The remainder of this paper is structured as follows. 

Section 2 presents the general mixed-integer nonlinear 

programming (MINLP) model that represents the 

optimal 

  

phase-swapping problem in three-phase asymmetric 

distribution networks. Section 3 shows the mathematical 

formulation necessary for the implementation of the 

master- slave method, considering the reduction of active 

power losses in the power system as the objective 

function, constraints such as active-reactive power 

balance, an integer variable for phase connection, and the 

use of a modified SSA with a three-phase power flow 

matrix method. Section 4 presents the different test 

scenarios considered, with different node sizes and 

electrical parameters. Section 5 describes different 

algorithms from the literature and compares their results 

with those of the SSA. The final section 6 presents the 

conclusions and future work proposals derived from this 

research. 

 

2. Mathematical modeling 

 

The phase-balancing problem in three-phase asymmetric 

distribution systems can be expressed as an MINLP 

model with binary decision variables, which, for this 

study, indicate the connection of the loads in the 

distribution system [33]. It should be noted that the 

mathematical model is based on a (Y) load configuration, 

which typically entails higher losses. Therefore, the IEEE 

test systems used in Section 4 only used the loads in a (Y) 

connection. In addition to these decision variables, 

continuous variables consider the power flow 

magnitudes and angles, among others. The complete 

description of the optimal phase-balancing problem in 

three-phase unbalanced distribution networks is 

presented below. 

 

2.1. Objective function 

 

The objective function corresponds to the minimization 

of active power losses in all lines of the system (i.e., 

Ploss). This objective function is defined in Equation (1).¿ 

 

 𝑚𝑖𝑛  𝑃loss   =   ∑ ∑ ∑ ∑ 𝑌𝑚𝑛
ℎ𝑖

𝑖𝜖ℱℎ𝜖ℱ𝑛𝜖𝒩𝑚𝜖𝒩

𝑉𝑚
ℎ𝑉𝑛

𝑖   𝑐𝑜𝑠(𝛿𝑚
ℎ   −  𝛿𝑛

𝑖  

−  𝜃𝑚𝑛
ℎ𝑖 ) 

(1) 

where 𝑃loss corresponds to the active power function to 

be minimized; 𝑌𝑚𝑛
ℎ𝑖  represents the magnitude of the 

admittance connected between nodes 𝑚 and 𝑛 in phases 

ℎ and 𝑖; 𝑉𝑚
ℎ represents the voltage magnitude at node ℎ; 

𝑉𝑛
𝑖 represents the voltage magnitude at node 𝑛 in phase 𝑖; 
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𝛿𝑚
ℎ  is the angle of the voltage of node 𝑚 in phase ℎ; and 

𝛿𝑛
𝑖  is the angle for the voltage of node 𝑛 in phase 𝑖, where 

𝜃𝑚𝑛
ℎ𝑖  is the angle of the admittance connecting node 𝑚 in 

phase ℎ with node 𝑛 in phase 𝑖. It is also important to note 

that these variables are contained in the sets 𝒩 and ℱ, 

i.e., 𝒩 represents the set containing all the nodes and ℱ, 

represents the set containing all the phases of the system. 

 

2.2. Set of constraints 

 

The set of constraints associated with a phase imbalance 

problem in three-phase distribution systems is given by 

the active and reactive power balance equations, the 

voltage regulation limits, and the characteristics 

associated with the connection of the loads at each node 

of the system [34]. The set of constraints related to the 

phase-balancing problem in three-phase systems is 

presented in Equations (2)–(6). 

 

𝑃𝑚
𝑠ℎ − ∑ 𝑥𝑚

ℎ𝑖

𝑖𝜖ℱ

𝑃𝑚
𝑑𝑖 = 𝑉𝑚

ℎ ∑ ∑ 𝑌𝑚𝑛
ℎ𝑖

𝑖𝜖ℱ𝑛𝜖𝒩 𝑉𝑛
𝑖 𝑐𝑜𝑠(𝛿𝑚

ℎ

− 𝛿𝑛
𝑖 − 𝜃𝑚𝑛

ℎ𝑖 ) {
∀ ℎ 𝜖 ℱ 
∀ 𝑚 𝜖 𝒩 

} 

 

(2) 

 

𝑄𝑚
𝑠ℎ − ∑ 𝑥𝑚

ℎ𝑖

𝑖𝜖ℱ

𝑄𝑚
𝑑𝑖

= 𝑉𝑚
ℎ ∑ ∑ 𝑌𝑚𝑛

ℎ𝑖
𝑖𝜖ℱ𝑛𝜖𝒩 𝑉𝑛

𝑖 𝑠𝑖𝑛(𝛿𝑚
ℎ

− 𝛿𝑛
𝑖 − 𝜃𝑚𝑛

ℎ𝑖 ) {
∀ ℎ 𝜖 ℱ 
∀ 𝑚 𝜖 𝒩 

} 

(3) 

 

∑𝑥𝑚
ℎ𝑖

𝑖𝜖ℱ

= 1, {∀ ℎ 𝜖 ℱ , ∀ 𝑚 𝜖 𝒩} (4) 

 

∑ 𝑥𝑚
ℎ𝑖

ℎ𝜖ℱ

= 1, {∀ 𝑖 𝜖 ℱ , ∀ 𝑚 𝜖 𝒩} (5) 

 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑚
ℎ ≤ 𝑉𝑚𝑎𝑥,{∀ ℎ 𝜖 ℱ , ∀ 𝑚 𝜖 𝒩} (6) 

 

where 𝑃𝑚
𝑠ℎ is the variable associated with the active 

power produced by generator 𝑠 connected to node 𝑚 in 

phase ℎ. Moreover, 𝑄𝑚
𝑠ℎ is the variable associated with 

the reactive power produced in generator 𝑠 connected to 

node 𝑚 in phase ℎ. The power demanded at node 𝑚 in 

phase 𝑖 is represented by 𝑃𝑚
𝑑𝑖 . The reactive power 

required at node 𝑚 in phase 𝑖 is denoted by 𝑄𝑚
𝑑𝑖 . 𝑥𝑚

ℎ𝑖 is a 

binary variable in charge of the connection demanded at 

node 𝑚 in phases ℎ and 𝑖. In addition, 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 

correspond to the voltage regulation limits at the system 

nodes. On the other hand, the binary decision variable 𝑥𝑚
ℎ𝑖 

has six possible connection combinations at the demand 

nodes, as shown in Table 1. It is important not to make 

changes in the phase sequence of rotating electrical 

machines in distribution systems, as undesired operation 

by reverse rotation may occur [35] (see Figure 1). 

 

Table 1. Possible connection types in three-phase 

distribution system loads 

 

No. Connection Sequence 

1 ABC  

2 BCA No change 

3 CAB  

4 ACB  

5 CBA Change 

6 BAC  

 

 
 

Figure 1. Example of an ABC-BAC connection change 

in a demand node. 

 

A detailed description of the mathematical model (1)–(8) 

is presented below. 

