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Abstract 

 

Electric systems are experiencing fast development, mainly motivated by the carbon reduction policies in the energy 

sector and the technological developments that introduce new elements and processes. The transition to active 

distribution networks (ADNs) represents a significant technological advancement in this ever-evolving context. 

Accurate models for each device present in ADNs are crucial for adequately representing their dynamics; however, 

load modeling poses challenges due to the vast diversity of load components, variations over time, and dependence on 

several factors. Despite these challenges, understanding load behavior is fundamental for efficient planning and 

operation of ADNs. Therefore, precise load models are indispensable for conducting preventive and forensic studies. 

This paper analyzes various scientific documents from the most relevant scientific databases, explicitly focusing on 

the challenge of measurement-based load modeling in ADNs. The main contribution of this document lies in enhancing 

the representation and understanding of loads in ADNs through the analysis of current approaches, challenges, and 

measurement-based modeling strategies. Additionally, it serves as a reference for future research in the field of load 

modeling. 

 

Keywords: active distribution network; data-based models; distributed energy resources; dynamic models; load 

modeling; measurement-based models’ parameterization; static models. 

 

Resumen 

 

Los sistemas eléctricos están experimentando un rápido desarrollo, impulsado principalmente por las políticas de 

reducción de carbono en el sector energético y los avances tecnológicos que introducen nuevos elementos y procesos. 

En este contexto en constante evolución, la transición hacia redes de distribución activas (ADNs) representa un 

significativo avance tecnológico y tener modelos precisos para cada dispositivo presente en las ADNs es crucial para 

una representación adecuada de su dinámica. Sin embargo, el modelado de la carga presenta desafíos debido a la gran 

diversidad de componentes de carga, las composiciones que varían en el tiempo y la dependencia de varios factores. 

A pesar de estos desafíos, comprender el comportamiento de la carga es fundamental para la planificación y operación 

eficiente de las ADNs; por lo tanto, disponer de modelos de carga precisos es indispensable para realizar estudios 

preventivos y forenses. En este artículo, se presenta un análisis de diversos artículos provenientes de las bases de datos 

científicas más relevantes, centrándose específicamente en el desafío del modelado de carga basado en mediciones en 

las ADNs. La principal contribución de este documento radica en mejorar la representación y comprensión de las 

cargas en ADNs, a través del análisis de enfoques actuales, desafíos y estrategias de modelizado basado en mediciones. 

Además, busca servir como referencia para investigaciones futuras en el campo del modelado de carga. 
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1. Introduction 

 

1.1. Motivation 

 

The significant increase in electricity consumption in 

recent years has led to a greater integration of distributed 

energy resources (DERs) in distribution networks and 

microgrids [1]. These resources, such as small-scale 

solar and wind power generation, have proven to be 

highly efficient in reducing carbon emissions associated 

with the electricity sector [2]. As a result, implementing 

DERs is considered a promising solution to reduce 

dependence on fossil fuels and move towards a more 

sustainable energy matrix. 

 

However, this growing adoption of DERs and the 

incorporation of emerging technologies, such as 

controllable loads, intelligent loads, and loads with 

power electronic components, have brought about 

significant transformations in the conventional electrical 

system. These advancements have driven the transition 

towards active distribution networks (ADNs), 

characterized by their ability to dynamically manage and 

optimize distributed resources [3]. In this context, 

obtaining accurate models of each element within ADNs 

is crucial for proper system representation. 

 

A key element in ADNs is load, which exhibits random 

and time-varying behaviors, implying that their active 

and reactive power response exhibit dynamic behavior. 

Additionally, incorporating new technologies in 

distribution networks has made loads increasingly 

sensitive to system fluctuations and external 

disturbances, adding complexity to their modeling [4]. 

Nevertheless, it is recognized the need for accurate 

models to characterize modern loads [5]. These models 

are fundamental for analyzing, planning, and controlling 

the electrical system; moreover, these are useful for 

conducting forensic studies that ensure reliable, secure, 

and efficient operation [6]. 

 

Load modeling aims to accurately represent the behavior 

of loads in an electrical system, both under steady-state 

conditions and in response to various disturbances. 

There are two common approaches to load modeling: 

component- and measurement-based. 

 

The component-based approach involves obtaining 

detailed information about each load component and 

their mathematical relationships to represent their 

combined effect on the system [7], [5], [8]. However, 

this approach may have limitations due to the difficulty 

of obtaining specific information for each load 

component. 

 

On the other hand, the measurement-based approach 

utilizes data obtained from measurement devices to 

accurately and aggregately represent the dynamic 

characteristics of loads [9], [5], [8]. This approach is 

more practical and widely used due to the availability of 

measurement devices in electrical systems. It allows for 

developing reliable and representative load models, 

facilitating forensic and predictive studies. 

