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Abstract 

 

This paper demonstrates that graph-based power flow methods for strictly radial distribution networks (one based on 

the upper-triangular matrix and the other on the incidence matrix or classical backward/forward power flow method) 

are equivalent, implying that both recursive power flow formulas are the same. A small distribution network composed 

of seven nodes and six distribution lines is considered to demonstrate this equivalence. The main contribution of this 

research lies in the fact that it obtains a matrix relation between the upper triangular matrix and the demand-to-demand 

branch-to-node incidence matrix. Numerical comparisons in single-phase distribution networks comprising 33, 34, 69, 

and 85 nodes and three-phase asymmetric networks comprising 8, 25, and 37 nodes confirm the theoretical results. 

 

Keywords: Upper-triangular matrix; branch-to-node incidence matrix; power flow methods; equivalent formulation. 

 

Resumen 

 

Este breve documento demuestra que los métodos de flujo de potencia basados en grafos para redes de distribución 

estrictamente radiales (uno basado en la matriz triangular superior y otro en la matriz de incidencia o método clásico 

de flujo de potencia hacia atrás/adelante) son equivalentes, lo que implica que ambas fórmulas de flujo de potencia 

recursivas son iguales. Se considera una pequeña red de distribución compuesta por siete nodos y seis líneas de 

distribución para demostrar esta equivalencia. La principal contribución de esta investigación radica en el hecho de 

que obtiene una relación matricial entre la matriz triangular superior y la matriz de incidencia de rama a nodo de 

demanda a demanda. Comparaciones numéricas en redes de distribución monofásicas que comprenden 33, 34, 69 y 85 

nodos y redes asimétricas trifásicas que comprenden 8, 25 y 37 nodos confirman los resultados teóricos. 
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Palabras clave: Matriz triangular superior; matriz de incidencia de rama a nodo; métodos de flujo de potencia; 

formulation equivalente. 

 

1. Introduction 

 

Power flow analysis in electrical networks has been the 

most studied problem in electrical engineering for more 

than six decades [1]. It is a steady-state study whose main 

interest is to determine the voltage magnitudes and angles 

in all the demand nodes of the network by using recursive 

solution approaches (i.e., iterative methods) [2]. When 

these voltages are determined, the electrical behavior of 

the network is completely determined, and it is possible 

to know the grid efficiency, voltage regulation, line 

chargeability, and power factor in generation sources, 

among other calculations. 

 

The most widely known power flow technique for power 

systems is the Newton-Raphson power flow method, 

which exhibits excellent behavior in strong meshed 

distribution networks with multiple generation sources 

[3]. However, in electrical distribution networks, due to 

their tree-based configuration (radial topology) and the 

presence of only one substation bus (slack), most power 

flow methodologies existing in the literature are founded 

upon graph theory. These solution techniques include the 

backward/forward sweep power flow method [4], the 

successive approximations power flow method [5], and 

the upper triangular power flow formulation [6], among 

others. The main characteristic of these graph-based 

approaches is that they are derivative-free, with linear 

convergence and faster processing times [7]. 

 

The main goal of this paper is not to propose a new power 

flow formulation for radial distribution networks but to 

demonstrate that the classical backward/forward power 

flow (BFPF) method is mathematically equivalent to the 

upper-triangular power flow (UTPF) approach. To this 

effect, the equivalence between the demand-todemand 

branch-to-node incidence matrix and the uppertriangular 

matrix is proved. The theoretical analysis presented in 

this research confirms that the recursive formula used in 

the BFPF method and the one used in the UTPF approach 

are the same. 

 

The remainder of this document is organized as follows: 

Section 2 presents the general derivation of the UTPF 

formula, Section 3 describes the general formulation of 

the BFPF approach, Section 4 presents the theoretical 

demonstration that both power flow formulations are 

entirely equivalent for strictly radial distribution grids; 

Section 5 presents the demonstration of convergence of 

the UTPF formula using the Banach fixed-point theorem; 

and Section 6 presents the numerical confirmation of the 

theoretical achievements by offering simulations in the 

singleand three-phase IEEE systems composed of 8, 25, 

33, 34, 37, 69, and 8 nodes, respectively. Finally, Section 

6 concludes that both power flow approaches are 

mathematically equivalent. 