 

i. The objective function (1) represents the 

minimization of active power losses in the 

distribution system. Note that it is a nonlinear and 

non-convex function of the system voltage 

variables and their angles, and it depends on the 

physical parameters of the network, i.e., the nodal 

admittances. 

ii. Equations (2)–(3) model the active and reactive 

power balance of each node, which corresponds 

to nonlinear, non-convex constraints due to the 

presence of products between variables as well as 

trigonometric functions. 

iii. Equations (4)–(5) model the possible connections 

of each node, changing the power demanded by 

each phase according to the different reported 

combinations Table 1. These two equality 

constraints ensure that the loads associated with 

the demand are limited to being connected to one 

of the six aforementioned possibilities. 
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iv. Equation (6) expresses the voltage limits assigned 

for each node according to the regulatory policy 

applicable to medium-voltage distribution 

systems. 

 

Remark 1. Given the nonlinear and non-convex structure 

of the optimization model (1)–(6) and the large 

dimension of the solution space, which increases 

exponentially with the number of nodes in the 

distribution grid, eflcient optimization methods are 

required to find solutions in reasonable times via a 

master-slave optimizer connection. The master stage is 

typically defined as a combinatorial optimization method 

(i.e., the SSA approach in this study), combined with an 

eflcient three-phase power flow approach in the slave 

stage. Note that the slave stage. Note that the slave stage 

in this research is the matricial backward/forward power 

flow method. 

 

3. Proposed solution methodology 

 

This work proposes a master-slave optimization method 

based on the combination of the SSA approach and the 

matricial backward/forward power flow approach to 

solve the exact optimization model (1)–(6). In the master 

stage, the SSA approach defines the set of load 

connections per node using a discrete codification with 

numbers between 1 and 6 (Table 1). Each combination of 

load connections provided by the SSA approach is 

evaluated in the slave stage through the matricial 

backward/forward power flow, which is entrusted with 

determining the grid power losses of each solution 

generated by the SSA approach in order to guide its 

exploration and exploitation of the solution space. The 

main details of both stages are presented below. 

 

3.1. Master stage: salp swarm algorithm 

 

The SSA is a heuristic technique for solving single-objective 

optimization problems, which is based on the behavior of 

a string of salps while navigating and feeding in the ocean 

[36]. Salps are similar to jellyfish because of their 

gelatinous body and the way in which they propel them- 

selves to move [37]. A salp chain seeks to move towards 

the best food source. Given that this source is 

continuously changing, the objective of this chain is to 

explore and exploit the solution space to find a better 

solution [38]. Salp swarms are among the largest in the 

world, as their movement and feeding are quite efficient 

[39]. The main characteristics of the SSA approach used 

for solving optimization problems are presented below. 

 

 

 

 

3.1.1. Initial population 

 

Like other combinatorial optimization methods, the SSA 

is an optimization strategy that evolves through 

populations (groups of solutions to the optimization 

problem under analysis). Therefore, in a 

multidimensional space n where a swarm of m salps 

moves in search of better food sources, each salp in the 

matrix represents a possible solution, with n being the 

number of search variables [40]. In each iteration, the 

position of the salps shows the best food source according 

to their previous experience. Salps move through the 

foraging space and adjust their positions depending on 

the best individual and collective food sources. The salp 

with the best individual food source is the leader and 

guides the swarm to better food sources. The shape of the 

initial population is presented in Equation (7) [41]. 

 

𝐗 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑛

𝑥21 𝑥22 ⋯ 𝑥2𝑛

⋮ ⋮ ⋱ ⋮
𝑥𝑚1 𝑥𝑚2 ⋯ 𝑥𝑚𝑛

] (7) 

where the matrix X corresponds to the initial population, 

xmn represents the load connection at the connected no- 

de n, and m denotes the individual to which this solution 

belongs. The initial population requires random numbers 

corresponding to the solution space, which can be 

obtained via Equation (8). 

 

𝑥𝑖𝑗 = round (𝑥𝑖
min

+ 𝑟𝑎(𝑥𝑖
max

− 𝑥𝑖
min)) , [

∀𝑖 = 1,2, . . . , 𝑚
∀𝑗 = 1,2, . . . , 𝑛

] 

(8) 

 

where i j represents the row i and column j within the 

initial population matrix, and ra is a random value with a 

uniform distribution between 0 and 1. The limits of the 

values that it can take in the solution space are contained 

in 𝑥𝑖
min and 𝑥𝑖

max, which, for the case under study, 

depend on the different combinations in Table 1. 

 

3.1.2. Evolution criterion 

 

In SSA modeling, a leader must help the salps in the 

swarm to relocate in order to improve the group’s fee- 

ding opportunities. This, by having the followers work as 

a chain that connects to the leader directly or indirectly. 

This methodology is used in different forms of swarm 

optimization [42]. According to the evolution criterion, 

each of the individuals relevant to the population must 

first be evaluated in the objective function, with the 

purpose of establishing the best one (𝑥best
𝑡 ; note that the 
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i 

i 

evaluation of the objective function is carried out, in the 

slave stage, through the three-phase power flow 

solution), thus finding new possible individuals, as 

expressed in Equation (9). 

 
𝑥𝑖

𝑡+1

= {
𝑥best

𝑡 + 𝑟1 ((𝑥max − 𝑥min)𝑟2 + 𝑥min) 𝑟3 ≥ 0.5

𝑥best
𝑡 − 𝑟1 ((𝑥max − 𝑥min)𝑟2 + 𝑥min) 𝑟3 < 0.5

 
(9) 

 

where 𝑥𝑖
𝑡 is the solution 𝑖 contained in the population, and 

𝑟2 and 𝑟3 are random numbers with a uniform distribution 

which determine the step size or whether it should tend 

to a limit of the solution space for the next position. As 

per Equation (9), the updating of the leader depends 

directly on the position of the food source. Note that 𝑟1 is 

a coefficient that decreases with every iteration and is 

aimed at the exploration and exploitation of the solution 

space. This coefficient is given by Equation (10). 

 

𝑟1 = 2𝑒−(
4𝑙
𝐿

)
 

 (10) 

 

where 𝐿 represents the maximum number of iterations 

and 𝑙 corresponds to the current iteration’s value. Note 

that Newton’s law of motion, defined in Equation (11), is 

used to update the followers’ position. 

 

𝑥𝑖
𝑡+1 =

1

2
(𝑥𝑖

𝑡+1 + 𝑥𝑖
𝑡) (11) 

 

Remark 2. Each new individual solution xt+1 is revie- 

wed to ensure that the lower and upper bounds allowed 

for the nodal connections at each node are maintained 

within a feasible solution region in accordance with the 

information in Table 1; otherwise, the individual solution 

xt+1 must be corrected before its evaluation in the slave 

stage. 

 

3.2. Slave stage: matricial backward/forward 

power flow method 

 

In the slave stage, the three-phase power flow obtains the 

active power losses via the iterative sweep method [43]. 