 

Various techniques have been implemented in the 

measurement-based approach to develop load models. 

For example, optimization techniques have been 

employed to construct load models using static and 

dynamic structures [5]. Additionally, machine learning 

techniques have been applied to develop black-box 

models that capture load characteristics without 

requiring knowledge of their internal structure [10], [11]. 

Statistical techniques have also been used to develop 

probabilistic models, allowing for considering 

uncertainty in load behavior prediction [12], [13]. 

 

1.2. Contributions 

 

Load modeling in ADNs is a subject of ongoing study 

and development. Additional efforts are required to 

obtain reliable models that enable forensic and predictive 

studies. In this regard, this document aims to contribute 

to the field of load modeling, serving as a reference for 

future research. The challenges and modeling strategies 

through the measurement-based approach are analyzed to 

enhance the representation of loads in ADNs and gain a 

better understanding of their dynamics in these systems. 

 

1.3. Document structure 

 

This paper is ordered as follows. Section 2 presents some 

models used to represent loads in ADNs. Section 3 

presents the approaches to load modeling. The analysis 

of load modeling in ADNs and recommendations are 

represented in section 4. Finally, section 5 presents the 

most critical highlights derived from this paper. 

 

2. Conventional and Current Load Models 

 

In electric system analysis, well-defined and accurate 

models have been developed for elements such as lines, 
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transformers, generators, and compensation devices. 

However, load modeling presents a unique challenge 

(Rodríguez, Pérez, & Mora, 2015)due to the inherent 

complexity and temporal variability of loads, as well as 

factors such as weather conditions and the diversity of 

load types connected to a single source [9]. The task of 

modeling loads in electrical systems becomes even more 

complex due to the diversity of users and their different 

needs. 

 

Significant research has been conducted in load modeling 

over the past decades. Different mathematical 

expressions have been proposed to represent load 

characteristics, which classify models into static and 

dynamic models based on their form. Static models 

establish that the relationship between load power, 

voltage, and system frequency remains unchanged for 

any given instant. On the other hand, dynamic models 

define load powers as a function of voltage magnitude at 

past and present time instants [14]. 

 

Load modeling has gained greater importance with the 

transition to an active distribution network (ADN). These 

networks encompass various loads, including resistive, 

motors, electronic, and other loads. Both conventional 

models and more advanced and updated approaches have 

been employed in the field of load modeling to accurately 

represent these loads' behavior. 

 

2.1. Conventional load models 

 

2.1.1. Exponential load model (EXP) 

 

This model is characterized by expressing the active 

power (𝑃) and reactive power (𝑄) at each instant 𝑡, as a 

function of the magnitude of the voltage (𝑉) at the bus 

and the frequency (𝑓) of the system, as shown in 

equations (1) and (2). 

 

 

𝑃𝐸𝑋𝑃,𝑡 = 𝑃0 (
𝑉𝑡

𝑉0

)
𝑘𝑝𝑣

(1 + 𝑘𝑝𝑓𝛥𝑓) (1) 

𝑄𝐸𝑋𝑃,𝑡 = 𝑄0 (
𝑉𝑡

𝑉0

)
𝑘𝑞𝑣

(1 + 𝑘𝑞𝑓𝛥𝑓) (2) 

 

𝑉0, 𝑃0, and 𝑄0 correspond to the load bus's nominal 

voltage, active power, and reactive power, respectively. 

The exponents 𝑘𝑝𝑣 and 𝑘𝑞𝑣 represent the response 

characteristics of active and reactive power to changes in 

voltage magnitude. Additionally, the exponents 𝑘𝑝𝑓 and 

𝑘𝑞𝑓 are considered, representing the response 

characteristics to variations in frequency 𝛥𝑓. These 

exponents are essential for understanding how active and 

reactive power are modified concerning changes in 

voltage magnitude and frequency variation in the system. 

 

2.1.2. Polynomial or ZIP load model 

 

The ZIP model is commonly used to represent static 

loads in electrical systems. This model includes 

components of constant impedance (𝑍), constant current 

(𝐼), and constant power (𝑃), which describe the 

relationship between power and the voltage of interest. 

The mathematical equations of the ZIP model are 

expressed in equations (3) and (4). 