 

2. Upper-Triangular Power Flow Method 

 

The upper-triangular power flow method (UTPF) is a 

graphbased power flow method originally proposed by 

[8] and extended to three-phase distribution networks by 

[9] and to meshed configurations by [10] with detailed 

dispersed generation models. The main idea of this 

technique is to exploit the graph-based structure of radial 

distribution networks, which allows representing the 

branch and nodal currents and voltages by using an 

upper-triangular matrix [7]. 

 

Lemma 1. The UTPF method is a graph-based power 

flow approach that allows determining all the voltage 

values at the demand nodes of a strictly radial 

distribution grid with only one substation bus by using 

the following recursive power flow formula: 

 

𝕍𝑑
𝑡+1 = 𝟏𝑑𝕍𝑠 − 𝑇⊤𝐙𝑏𝑏𝐓𝑑𝑖𝑎𝑔−1(𝕍𝑑

𝑡,⋆)𝕤𝑑
⋆ , (1) 

 

where 𝕍𝑑 is a vector with dimension d that contains all 

the unknown demand voltages; 1𝑑 is a vector with 

dimensión d that is filled with ones; 𝕍𝑠 is the voltage 

output at the terminals of the substation; T is a square 

matrix with an upper-triangular structure containing 

values of zero and one; 𝐙𝑏𝑏 is a square diagonal matrix 

with b×b dimension that contains all the primitive 

impedance values of all the distribution branches; and 

𝕤𝑑
⋆  is the vector with dimension d that contains all the 

complex values of the demanded loads. Note that diag (X) 

is a function that turns a vector into a diagonal matrix 

with appropriate dimensions and X⋆ is the conjugate 

value for the vector X. In addition, t corresponds to the 

iterative counter. 

 

Proof. To demonstrate the recursive power flow formula 

for the UTPF method presented in Equation (1), let us 

start with a small numerical example while considering 

the radial distribution network in Figure 1. 

 

In Figure 1, it can be observed that the current flow 

through the branch l can be represented as a function of 

the demanded currents at nodes downstream of the 

branch l, i.e., Ik, as presented below. 
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Figure 1. Single-line diagram equivalent of a three-

phase distribution system composed of 7 buses. 
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This matricial relation between branch and nodal currents 

can be represented in a compact manner as defined in (2): 

 

𝕁𝑏 = 𝑇𝕝𝑑 , (2) 

 

where 𝕁𝑏 ∈ 𝐶𝑏x1 is the vector with dimension b that 

contains all the branch currents; 𝕝𝑑∈ 𝐶𝑏x1 is a vector with 

dimension d that contains all the currents at the demand 

nodes, excluding the net injected current in the slack 

source. Note that T ∈ ℛ𝑏𝑥𝑏 represents the upper 

triangular matrix. 

 

Now, the voltage value at node k, 𝕍𝑘, the voltage output 

in the slack source, 𝕍1 (node 1 in Figure 1), and the 

voltage drop in branch l, El, can be related as follows 

(note that this set of equations is obtained after applying 

Kircchoff’s second law for the closed-loop trajectory 

from the substation to each demand node): 
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This matricial relation between nodal and Branch 

voltages can be represented in a compact manner as 

defined in (3): 

𝕍𝑑 = 𝟏𝑑𝕍𝑠 − 𝑇⊤𝔼𝑏 ,  (3) 

 

where 𝔼𝑏∈ Cb×1 is a vector with dimension b that contains 

the voltage drops in all the distribution lines, 𝕍 ∈ Cb×1. 

 

By applying Ohm’s law to each branch, it is possible to 

find the relation between the voltage drops in the 

branches and the current flow, as presented below: 

 

𝔼𝑏 = 𝒁𝑏𝑏 , 𝕁𝑏 (4) 

 

where ℤ∈ Cb×b is a diagonal matrix with complex 

elements that corresponds to the impedances of the 

branches, i.e., Z = diag ([Z1, Z2, · · ·, Z6]). 