This method iteratively applies Kirchhoff’s laws with a 

backward current sweep and a forward voltage sweep 

until the desired convergence is reached [44]. To 

formalize the power flow problem for three-phase 

systems into a matrix, a branch-node incidence matrix is 

used, which represents the network’s topology and 

relates the nodes to the branches of the system [31]. To 

illustrate the mathematical formulation of the power flow 

problem in three- phase systems, consider the system 

presented in Figure 2 and the information regarding its 

distribution lines in Table 2. 

 

 
Figure 2. 4-node meshed test feeder. 

 

Table 2. Electrical connection between nodes in a 4-

node test feeder 

 

Branch 𝑛 Sending node 𝑚 Receiving node 𝑘 

1 1 2 

2 1 3 

3 2 4 

4 3 4 

 

Now, considering this electrical network, in which the 

direction of the currents in the lines (branches) is 

randomly defined (Figure 2), the components of the 

three- phase branch-node incidence matrix Ani,mh can be 

obtained using Equation (12), where m corresponds to the 

sending node, k to the receiving node, n to the branch, 

and i and h to the phases of the system. 

 

By applying Equation (12) to the example system in 

Figure 2, the three-phase branch-node incidence matrix 

shown in (13) is obtained. Note that the branches (rows) 

have been ordered by phase, according to Table 2, and 

the columns (nodes) are presented in ascending order, 

also by phase. 

 

Note that the branch-node incidence matrix in (13) can 

be compactly represented by two sub-matrices, as shown 

in (14). 

 

𝐀3𝜙 = [𝐀𝑠3𝜙 𝐀𝑑3𝜙], (14) 

 

with 𝐀𝑠3𝑝ℎ𝑖  being the branch-node incidence matrix, 

𝐀𝑠3𝑝ℎ𝑖  a rectangular matrix relating the branches to the 

substation node, and 𝐀𝑑3𝑝ℎ𝑖  a matrix relating the 

branches to the demand nodes. 

𝐀𝑛𝑖,𝑚ℎ = {

+1, if the current of branch 𝑛 in phase 𝑖 leaves from node 𝑚 in phase ℎ
−1, if the current of branch 𝑛 in phase 𝑖 arrives at node 𝑚 in phase ℎ
0, if branch 𝑛 in phase 𝑖 is not connected to node 𝑚 in phase ℎ

 (12) 
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On the other hand, if the voltage drop in each branch is 

determined as the voltage difference between its ending 

and receiving nodes for each phase, Equation (15) is 

obtained. 

 
𝐸1𝑎 = 𝑉1𝑎 − 𝑉2𝑎

𝐸1𝑏 = 𝑉1𝑏 − 𝑉2𝑏

𝐸1𝑐 = 𝑉1𝑐 − 𝑉2𝑐

𝐸2𝑎 = 𝑉1𝑎 − 𝑉3𝑎

𝐸2𝑏 = 𝑉1𝑏 − 𝑉3𝑏

𝐸2𝑐 = 𝑉1𝑐 − 𝑉3𝑐

𝐸3𝑎 = 𝑉2𝑎 − 𝑉4𝑎

𝐸3𝑏 = 𝑉2𝑏 − 𝑉4𝑏

𝐸3𝑐 = 𝑉2𝑐 − 𝑉4𝑐

𝐸4𝑎 = 𝑉3𝑎 − 𝑉4𝑎

𝐸4𝑏 = 𝑉3𝑏 − 𝑉4𝑏

𝐸4𝑐 = 𝑉3𝑐 − 𝑉4𝑐

, (15) 

 

which can be rewritten in matrix form, as shown in (16). 

According to Equation (17), this results in an equivalent 

compact form. 

 

𝐄𝐿3𝜙 = 𝐀3𝜙𝐕3𝜙 (17) 

 

where EL3ϕ represents the vector with all voltage drops 

ordered by branch and phase, and V3ϕ is the vector with 

all nodal voltages ordered by node and phase. Note that 

17) can be written in terms of both generation and 

demand, as shown in (18). 

 

𝐄𝐿3𝜙 = 𝐀𝑠3𝜙𝐕𝑠3𝜙 + 𝐀𝑑3𝜙𝐕𝑑3𝜙 (18) 

 

On the other hand, if Kirchhoff’s first law is applied to 

each node of the system, the following set of current 

equations is obtained, which relate the currents of the 

branches to the net currents injected at the nodes. 

 

Note that the set of equations (19) can be rewritten in 

matrix form, as presented in (20), which, in turn, can be 

compacted as (21). 

 

 
𝐼1𝑎 = 𝐽1𝑎 + 𝐽2𝑎

𝐼1𝑏 = 𝐽1𝑏 + 𝐽2𝑏

𝐼1𝑐 = 𝐽1𝑐 + 𝐽2𝑐

𝐼2𝑎 = −𝐽1𝑎 + 𝐽3𝑎

𝐼2𝑏 = −𝐽1𝑏 + 𝐽3𝑏

𝐼2𝑐 = −𝐽1𝑐 + 𝐽3𝑐

𝐼3𝑎 = −𝐽2𝑎 + 𝐽4𝑎 + 𝐽5𝑎

𝐼3𝑏 = −𝐽2𝑏 + 𝐽4𝑏 + 𝐽5𝑏

𝐼3𝑐 = −𝐽2𝑐 + 𝐽4𝑐 + 𝐽5𝑐

𝐼4𝑎 = −𝐽3𝑎 − 𝐽4𝑎 + 𝐽6𝑎

𝐼4𝑏 = −𝐽3𝑏 − 𝐽4𝑏 + 𝐽6𝑏

𝐼4𝑐 = −𝐽3𝑐 − 𝐽4𝑐 + 𝐽6𝑐

 

(19) 

 

𝐀𝑛𝑖,𝑚ℎ =

[
 
 
 
 
 
 
 
 
 
 
 
1 0 0 ⋮ −1 0 0 0 0 0 0 0 0
0 1 0 ⋮ 0 −1 0 0 0 0 0 0 0
0 0 1 ⋮ 0 0 −1 0 0 0 0 0 0
1 0 0 ⋮ 0 0 0 −1 0 0 0 0 0
0 1 0 ⋮ 0 0 0 0 −1 0 0 0 0
0 0 1 ⋮ 0 0 0 0 0 −1 0 0 0
0 0 0 ⋮ 1 0 0 0 0 0 −1 0 0
0 0 0 ⋮ 0 1 0 0 0 0 0 −1 0
0 0 0 ⋮ 0 0 1 0 0 0 0 0 −1
0 0 0 ⋮ 0 0 0 1 0 0 −1 0 0
0 0 0 ⋮ 0 0 0 0 1 0 0 −1 0
0 0 0 ⋮ 0 0 0 0 0 1 0 0 −1]

 
 
 
 
 
 
 
 
 
 
 

 (13) 

 

[
 
 
 
 
 
 
 
 
 
 
 
 
𝐸1𝑎

𝐸1𝑏

𝐸1𝑐

𝐸2𝑎

𝐸2𝑏

𝐸2𝑐

𝐸3𝑎

𝐸3𝑏

𝐸3𝑐

𝐸4𝑎

𝐸4𝑏

𝐸4𝑐]
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
1 0 0 −1 0 0 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0 0 0
1 0 0 0 0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0 0 0 0 −1
0 0 0 0 0 0 1 0 0 −1 0 0
0 0 0 0 0 0 0 1 0 0 −1 0
0 0 0 0 0 0 0 0 1 0 0 −1]

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑉1𝑎

𝑉1𝑏

𝑉1𝑐

𝑉2𝑎

𝑉2𝑏

𝑉2𝑐

𝑉3𝑎

𝑉3𝑏

𝑉3𝑐

𝑉4𝑎

𝑉4𝑏

𝑉4𝑐 ]
 
 
 
 
 
 
 
 
 
 
 
 

, (16) 
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𝐈3𝜙 = 𝐀3𝜙
𝑇 𝐉3𝜙 (21) 

 

where 𝐈3𝜙 represents the vector of net injected currents, 

and 𝐉3𝜙 denotes the vector of the branch currents. 