 

𝑃𝑍𝐼𝑃,𝑡 = 𝑃0 [𝑎𝑝 (
𝑉𝑡

𝑉0

)
2

+ 𝑏𝑝 (
𝑉𝑡

𝑉0

) + 𝑐𝑝] (3) 

 

𝑄𝑍𝐼𝑃,𝑡 = 𝑄0 [𝑎𝑞 (
𝑉𝑡

𝑉0

)
2

+ 𝑏𝑞 (
𝑉𝑡

𝑉0

) + 𝑐𝑞] (4) 

 

In these equations, 𝑃𝑍𝐼𝑃,𝑡, and 𝑄𝑍𝐼𝑃,𝑡 represent the active 

and reactive power at the specific node of interest at a 

given time 𝑡. 𝑉0 is the rated system voltage, while 𝑃0 and 

𝑄0 are the model's base active and reactive powers. 𝑉𝑡 

indicates the magnitude of the voltage at time 𝑡. 

 

Parameters 𝑎𝑝, 𝑏𝑝, and 𝑐𝑝 determine the contribution of 

each component of the ZIP model to the active power and 

must satisfy the constraint 𝑎𝑝 + 𝑏𝑝 + 𝑐𝑝 = 1. Similarly, 

the parameters 𝑎𝑞 , 𝑏𝑞, and 𝑐𝑞 define the contribution of 

each component to the reactive power and satisfy the 

constraint 𝑎𝑞 + 𝑏𝑝 + 𝑐𝑞 = 1. 

 

2.1.3. Exponential recovery load model (ERL) 

 

This model represents the exponential load response of 

active and reactive powers after a step-type disturbance 

in the voltage of the load bus [15]. This behavior is 

modeled through the first-order nonlinear differential 

equations shown in (5), (6), (7) and (7). 

 

𝑇𝑝

𝑑𝑥𝑝

𝑑𝑡
= −𝑥𝑝 + 𝑃0 (

𝑉𝑡

𝑉0

)
𝑁𝑝𝑠

− 𝑃0 (
𝑉𝑡

𝑉0

)
𝑁𝑝𝑡

 (5) 

 

𝑃𝐸𝑅𝐿,𝑡 = 𝑥𝑝+𝑃0 (
𝑉𝑡

𝑉0
)

𝑁𝑝𝑡
 (6) 

 

𝑇𝑞

𝑑𝑥𝑞

𝑑𝑡
= −𝑥𝑞 + 𝑄0 (

𝑉𝑡

𝑉0

)
𝑁𝑞𝑠

− 𝑄0 (
𝑉𝑡

𝑉0

)
𝑁𝑞𝑡

 (7) 

 

𝑄𝐸𝑅𝐿,𝑡 = 𝑥𝑞+𝑄0 (
𝑉𝑡

𝑉0
)

𝑁𝑞𝑡
 (8) 
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The active power, denoted as 𝑃𝐸𝑅𝐿,𝑡, and reactive power, 

denoted as 𝑄𝐸𝑅𝐿,𝑡, represent the power consumption of 

the load bus. The state variables 𝑥𝑝 and 𝑥𝑞  are associated 

with the active and reactive power respectively. Time 

constants of the exponential recovery response are 

represented by 𝑇𝑝 and 𝑇𝑞. Parameters such as 𝑁𝑝𝑠, 𝑁𝑞𝑠, 

𝑁𝑝𝑡, and 𝑁𝑞𝑡 are related to the steady-state and transient 

responses of the load. Additionally, 𝑉0, 𝑃0, and 𝑄0 

correspond to the load bus's rated voltage, active power, 

and reactive power respectively. 

 

2.2. Conventional load models 

 

2.2.1. Electronic load model 

 

The electronic load model in PowerWorld software has 

specific characteristics. When the voltage at the terminal 

exceeds the threshold 𝑉𝑑1, the electronic load maintains 

a constant active power (𝑃) and reactive power (𝑄). If 

the voltage is between the thresholds 𝑉𝑑1 and 𝑉𝑑2 (where 

𝑉𝑑1 is greater than 𝑉𝑑2), the active and reactive power of 

the electronic load linearly decreases to zero. The 

parameter 𝛼 represents a fraction of the electronic load. 

If 𝛼 is greater than zero, the load will gradually reconnect 

as the voltage recovers. 

 

The electronic load model in the WECC composite load 

system is like the model in PowerWorld and is expressed 

by the equations (9) and (10). 

 

𝑃𝐸,𝑡 = 𝑐𝑡𝑃𝐸,0 (9) 

 

𝑄𝐸,𝑡 = 𝑐𝑡𝑄𝐸,0 (10) 

 

Where 𝑃𝐸,𝑡, and 𝑄𝐸,𝑡 represent the active/reactive power 

of the electronic load, while 𝑃𝐸,0, and 𝑄𝐸,0 correspond to 

the base active/reactive powers, respectively. The 

coefficient 𝑐𝑡 is related to the bus voltage and is listed in 

Table 1. The operating modes depend on the terminal 

voltage. In Table 1, 𝑉𝑑1 and 𝑉𝑑2 are two threshold values, 

and 𝛼 represents a fraction of the electronic load that 

recovers from a low voltage drop. 𝑉𝑚𝑖𝑛,𝑡 is a value that 

tracks the lowest voltage but is always greater than or 

equal to 𝑉𝑚𝑖𝑛,𝑡  . It is a known value for each sample. The 

calculation of 𝑉𝑚𝑖𝑛,𝑡 is expressed in equation (11). 