 

Now, in order to relate the voltage variables in the 

demand nodes and the current demands, i.e., 𝕍𝑑 and 𝕀𝑑, 

Equations (4) and (2) are replaced into (3), which yields 

the following relation: 

 

𝕍𝑑 = 𝟏𝑑𝕍𝑠 − 𝑇⊤𝒁𝑏𝑏𝕀𝑑.  (5) 

 

Note that, in the case of single-phase distribution 

networks, the demanded currents can be expressed as a 

function of the voltage values and complex power 

consumptions, as presented in (6). 

 

𝕀𝑑 = 𝒅𝒊𝒂𝒈−1(𝕍𝑑
⋆ )𝕤𝑑

⋆ .  (6) 

 

Finally, if Equation (6) is replaced into (5), a general 

recursive nonlinear power flow formula based on the 

upper triangular matrix is reached, as presented in (7). 

 

𝕍𝑑 = 𝟏𝑑𝕍𝑠 − 𝑇⊤𝐙𝑏𝑏𝐓𝑑𝑖𝑎𝑔−1(𝕍𝑑
⋆ )𝕤𝑑

⋆ , (7) 

 

whose solution requires the addition of an iterative 

counter t that allows reaching the recursive UTPF 

formula defined in Equation (1), which completes the 

demonstration. 

 

3. Backward/Forward Power Flow 

 

The backward/forward power flow method (BFPF) is a 

graph-based power flow method originally proposed by 

[11] which uses a recursive solution procedure in order 

to find the voltage values in the demand nodes by using 

a backward sweep of currents from the end nodes until 

the current in the line leaving the substation bus is 

reached. With these currents, a forward sweep is 

performed to update all the voltage values at the demand 

nodes. This procedure is repeated until the desired 

convergence is found. The authors of [4] presented a 

general reformulation of the BFPF method that uses the 
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branch-to-node incidence matrix, which allows 

presenting this solution method in compact form. 

 

Lemma 2. The BFPF method is a graph-based power 

flow approach that allows determining all the voltaje 

values at the demand nodes of a radial distribution grid 

with only one substation bus by using the following 

recursive power flow formula: 

 

𝑉𝑑
𝑡+𝟙 = −[𝐀𝑑

⊤𝐘bb𝐀𝑑]−1(𝐀𝑑
⊤𝐘𝑏𝑏𝐀𝑠𝕍𝑠

+ diag−1(𝑉𝑑
𝑡,⋆)𝑆𝑑

⋆), 
(8) 

 

where 𝔸d is the component of the square incidence matrix 

that relates the demand nodes and the branch currents; 𝔸s 

is a rectangular matrix obtained from the branchto-node 

incidence matrix that relates the slack node with the 

current in the branches; and 𝕐𝑏𝑏is a square diagonal 

matrix with b× b dimension that contains all the primitive 

admittance values of all the distribution branches. 

 

Proof. To demonstrate that the BFPF method has the 

recursive formula presented in (8), let us remember the 

general structure of the branch-to-node incidence matrix 

[12]: 

 

i. Alk = 1 if the current through the line l is leaving 

the node k. 

ii. Alk = −1 if the current through the line l arrives 

to the node k. 

iii. Alk = 0 if the the line l is not connected to the 

node k. 

Now, considering the small distribution system presented 

in Figure 1, the branch-to-node incidence matrix for this 

system is defined below: 
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With the help of the node-to-branch incidence matrix 

presented above, it can be observed that the voltage drop 

at each distribution line (i.e., 𝔼𝑙) can be defined as the 

difference of the voltage value at the ends of the line. 