 

Since the substation currents (i.e., 𝐼1𝑎 , 𝐼1𝑏 , 𝐼1𝑐) are 

unknown variables, which will depend on the final 

solution to the power flow problem, Equation (21) is only 

limited to the relationship between currents at the 

demand nodes and the branch currents, as defined in (22). 

 

𝐈𝑑3𝜙 = 𝐀𝑑3𝜙
𝑇 𝐉3𝜙 (22) 

 

In order to relate the voltage drops in the branches to their 

corresponding currents, the three-phase version of the 

branch impedance matrix 𝐙𝐿3𝜙 is used. This matrix is 

defined in (23), and the relationship between voltages 

and currents is presented in (24). 

 

𝐄𝐿3𝜙 = 𝐙𝐿3𝜙𝐉3𝜙 (24) 

 

Now, an equation is needed which relates the three-phase 

demand voltages to the three-phase demand currents. 

Therefore, the above-presented equations, such as (24), 

which uses the inverse of the impedance matrix 𝐙3𝜙 to 

clear the currents in the lines 𝐉3𝜙, are replaced into 

Equation (22) to obtain the following: 

 

𝐈𝑑3𝜙 = 𝐀𝑑3𝜙
𝑇 𝐙𝐿3𝜙

−1 𝐄𝐿3𝜙 , (25) 

 

Equation (18), which expresses the voltage drops in the 

lines, can be replaced into (25) as follows: 

 

𝐈𝑑3𝜙 = 𝐀𝑑3𝜙
𝑇 𝐙𝐿3𝜙

−1 𝐀𝑠3𝜙𝐕𝑠3𝜙

+ 𝐀𝑑3𝜙
𝑇 𝐙𝐿3𝜙

−1 𝐀𝑑3𝜙𝐕𝑑3𝜙 
(26) 

𝐈𝑑3𝜙 = 𝐀𝑑3𝜙
𝑇 𝐘𝐿3𝜙𝐀𝑠3𝜙𝐕𝑠3𝜙

+ 𝐀𝑑3𝜙
𝑇 𝐘𝐿3𝜙𝐀𝑑3𝜙𝐕𝑑3𝜙 

(27) 

 

𝐈𝑑3𝜙 = 𝐘𝑑𝑠3𝜙𝑉𝑠3𝜙 + 𝐘𝑑𝑑3𝜙𝐕𝑑3𝜙 (28) 

 

In Equation (28), two new terms are evident, namely 

𝐘𝑑𝑠3𝜙 = 𝐀𝑑3𝜙
𝑇 𝐘𝐿3𝜙𝐀𝑠3𝜙 and 𝐘𝑑𝑑3𝜙 = 𝐀𝑑3𝜙

𝑇 𝐘𝐿3𝜙𝐀𝑑3𝜙. 

From this equation, the three-phase voltages at the 

demand nodes are cleared to obtain the following: 

 

where 𝑉𝑠3𝜙 is the vector of the voltages assigned to the 

substation, which, for the power flow problem, are 

assumed to be known [44]. 

[
 
 
 
 
 
 
 
 
 
 
 
 
𝐼1𝑎

𝐼1𝑏

𝐼1𝑐

𝐼2𝑎

𝐼2𝑏

𝐼2𝑐

𝐼3𝑎

𝐼3𝑏

𝐼3𝑐

𝐼4𝑎

𝐼4𝑏

𝐼4𝑐 ]
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 

1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0

−1 0 0 0 0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0 0 0 0 1
0 0 0 0 0 0 −1 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0 0 −1 0
0 0 0 0 0 0 0 0 −1 0 0 −1]

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
𝐽1𝑎

𝐽1𝑏

𝐽1𝑎

𝐽2𝑏

𝐽2𝑐

𝐽3𝑎

𝐽3𝑏

𝐽3𝑐

𝐽4𝑎

𝐽4𝑏

𝐽4𝑐]
 
 
 
 
 
 
 
 
 
 

 
(20) 

 

 

 

𝐙𝐿3𝜙 =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑍1𝑎𝑎 𝑍1𝑎𝑏 𝑍1𝑎𝑐 0 0 0 0 0 0 0 0 0
𝑍1𝑏𝑎 𝑍1𝑏𝑏 𝑍1𝑏𝑐 0 0 0 0 0 0 0 0 0
𝑍1𝑐𝑎 𝑍1𝑐𝑏 𝑍1𝑐𝑐 0 0 0 0 0 0 0 0 0
0 0 0 𝑍2𝑎𝑎 𝑍2𝑎𝑏 𝑍2𝑎𝑐 0 0 0 0 0 0
0 0 0 𝑍2𝑏𝑎 𝑍2𝑏𝑏 𝑍2𝑏𝑐 0 0 0 0 0 0
0 0 0 𝑍2𝑐𝑎 𝑍2𝑐𝑏 𝑍2𝑐𝑐 0 0 0 0 0 0
0 0 0 0 0 0 𝑍3𝑎𝑎 𝑍3𝑎𝑏 𝑍3𝑎𝑐 0 0 0
0 0 0 0 0 0 𝑍3𝑏𝑎 𝑍3𝑏𝑏 𝑍3𝑏𝑐 0 0 0
0 0 0 0 0 0 𝑍3𝑐𝑎 𝑍3𝑐𝑏 𝑍3𝑐𝑐 0 0 0
0 0 0 0 0 0 0 0 0 𝑍4𝑎𝑎 𝑍4𝑎𝑏 𝑍4𝑎𝑐

0 0 0 0 0 0 0 0 0 𝑍4𝑏𝑎 𝑍4𝑏𝑏 𝑍4𝑏𝑐

0 0 0 0 0 0 0 0 0 𝑍4𝑐𝑎 𝑍4𝑐𝑏 𝑍4𝑐𝑐 ]
 
 
 
 
 
 
 
 
 
 
 
 

 (23) 
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To find the three-phase voltages at the demand nodes in 

(29), the currents in the three-phase loads Id3ϕ are 

needed. These currents depend on the connection of the 

loads, and they can have a △ connection (Figure 3) or a 

Y connection (Figure 4), considering that m refers to the 

node number. 