These relations are listed in Equation (9). 
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𝔼𝑏 = 𝐀s𝕍𝑠 + 𝐀𝑑𝕍𝑑 . (9) 

 

Now, note that, if Kircchoff’s first law is applied to each 

node in Figure 1 except the slack source, then the 

following relation is obtained: 
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which can be easily compacted with the help of the 

demandto-demand branch-to-node incidence matrix, 𝐀𝑑 , 

as follows: 

 

𝕀𝑑 = −𝐀𝑑
T 𝕁𝑏 . (11) 

 

Now, if Ohm’s law, which was presented in Equation (5), 

is written using its inverse form (i.e., 𝕁𝑏 = ℤ𝑏𝑏
-1 𝔼𝑏 =

𝕐𝑏𝑏𝔼𝑏), then Equation (11) takes the following form: 

 

𝕀𝑑 = −𝐀𝑑
T𝕐𝑏𝑏𝔼𝑏 . (12) 

 

In addition, if Equation (9) is replaced into (12), then the 

following result is obtained: 

 

𝕀𝑑 = −𝐀𝑑
T𝕐𝑏𝑏𝐀s𝕍𝑠-𝐀𝑑𝕐𝑏𝑏𝐀𝑑𝕍𝑑, (13) 

 

which implies that this equation is pre-multiplied on both 

sides by [𝐀𝑑
T𝕐𝑏𝑏𝐀𝑑]

-1
. Furthermore, if the definition of 

the demanded current presented in (6) is considered, the 

following nonlinear power flow formula is reached: 

 

𝕍𝑑 = −[𝐀𝑑
T𝐘𝑏𝑏𝐀𝑑]

-1
(𝐀𝑑

T𝐘𝑏𝑏𝐀s𝕍𝑠

+ diag-1(𝕍𝑑
⋆ )𝑆𝑑

⋆). 
(14) 

 

Note that, if the iterative counter t is added to Equation 

(14), the BFPF with the recursive formula presented in 

(8) is reached, thus completing the demonstration. 
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4. Equivalence of The UTPF and the BFPF 

Approaches 

 

To demonstrate that the UTPF formulation in (1) is 

completely equivalent to the BFPF approach in (8), let us 

consider the theorems and proofs presented below. 

 

Lemma 3. The upper-triangular matrix T and the 

demandto-demand branch-to-node incidence matrix are 

related with a negative inverse operation, i.e., 

 

𝐓 = − (𝐀𝑑
T)

-1
, (15) 

 

which is fulfilled if and only if the distribution network 

has a strictly radial configuration. 

 

Proof. To demonstrate the aforementioned inverse 

relation between these matrices, it is necessary to 

substitute Equation (11) into (2), which yields 

 

𝕁𝑏 = −𝐓𝐀𝑑
T 𝕁𝑏, (16) 

 

thus implying that 

 

−𝐓𝐀𝑑
T = 1𝑑×𝑑 ⟷ 𝐓 = − (𝐀𝑑

T)
-1

 (17) 

 

and completing the proof. 

 

Lemma 4. In the BFPF approach, the product between 

matrices regarding the voltage input meets the following 

criterion: 

 

−[𝐀𝑑
T𝐘𝑏𝑏𝐀𝑑]

-1
𝐀𝑑

T𝐘𝑏𝑏𝐀s = 𝟏𝑑, (18) 

 

if and only if the distribution network has a strictly radial 

topology. 

 

Proof. To demonstrate the relation presented in (15), it is 

necessary to consider the properties of the inverse of the 

product of the matrices. Thus, with three invertible 

square matrices (i.e., A, B, and C) with dimensions d×d, 

 

C=AB 

C-1 C=(AB)-1 AB 

1 d×d =(B-1 A-1) AB, 

 

which implies that (AB)−1= B−1A−1. With this property, it 

can be noted that 

 

−[𝐀𝑑
⊤𝐘𝑏𝑏𝐀𝑑]−1𝐀𝑑

⊤𝐘𝑏𝑏𝐀𝑠 = 1𝑑 , 
−(𝐘𝑏𝑏𝐀𝑑)−1(𝐀𝑑

⊤)-1𝐀𝑑
⊤𝐘𝑏𝑏𝐀𝑠 = 1𝑑 , 

−𝐀𝑑
-1𝐘𝑏𝑏

-1 𝐘𝑏𝑏𝐀𝑠 = 1𝑑 , 
−𝐀𝑑

-1𝐀𝑠 = 1𝑑 . 

(19) 

In addition, if it is taken into account that T⊤ is equal to 

−𝐀𝑑
-1, as demonstrated in (17), the following result is 

obtained: 

 

𝐓⊤𝐀s = 1𝒅. (20) 

 

The result in (20) can be easily verified with the 

numerical example in Figure 1, as the 𝐀s matrix only has 

a position with a value of one in the first row and the 

upper triangular matrix T is the sum of an identity matrix 

with an upper-triangular one, which clearly ensures that 

the product between both matrices produces a vector 

filled by ones, thus completing the demonstration. 

 

Lemma 5. The following matricial operations are 

equivalent for strictly radial distribution grids: 

 

𝐓⊤𝐙𝑏𝑏𝐓 = [𝐀𝑑
T𝐘𝑏𝑏𝐀𝑑]

-1
. (21) 

 

Proof. To prove that both matricial operations are 

equivalent, the properties of the inverse matrices in (19) 

are considered, which yield the following result: 

 

𝐓⊤𝐙𝑏𝑏𝐓 = 𝐀𝑑
-1 𝐘𝑏𝑏

-1 (𝑨𝑑
-⊤)-1  , (22) 

 

where, if the definition in (15) is taken into account, the 

following result is reached: 

 

𝐓⊤𝐙𝑏𝑏𝐓 = 𝐓⊤ 𝐘𝑏𝑏
-1  𝐓⊤, (23) 

 

which confirms that the relation between the primitive 

impedance matrix and the primitive admittance matrix is 

an inverse operation, as defined in Equations (4) and 

(12), thus completing the proof. 

 

Remark 1. Note that, if the definitions in (18) and (21) 

are replaced into the BFPF recursive formula (8), it 

becomes the UTPF formula defined in (1). This is a 

theoretical confirmation that the UTPF and BFPF 

methods are mathematically equivalent. 

 

5. Convergence Analysis 

  

This section addresses the convergence analysis of the 

UTPF method based on the demonstration presented by 

authors of [5] for the successive approximation power 

flow method. In this demonstration, the following 

assumptions are made [4], [13]. 

 

Assumption 1. The operation of the voltage distribution 

network is far from the voltage collapse point, i.e., the 

amount of power consumption allows the solution of the 

active and reactive power balance constraints. 
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Assumption 2. The regulatory entities imposed a 

minimum positive regulation bound for the distribution 

grid’s regular operation, i.e., Vmin> 0 exists. 

 

Assumption 3. The impedance matrix defined as 𝐙𝑏us =
𝐓⊤𝐙𝑏𝑏𝐓 which relates the demand nodes among them is 

diagonally dominant, i.e.,|𝐙𝑏us𝑗𝑗| ≥ |𝐙𝑏us𝑗𝑘|, ∀𝑗 ≠ 𝑘 is 

always fulfilled. 

 

To demonstrate the convergence properties of the UTPF 

method, we consider the formulation in (7), where an 

iterative counter is added, which produces: 

 

𝕍𝒅
𝒕+𝟏 = 1𝑑𝕍𝑠 − 𝐙𝑏usdiag-1(𝕍𝑑

𝑡,⋆)𝑆𝑑
⋆, (24) 

 

where it is observed that it is a contraction map that can 

be defined using the Banach fixed-point theorem [13]. 

 

Theorem 6 (Banach fixed-point theorem). The recursive 

UTPF formula presented by (24) is stable, and it is a 

contraction map that can be represented with a fixed-

point structure as defined below. 

 

𝕍𝒅
𝒕+𝟏 = 𝑮(𝕍𝑑

𝑡 ), (25) 

 

for an initial point 𝕍𝑑
0  such that 𝕍𝑑 fulfills Assumption 1, 

and 

 

‖𝑮(𝕍𝑑
0) − 𝑮(𝕌𝑑)‖ ≤ 𝛾‖(𝕍𝑑

0) − 𝕌𝑑‖, (26) 

 

being 𝕌𝑑, the vector of voltages that solves the iterative 

formula (24), and γ is a constant parameter defined in the 

real domain that is contained in the interval [0, 1]. 