 

 
Figure 3. △ connection 

 
Figure 4. Y connection 

 

Equations (30)–(32) derive the currents in the loads in 

triangle connection, and Equations (33)–(35) derive the 

 

𝐼𝑚𝑎 = (
𝑆𝑚𝑎

𝑉𝑚𝑎 − 𝑉𝑚𝑏

)
∗

− (
𝑆𝑚𝑐

𝑉𝑚𝑐 − 𝑉𝑚𝑎

)
∗

 (30) 

 

 

𝐼𝑚𝑏 = (
𝑆𝑚𝑏

𝑉𝑚𝑏 − 𝑉𝑚𝑐

)
∗

− (
𝑆𝑚𝑎

𝑉𝑚𝑎 − 𝑉𝑚𝑏

)
∗

 (31) 

 

𝐼𝑚𝑐 = (
𝑆𝑚𝑐

𝑉𝑚𝑐 − 𝑉𝑚𝑎

)
∗

− (
𝑆𝑚𝑏

𝑉𝑚𝑏 − 𝑉𝑚𝑐

)
∗

 (32) 

 

𝐼𝑚𝑎 = (
𝑆𝑚𝑎

𝑉𝑚𝑎

)
∗

 (33) 

 

𝐼𝑚𝑏 = (
𝑆𝑚𝑏

𝑉𝑚𝑏

)
∗

 (34) 

 

𝐼𝑚𝑐 = (
𝑆𝑚𝑐

𝑉𝑚𝑐

)
∗

 (35) 

 

Finally, in order to obtain the solution of the power flow 

problem in (29), an iterative process 𝑐 is employed until 

the desired convergence is reached                                               

(i.e., |𝐕𝑑3𝜙
𝑐+1 − |𝐕𝑑3𝜙

𝑐 | ≤ 𝜀, where 𝜀 is the expected 

convergence error, which is assigned as 1 × 10−10 ). The 

iterative form of (29) is shown in (36). 

 

𝐕𝑑3𝜙
𝑐+1 = −𝐘𝑑𝑑3𝜙

−1 (𝐈𝑑3𝜙
𝑐 + 𝐘𝑑𝑠3𝜙𝑉𝑠3𝜙) (36) 

 

Once the voltages of the demand nodes are known, the 

power losses of the demand node are obtained as follows: 

 

𝑃loss = real{𝐄𝐿3𝜙
⊤ 𝐉3𝜙

∗ } (37) 

 

Remark 3. The effect of each load configuration 

provided by the master stage is observed in the current 

calculation of each node, as seen in Equations (31)–(35), 

which implies that the slave stage, i.e., Equation (36), is 

the heart of the proposed optimization approach, as it is 

in charge of defining the power losses value for its 

solution individual in (7). Thus, it is entrusted with 

guiding the SSA during the exploration and exploitation 

of the solution space. 

 

3.3. Summary of the optimization approach 

 

Algorithm 1 shows the general implementation of the 

SSA. It starts by entering information to solve three-

phase flows, such as the electrical parameters, the loads 

in each phase, and the connection of the nodes.  

 

Data: Define the three-phase network under analysis 

Declare each one of the parameters of the SSA;  

Generate the initial population of salps using  

Equation (8);  

Evaluate the objective function with Equation (1) for each 

individual;  

Establish the best global individual (BES T ) as the leader 

of the salp chain. 

 
Algoritmo 1. General implementation of the SSA in 

the master stage 
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The SSA’s evolution criterion guarantees the search for 

new individuals and the convergence of the results. The 

initial population is generated, and the objective function 

of Equation (1) is used to establish the 𝐵𝐸𝑆𝑇 solution. 

From this point, the evolution criteria are used to 

calculate the new position 𝑥𝑖
𝑡+1, and the limits of the 

integer variables should correspond. The latest 

population is checked, which must have a lower value 

than the 𝐵𝐸𝑆𝑇 individual for it to replace the previous 

solution group and continue the cycle until convergence 

is reached. 

 

4. Characteristics of the three-phase asymmetric 

distribution grids 

 

This section shows the characteristics of the three 

asymmetric networks used (i.e., the three-phase systems 

with 8, 25, and 37 nodes). These are three typical 

networks used in the specialized literature to validate 

master-slave optimization methods with the aim of 

minimizing grid power losses via optimal load balancing 

[33]. The main characteristics of these test feeders are 

listed below. 

 

4.1. IEEE 8-bus grid 

 

This 8-node IEEE asymmetrical distribution system has 

a radial configuration, one slack node, and seven demand 

nodes. It uses a nominal voltage of 11 kV [45] and has 

seven three-phase lines. Figure 5 shows the configuration 

of the 8-node system. 

 

The parametric information regarding the load values per 

node and the branch parameters is listed in Tables 3 and 

4. 

 
Figure 5. Electrical configuration of the 8-node 

threephase test system. 

 

Table 3. Line and node parameters in the 8-node system 

 

Line Node 
i Node j Conductor Length [ft] PjA(kW) QjA(kvar) PjB(kW) QjB(kvar) PjC(kW) QjC(kvar) 

1 1 2 1 5280 519 250 259 126 515 250 
2 2 3 2 5280 0 0 259 126 486 235 

3 2 5 3 5280 0 0 0 0 226 109 

4 2 7 3 5280 486 235 0 0 0 0 

5 3 4 4 5280 0 0 0 0 324 157 

6 3 8 5 5280 0 0 267 129 0 0 

7 5 6 6 5280 0 0 0 0 145 70 

 

Table 4. Impedance matrix for conductor types in the 8-node system 

 

Conductor Impedance Matrix (Ω/mi) 

1 
0,093654 + j0,0402930 0,031218 + j0,0134310 0,031218 + j0,0134310 
0,031218 + j0,0134310 0,093654 + j0,0402930 0,031218 + j0,0134310 
0,031218 + j0,0134310 0,031218 + j0,0134310 0,093654 + j0,0402930 

2 
0,156090 + j0,0671550 0,052030 + j0,0223850 0,052030 + j0,0223850 
0,052030 + j0,0223850 0,156090 + j0,0671550 0,052030 + j0,0223850 
0,052030 + j0,0223850 0,052030 + j0,0223850 0,156090 + j0,0671550 

3 
0,046827 + j0,0201465 0,015609 + j0,0067155 0,015609 + j0,0067155 
0,015609 + j0,0067155 0,046827 + j0,0201465 0,015609 + j0,0067155 
0,015609 + j0,0067155 0,015609 + j0,0067155 0,046827 + j0,0201465 

4 
0,031218 + j0,0134310 0,010406 + j0,0044770 0,010406 + j0,0044770 
0,010406 + j0,0044770 0,031218 + j0,0134310 0,010406 + j0,0044770 
0,010406 + j0,0044770 0,010406 + j0,0044770 0,031218 + j0,0134310 

5 
0,062436 + j0,0268620 0,020812 + j0,0089540 0,020812 + j0,0089540 
0,020812 + j0,0089540 0,062436 + j0,0268620 0,020812 + j0,0089540 
0,020812 + j0,0089540 0,020812 + j0,0089540 0,062436 + j0,0268620 

6 
0,078045 + j0,0335775 0,026015 + j0,0111925 0,026015 + j0,0111925 
0,026015 + j0,0111925 0,078045 + j0,0335775 0,026015 + j0,0111925 
0,026015 + j0,0111925 0,026015 + j0,0111925 0,078045 + j0,0335775 
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4.2. IEEE 25-bus grid 

 

This asymmetrical 25-node IEEE test system has a radial 

configuration, in addition to one slack node, 22 demand 

nodes, 24 three-phase distribution lines, and a nominal 

voltage of 4.16 kV [46]. The configuration of this test 

system can be seen in Figure 6. 