 

Proof. The iterative power flow formula (23) that 

represents the UTPF method can be rewritten as follows: 

 

𝕍𝒅
𝒕+𝟏 = 𝑮(𝕍𝑑

𝑡 ) = 1𝑑𝕍𝑠 − 𝐙𝑏us [
𝑆𝑑𝑘

⋆

𝕍𝑑𝑘
𝑡,⋆]

𝑘𝝐𝒟

 (27) 

 

where 𝒟 is the set containing all the demanded nodes, 

i.e., all the nodes except the substation bus.  

 

Now, considering the general form of the recursive 

formula of the UTPF method and its relation with the 

fixedpoint definition in (24), it is observed that the vector 

of voltage solutions 𝕌𝑑  complies with 𝕌𝑑 = G (𝕌𝑑). In 

addition, it is a unique solution of the power flow 

problem if and only if there is a contraction map g (𝕌𝑑) 

on 𝕍𝑑, this is:  

 

 

 

‖𝕍𝒅
𝒕+𝟏 − 𝕌𝑑‖ = ‖𝐆(𝕍𝒅

𝒕+𝟏) − 𝐆(𝕌𝑑)‖ 

‖𝐙𝑏us𝑆𝑑
⋆ [

1

𝕌𝑑𝑘
⋆ −

1

𝕍𝑑𝑘
𝑡,⋆]

𝑘𝝐𝒟

⊤

‖ 

‖𝐙𝑏us𝑆𝑑
⋆ [

𝕍𝑑𝑘
𝑡,⋆

𝕌𝑑𝑘
⋆ −

𝕌𝑑𝑘
⋆

𝕍𝑑𝑘
𝑡,⋆ ]

𝑖𝝐𝒟

⊤

‖ 

≤ 𝛾‖𝕍𝑑
𝑡 − 𝕌𝑑  ‖, 

(28) 

 

being the γ parameter defined as follows: 

 

γ =
‖𝐙𝑏us𝑆𝑑

⋆‖

(𝑉𝑚𝑖𝑛)2
 (29) 

 

In this point, if we consider Assumption 2 which defined 

the nature of the matrix 𝐙𝑏us𝑘𝑘
, then Equation (29) can be 

reformulated as: 

 

γ =
max
𝑘𝝐𝒟

{
|𝐙𝑏us𝑘𝑘

||𝑆𝑑𝑘
⋆ |

(𝑉𝑚𝑖𝑛)2
} (30) 

 

Observed that considering that 𝐙𝑏us𝑘𝑘
 is the Thévenin 

impedance at node k [13], and based on the mathematical 

form exhibited by γ in (30), the following equivalence is 

reached. 

 

γ =
max
𝑘𝝐𝒟

{

|𝑆𝑑𝑖
⋆ |

𝑉𝑚𝑖𝑛

𝑉𝑚𝑖𝑛

|𝐙𝑏us𝑘𝑘
|

}, (31) 

 

which clearly shows that the parameter γ is contained in 

the interval [0, 1] since: 

 

i. The denominator of (31) corresponds to the 

minimum short-circuit current at node k, and 

ii. The numerator corresponds to the maximum 

demanded current possible at node k, which in 

normal operating conditions is always lower that the 

short-circuit current. 

 

The aforementioned operative conditions demonstrate 

that the UTPF formula (23) allows solving the power 

flow problem ensuring the stability and convergence of 

the iterative process, which completes the proof [4], [5]. 

 

6. Numerical Validations 

 

To validate the theoretical achievement regarding the 

equivalence between the UTPF and BFPF methods 

numerically, simulations in well-known single- and 

three-phase networks are presented. The IEEE 33-, 34-, 

69-, and 85bus grids are considered for validating the 

equivalence between both power flow methods in single-
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phase distribution grids. The complete parametric 

information and the grid configurations for each one of 

these distribution networks can be consulted in [7] and 

[5]. Table 1 presents the comparative results for each test 

feeder. 

 

Table 1. Numerical performance of the BFPF and the 

UTPF methods in single-phase networks 

 

Method 
Power losses 

(kW) 
Iterations 

Proc. time 

(ms) 

IEEE 33-bus system 

BFPF  10 0.5777 

UTPF 210.97850 10 0.0797 

IEEE 34-bus system 

BFPF  8 0.6405 

UTPF 221.75236 8 0.1662 

IEEE 69-bus system 

BFPF  10 2.3523 

UTPF  10 0.1856 

IEEE 85-bus system 

BFPF  11 2.7924 

UTPF 225.07147 11 0.5450 

 

Numerical results in Table 1 show that as theoretically 

expected, the TPB and BFPF approach solve the power 

flow problem with a convergence error  𝜀 =  1 ×
10-10 with the equal number of iterations, finding the 

identical value regarding the total grid power losses. 

Nevertheless, as previously demonstrated in the 

specialized literature (see [7] and [14]), the TBPF method 

solves the power flow problem for radial distribution 

networks faster than the BFPF approach. Note that it is 

possible since the upper triangular incidence matrix is 

non-built with the inverse of the incidence matrix; it is 

constructively formed following the algorithm reported 

by authors of [10], which helps with the reduction of 

processing times by avoiding inverting matrices. 

 

To confirm the equivalence between the TBPF and the 

BFPF approaches to three-phase networks, we select 

three IEEE test feeders composed of 8, 25, and 37 nodes 

reported in [15] for the optimal-phase swapping problem. 

Table 2 lists the comparative results between both power 

flow approaches for three-phase asymmetric networks. 

 

Results in Table 2 confirmed that both power flow 

approaches require the same number of iterations to 

fulfill the expected convergence error; also, for three-

phase grids, the expected processing time is better for the 

TBPF method when compared with the BFPF approach. 

Finally, Figure 2 presents the relation between the 

processing times of both power flow methods, which 

permits observing that in all the simulations (single- and 

three phase networks), the TBPF is faster than the BFPF 

approach. 

 

Table 2. Numerical performance of the BFPF and the 

UTPF methods in three-phase networks 

 

Method 
Power losses 

(kW) 
Iterations 

Proc. time 

(ms) 

IEEE 8-bus system 

BFPF  5 0.8224 

UTPF 13.9925 5 0.4358 

IEEE 25-bus system 

BFPF  9 3.2530 

UTPF 75.4207 9 1.6923 

IEEE 37-bus system 

BFPF  9 6.2549 

UTPF 76.1357 9 3.9450 

 

 
Figure 2. Performance behavior of the processing times 

in the single- and three-phase networks 

 

Figure 2 shows that in the case of the single-phase 

networks, the requested processing times are lower, 

which is expected the required calculations are lower 

when compared with three-phase networks, where 

additional calculations are required previous to the usage 

of the power flow formula at each iteration. These 

calculations are related to the demand currents that, in the 

three-phase case, can be produced by triangle- or star-

connected loads. 

 

7. Conclusion 

 

This paper presented a theoretical demonstration of the 

equivalence between the upper-triangular power flow 

method and the backward/forward approach, which uses 

its matricial equivalent via branch-to-node incidence 

matrices. The mathematical procedures confirmed that 

both recursive power flow formulas are completely 

equivalent if the distribution network under analysis has 

a radial topology with a single slack node. Note that the 

only assumption for all the proofs presented in this paper 

is that the distribution network is ordered, i.e., the slack 
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bus is connected at node 1, and the remaining nodes (i.e., 

2, ..., n) are associated with demand and step nodes. 

Numerical results in the IEEE single-phase networks 

composed of 33, 34, 69, and 85, and the IEEE three-phase 

grids composed of 8, 25, and 37 nodes, confirmed, as 

theoretically prognosticated, that to reach the same 

desired convergence, the TBPF, and the BFPF approach 

would take the equal number of iterations. In addition, 

numerical results in those systems confirmed that the 

TBPF approach is faster than the BFPF method for 

solving the power flow problem in radial distribution 

grids. 
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