 

 
 

Figure 6. Electrical configuration of the IEEE 25-node 

three-phase test system. 

 

The parametric information regarding the load values per 

node and the branch parameters is listed in Table 5 and 

Table 6. 

 

 

4.3. IEEE 37-bus grid 

 

This 37-node test system corresponds to a three-phase 

asymmetrical IEEE distribution network located in 

California, USA, with one slack node, 25 demand nodes, 

and 35 distribution lines, as well as a nominal voltage of 

4.8 kV. This test network is an adaptation of the one 

stated in [47].  

 

Its configuration is depicted in Figure 7. The parametric 

information regarding the load values per node and the 

branch parameters is listed in Tables 7 and 8. 

 
Figure 7. Electrical configuration of the IEEE 37-node 

three-phase test system. 

Table 5. Line and node parameters in the 25-node system 
 

Line Node 
i 

Node 
j Conductor Length 

[ft] PjA(kW) QjA(kvar) PjB(kW) QjB(kvar)  PjC(kW) QjC(kvar) 

1   1    2 1 1000 0 0 0 0 0 0 
2 2 3 1 500 36 21.6 28.8 19.2 42 26.4 
3 2 6 2 500 43.2 28.8 33.6 24 30 30 
4 3 4 1 500 57.6 43.2 4.8 3.4 48 30 
5 3 18 2 500 57.6 43.2 38.4 28.8 48 36 
6 4 5 2 500 43.2 28.8 28.8 19.2 36 24 
7 4 23 2 400 8.6 64.8 4.8 3.8 60 42 
8 6 7 2 500 0 0 0 0 0 0 
9 6 8 2 1000 43.2 28.8 28.8 19.2 3.6 2.4 
10 7 9 2 500 72 50.4 38.4 28.8 48 30 
11 7 14 2 500 57.6 36 38.4 28.8 60 42 
12 7 16 2 500 57.6 4.3 3.8 28.8 48 36 
13 9 10 2 500 36 21.6 28.8 19.2 32 26.4 
14 10 11 2 300 50.4 31.7 24 14.4 36 24 
15 11 12 3 200 57.6 36 48 33.6 48 36 
16 11 13 3 200 64.8 21.6 33.6 21.1 36 24 
17 14 15 2 300 7.2 4.3 4.8 2.9 6 3.6 
18 14 17 3 300 57.6 43.2 33.6 24 54 38.4 
19 18 20 2 500 50.4 36 38.4 28.8 54 38.4 
20 18 21 3 400 5.8 4.3 3.4 2.4 5.4 3.8 
21 20 19 3 400 8.6 6.5 4.8 3.4 6 4.8 
22 21 22 3 400 72 50.4 57.6 43.2 60 48 
23 23 24 2 400 50.4 36 43.2 30.7 4.8 3.6 
24 24 25 3 400 8.6 6.5 4.8 2.9 6 4.2 
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5. Analysis of results and validation of the 

methodology 

 

This section presents the results and subsequent 

numerical validations obtained from applying the master-

slave optimization based on the combination of the SSA 

and the backward/forward matrix power flow approach 

to solve the phase imbalance problem in the three test 

systems. All of the simulations in this report were 

performed on a computer with an Intel(R) Core (TM) i5-

6198U 2.40 GHz processor, 8 GB RAM, a Windows 10 

Home operating system, and the MATLAB 2022a 

software. Table 9 shows the initial losses per phase, as 

well as the total losses.  

Table 6. Impedance matrix for conductor types in the 25-node system 

 
Conductor Impedance Matrix (Ω/mi) 

1 
0,3686 + j0,6852 0,0169 + j0,1515 0,0155 + j0,1098 
0,0169 + j0,1515 0,3757 + j0,6715 0,0188 + j0,2072 
0,0155 + j0,1098 0,0188 + j0,2072 0,3723 + j0,6782 

2 
0,9775 + j0,8717 0,0167 + j0,1697 0,0152 + j0,1264 
0,0167 + j0,1697 0,9844 + j0,8654 0,0186 + j0,2275 
0,0152 + j0,1264 0,0186 + j0,2275 0,9810 + j0,8648 

3 

1,9280 + j1,4194 0,0161 + j0,1183 0,0161 + j0,1183 
0,0161 + j0,1183 1,9308 + j1,4215 0,0161 + j0,1183 
0,0161 + j0,1183 0,0161 + j0,1183 1,9337 + j1,4236 

 

Table 7. Line and node parameters in the 37-node system 

 

Line 
Node 

i Node j Conductor Length [ft] PjA(kW) QjA(kvar) PjB(kW) QjB(kvar) PjC(kW) QjC(kvar) 

      1   1 2 1 1850  140      70 140     70 350     175 

2 2 3 2 960 0 0 0 0 0 0 
3 3 24 4 400 0 0 0 0 0 0 
4 3 27 3 360 0 0 0 0 85 40 
5 3 4 2 1320 0 0 0 0 0 0 
6 4 5 4 240 0 0 0 0 42 21 
7 4 9 3 600 0 0 0 0 85 40 
8 5 6 3 280 42 21 0 0 0 0 
9 6 7 4 200 42 21 42 21 42 21 
10 6 8 4 280 42 21 0 0 0 0 
11 9 10 3 200 0 0 0 0 0 0 
12 10 23 3 600 0 0 85 40 0 0 
13 10 11 3 320 0 0 0 0 0 0 
14 11 13 3 320 85 40 0 0 0 0 
15 11 12 4 320 0 0 0 0 42 21 
16 13 14 3 560 0 0 0 0 42 21 
17 14 18 3 640 140 70 0 0 0 0 
18 14 15 4 520 0 0 0 0 0 0 
19 15 16 4 200 0 0 0 0 85 40 
20 15 17 4 1280 0 0 42 21 0 0 
21 18 19 3 400 126 62 0 0 0 0 
22 19 20 3 400 0 0 0 0 0 0 
23 20 22 3 400 0 0 0 0 42 21 
24 20 21 4 200 0 0 0 0 85 40 
25 24 26 4 320 8 4 85 40 0 0 
26 24 25 4 240 0 0 0 0 85 40 
27 27 28 3 520 0 0 0 0 0 0 
28 28 29 4 80 17 8 21 10 0 0 
29 28 31 3 800 0 0 0 0 85 40 
30 29 30 4 520 85 40 0 0 0 0 
31 31 34 4 920 0 0 0 0 0 0 
32 31 32 3 600 0 0 0 0 0 0 
33 32 33 4 280 0 0 42 21 0 0 
34 34 36 4 760 0 0 42 21 0 0 
35 34 35 4 120 0 0 140 70 21 10 
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In addition, the processing times and the number of 

iterations required to reach convergence were 

determined, observing that the processing time increased 

with the system size. These results are provided for each 

analysis case (8, 25, and 37 nodes) using the iterative 

sweep method as a three-phase power flow. 

 

Remark 4. To determine the effectiveness of the 

matricial backward/forward power flow method in 

dealing with the power losses calculation for each test 

feeder, the DIgSILENT power systems software was 

used to validate the results via a three-phase unbalanced 

Newton- Raphson approach, as recommended by the 

authors of [33]. 

 

The SSA was parameterized to solve the studied problem 

for the analyzed test feeders, as presented in Table 10.  

 

Table 10. Parameters used in the implementation of the 

SSA 

 
SSA 

Number of candidate solutions  12 

Number of iterations  1000 

Generation of candidate 

solutions  

Gaussian 

distribution 

Three-phase power flow with iterative sweep 

Number of iterations  

Tolerance 

1000 

1 ×  10−10 

System test 

Number of evaluations  100 

The parameters sought a balance in the number of 

candidate solutions and the number of iterations, given 

that altering one of these parameters could change the 

processing times and the overall solution. However, the 

time increases rapidly with the number of iterations, 

while the improvements in the objective functions are 

insignificant. 

 

5.1. Numerical results for the IEEE 8-bus grid 

 

Table 11 shows the results obtained by the proposed 

methodology in the 8-node distribution system. These 

results were compared with those of the reference case 

and other algorithms reported in the specialized literature 

with regard to the problem under study, namely the Chu 

& Beasley genetic algorithm (CBGA), the discrete vortex 

search algorithm (DVSA), and the improved crow search 

algorithm (ICSA). Note that all of these algorithms were 

used by the authors of [33] to solve the optimal phase- 

balancing problem in three-phase asymmetric networks.  

 

Table 11 shows a significant reduction in the total active 

power losses; the losses obtained using the SSA change 

from 13.9925 kW in the base case to 10.5869 kW. 

However, compared to the other algorithms, there is no 

significant change in the reduction of losses. Each 

algorithm, including the SSA, converges to the same 

solution and reduces the total losses by about 24.33 %.  

 

 

 

Table 8. Impedance matrix for conductor types in the 37-node system 
 

Conductor Impedance Matrix (Ω/mi) 

1 
0,2926 + j0,1973 0,0673 - j0,0368 0,0337 − j0,0417 
0,0673 - j0,0368 0,2646 + j0,1900 0,0673 - j0,0368 
0,0337 - j0,0417 0,0673 - j0,0368 0,2926 + j0,1973 

2 
0,4751 + j0,2973 0,1629 - j0,0326 0,1234 - j0,0607 
0,1629 - j0,0326 0,4488 + j0,2678 0,1629 - j0,0326 
0,1234 - j0,0607 0,1629 - j0,0326 0,4751 + j0,2973 

3 

1,2936 + j0,6713 0,4871 + j0,2111 0,4585 + j0,1521 
0,4871 + j0,2111 1,3022 + j0,6326 0,4871 + j0,2111 
0,4585 + j0,1521 0,4871 + j0,2111 1,2936 + j0,6713 

4 
2,0952 + j0,7758 0,5204 + j0,2738 0,4926 + j0,2123 
0,5204 + j0,2738 2,1068 + j0,7398 0,5204 + j0,2738 
0,4926 + j0,2123 0,5204 + j0,2738 2,0952 + j0,7758 

 

Table 9. Initial power active losses for each one of the test systems 

 
Test 

system 
Iteratio

ns 
Processing 

time (s) 
Phase A 

(kW) 
Phase B 

(kW) 
Phase C 

(kW) 
Total losses 

(kW) 
8 5 0.0905 1.7158 2.3305 9.9462 13.9925 
25 9 0.1882 36.8801 14.7837 23.7570 75.4207 
37 9 0.2919 27.1532 11.9143 37.0683 76.1357 

 

 



                           45 
 

 

Application of the SSA to the Optimal Phase-Swapping Problem in Three-Phase Asymmetric Networks 

For the IEEE 8-bus grid, this is an expected behavior, 

given that the solution space is small (i.e., 67, which 

corresponds to 279936 possible solutions). This implies 

that any combinatorial optimization method can easily 

find the optimal solution. Nevertheless, this is not 

possible for a test feeder with a large number of nodes, 

since the solution space increases exponentially. 

 

The significant differences between the algorithms lies in 

the type of connection with each demand node. This 

connection affects the power losses for each of the phases 

of the three-phase system and, therefore, the total losses 

(kW). The SSA achieves the worst results regarding the 

phase A and C active power losses than the other 

algorithms.  

 

However, it achieves the best reduction in phase B. The 

implementation of the SSA shows an increase from 

1.7158 to 3.8464 kW in active power in phase A, which 

represents an increase from 2.3305 to 2.7412 kW, and an 

important reduction from 9.9462 to 3.9993 kW with 

respect to the base case. 

 

Figure 8 shows the change that occurs in the losses of 

each phase by applying phase-balancing via the SSA and, 

consequently, the total losses reduction compared to the 

base case. 

 

5.2. Numerical results for the IEEE 25-bus grid 

 

Table 12 presents a comparative analysis of the proposed 

SSA approach and the literature reports on solving the 

optimal phase-swapping problem for the IEEE 33- bus 

grid. The results show the corresponding connections at 

the demand nodes to achieve the stated active power 

losses per phase, as well as the total losses.  

 

With respect to the IEEE 8-node three-phase system, 

there is a change in the results obtained after 

implementing the different methodologies, as the 

implementation of the algorithms does not converge to 

the same result (total active power losses).  

 

 

The base case reports total losses of 75.4207 kW, and the 

CBGA, DVSA, and ICSA improve the base case results 

by 4.1484 and 4.1525 %. The SSA algorithm achieves 

better results than the other algorithms; it goes from a 

base case value of 75.4207 kW to 72.2865 kW, which 

constitutes a reduction of 4.1556 %. Figure 9 shows the 

significant change in phase and total losses with respect 

to the reference case as obtained by applying the SSA. 

 

Note that the losses are divided into phases A, B, and C. 

In the case of phase A, there is a reduction from 36.8801 

to 25.8208 kW, representing a 29.871 % reduction. 

However, the other algorithms achieve a better reduction 

in that phase. The proposed methodology provides a 

different result in phase B, as the active power losses 

increase from 14.7837 to 26.0953 kW with respect to the 

reference base case. Finally, in phase C, the SSA 

achieves the best losses reduction, i.e., from 23.757kW 

in the base case to 20.3704 kW, which means 14.25 %. 

 

5.3. Numerical results for the IEEE 25-bus grid 

 

Table 13 presents the results obtained by implementing 

the proposed methodology in the IEEE 37-node 

distribution system. 

 

Table 13 shows reductions in the total active power 

losses in each of the methods. In the case of the 

implemented SSA, they go from 76.1357 kW in the base 

case to 61.4797 kW. However, for this test system, the 

ICSA algorithm reports better results, with 61.4781 kW. 

The SSA algorithm shows a reduction of 19.25 % due to 

the connection changes in the different nodes of the 

system. By comparing the SSA with the ICSA, it can be 

seen that the losses in phases A and B are lower in the 

latter, and there are very similar losses between both 

phases in the former. In phase C, the losses are somewhat 

lower than in other algorithms. 

 

Figure 10 depicts the active power losses in each of the 

phases and the total changes obtained via the SSA. 

 

 

 

 

Table 11. Results of applying phase-balancing methods in the 8-node system 

 

Method Connections Phase A (kW) Phase B (kW) Phase C (kW) Total Losses (kW) 

Benchmark Case { 1, 1, 1, 1, 1, 1, 1 } 1.7158 2.3305 9.9462 13.9925 

CBGA { 6, 1, 5, 1, 4, 4, 1 } 2.7295 4.0957 3.7617 10.5869 

DVSA { 6, 1, 5, 1, 2, 1, 1 } 2.7295 4.0957 3.7617 10.5869 

ICSA { 2, 4, 5, 4, 6, 4, 3} 2.7412 3.9930 3.8464 10.5869 

SSA { 1, 6, 2, 1, 5, 3, 6 } 3.8464 2.7412 3.9993 10.5869 
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Figure 8. Phase balancing results obtained by implementing the SSA in the 8-node system. 

 

Table 12. Results obtained by implementing the phase-balancing methods in the 25-node system 
 

Method Connections 
Phase A 

(kW) 

Phase B 

(kW) 

Phase C 

(kW) 

Total 

Losses 

(kW) 

Benchmark Case {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} 36.8801 14.7837 23.757 75.4207 

CBGA {1,1,3,5,2,1,1,1,2,6,5,1,5,3,6,6,3,3,1,3,5,2,4,3} 25.7626 25.9510 20.5782 72.2919 

DVSA {1,2,4,5,6,1,2,3,1,5,4,3,3,5,5,2,3,3,5,4,2,2,2,3} 25.6645 26.1613 20.4630 72.2888 

ICSA {4,2,4,5,6,3,2,3,1,5,4,3,3,5,5,2,3,3,5,4,2,2,2,3} 25.6645 26.1613 20.4630 72.2888 

SSA {3,6,3,2,6,4,4,6,1,5,4,3,3,5,5,2,3,6,1,3,5,5,3,4} 25.8208 26.0953 20.3704 72.2865 
 

 
Figure 9. Phase-balancing results obtained by implementing the SSA in the 25-node system. 

 

Table 13. Results obtained by applying phase-balancing methods to the 37-node system 

 

Method Connections 
Phase 

A (kW) 

Phase B 

(kW) 

Phase C 

(kW) 

Total 

Losses 

(kW) 

Benchmark 

Case 
{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} 36.8801 14.7837 23.757 75.4207 

CBGA {4,1,1,6,4,4,6,4,1,1,6,5,2,1,2,3,1,5,1,4,3,2,6,5,3,2,1,6,5,2,1,4,1,2,3} 25.7626 25.9510 20.5782 72.2919 

DVSA {4,1,1,5,3,4,2,3,1,1,3,2,2,1,3,5,2,3,1,3,6,1,2,3,3,2,1,1,2,4,1,4,1,2,4} 25.6645 26.1613 20.4630 72.2888 

ICSA {4,1,1,5,3,4,2,3,1,1,3,2,2,1,3,5,2,3,1,3,6,1,2,3,3,2,1,1,2,4,1,4,1,2,4} 25.6645 26.1613 20.4630 72.2888 

SSA {2,4,4,3,6,6,5,5,4,6,3,2,4,6,3,1,5,6,5,5,6,5,2,6,6,4,2,1,2,4,4,4,1,2,4} 25.8208 26.0953 20.3704 72.2865 
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6.  Conclusions and future works 

 

This article addressed the optimal phase-balancing 

problem in three-phase asymmetric networks by 

applying a master-slave optimization methodology that 

combined the SSA approach in the master stage with the 

matricial backward/forward power flow method in the 

slave stage. The SSA approach was selected for the 

master stage due to its programming simplicity and its 

reportedly high efficiency in dealing with continuous and 

discrete optimization problems. 

  

 Numerical results in the IEEE 8-, 25-, and 37-node 

asymmetric distribution networks demonstrate the 

effectiveness of the SSA when compared to 

combinatorial optimizers (the Chu & Beasley genetic 

algorithm, the discrete vortex search algorithm, and the  

improved crow search algorithm). 

 

As expected, the numerical results obtained for the IEEE 

8-bus grid demonstrated that all of the analyzed 

combinatorial optimization methods – including the 

proposed solution methodology – provide the same 

numerical solution (perhaps the global optimum for this 

test feeder) due to the small size of its solution space 

(about 67), which is not the case for the IEEE 25- and 37-

bus systems. For the latter, the proposed SSA approach 

reached the best numerical solution regarding the 

objective function value (i.e., 72,2865 kW), which 

corresponds to a reduction of about 4,1556 % with 

respect to the bench- mark case, followed by the ICSA 

with a decrease of ap- proximately 4,1525 %.  

 

Nevertheless, in the IEEE 37-bus grid, the SSA approach 

was overcome by the ICSA, with a difference of 1,60 W, 

which allows stating that both optimization 

methodologies can be regarded as efficient in solving the 

optimal phase-balancing problem in three- phase 

asymmetric networks. Nevertheless, more research is 

required for large-scale distribution grids in order to 

confirm this affirmation. The numerical results show a 

noticeable improvement obtained by applying the SSA to 

phase imbalances in the base cases of this study. 

However, the phase-balance problem has been addressed 

several times in the analyzed systems, and the differences 

between the results obtained by the SSA and those 

reported by other algorithms were not significant. 

 

As future work, it will be possible to conduct the 

following studies:  

 

(i) applying emerging combinatorial optimization 

methodologies, such as the cat swarm optimization 

algorithm, the generalized normal distribution optimizer, 

and the locust search algorithm, among others; 

 

(ii) combining the phase-balancing problem with optimal 

reactive power compensation in order to reduce the 

expected annual costs of energy losses while including 

the investments required for capacitor banks; and  

 

(iii) performing a complete literature review of the 

existing methodologies for solving the phase-balancing 

problem in three-phase grids. 
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Figure 10. Phase-balancing results obtained by implementing the SSA in the 37-node system. 
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