 

 

𝑉𝑚𝑖𝑛,𝑡  = 𝑚𝑎𝑥{𝑉𝑑2, 𝑚𝑖𝑛{𝑉𝑡 , 𝑉𝑚𝑖𝑛,𝑡−1}}  (11) 

  

 

 

 

Table 1. Coefficient of Electronic Load 

 

Value of 𝑐𝑡 Condition Mode 

0 𝑉𝑡 < 𝑉𝑑2 1 

𝑉𝑡 − 𝑉𝑑2

𝑉𝑡 − 𝑉𝑑2

 

𝑉𝑑2 ≤ 𝑉𝑡

< 𝑉𝑑1, 
𝑉𝑡

≤ 𝑉𝑚𝑖𝑛,𝑡 

2 

𝑉𝑚𝑖𝑛,𝑡 − 𝑉𝑑2 + 𝛼(𝑉𝑡 − 𝑉𝑚𝑖𝑛,𝑡)

𝑉𝑡 − 𝑉𝑑2

 

𝑉𝑑2 ≤ 𝑉𝑡

< 𝑉𝑑1, 
𝑉𝑡

> 𝑉𝑚𝑖𝑛,𝑡 

3 

1 

𝑉𝑡

≥ 𝑉𝑑1,𝑉𝑡

≥ 𝑉𝑑1 

4 

𝑉𝑚𝑖𝑛,𝑡 − 𝑉𝑑2 + 𝛼(𝑉𝑑1 − 𝑉𝑚𝑖𝑛,𝑡)

𝑉𝑡 − 𝑉𝑑2

 

𝑉𝑡

≥ 𝑉𝑑1,𝑉𝑡

< 𝑉𝑑1 

5 

 

Source: [16]. 

 

2.2.2. Composite load model (CEZL) 

 

The composite load model is obtained as the combination 

of the ZIP model and the electronic load model. The 

equations (12) and (13) are presented below, representing 

the composite model. 

 

𝑃𝑡 = (1 − 𝛽𝑝)𝑃𝑍𝐼𝑃,𝑡 + 𝛽𝑝𝑃𝐸,𝑡  (12) 

 

𝑄𝑡 = (1 − 𝛽𝑞)𝑄𝑍𝐼𝑃,𝑡 + 𝛽𝑝𝑄𝐸,𝑡  (13) 

 

Where 𝛽𝑝 and 𝛽𝑞 are the coefficients representing the 

portions of electronic loads in the total active and reactive 

power, respectively. 𝑃𝑡 and 𝑄𝑡 represent the active and 

reactive power of the composite load, respectively. 

 

Detailed information about this model can be found in 

[16], where further insights and explanations can be 

obtained. 

 

2.2.3. Constant power load model (CPL) 

 

The constant power load exhibits an attractive 

characteristic in terms of its impedance. While the 

instantaneous impedance is positive 𝑉/𝐼 >  0, the 

incremental change in impedance is negative                        

𝛥𝑉/𝛥𝐼 <  0. This means that even though the load 

shows a positive resistance at a given moment, its 

increase in resistance is negative. This property can be 

mathematically explained through the relationship 

between voltage and current, expressed as 𝑃 = 𝑉𝐼,          
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where 𝑃 represents constant power. The mathematical 

structure of this model can be found in [17] and [18]. 

 

3. Load Modeling Approaches 

 

The proposed methodologies for developing load models 

can be classified into two main approaches: component-

based and measurement-based approaches. The 

component-based approach involves constructing 

individual models for each electrical component, which 

are then combined into an aggregate load model. 

Applying this approach requires knowledge of the load 

composition, that is, the percentage of load consumed by 

each component type. On the other hand, the 

measurement-based approach relies on leveraging data 

obtained from devices such as PMUs (phasor 

measurement units), and smart meters, among others. 

These data are used to characterize and model the 

electrical load. 

 

3.1. Component-based approach 

 

The component-based approach, also known as the 

knowledge-based approach, represents an aggregate load 

model structure that fully considers the categories or 

classes of load, their compositions, and proportions, as 

illustrated in Figure 1. 

 

Individual load components can be depicted using either 

static or dynamic models. For example, resistive 

elements like cooking appliances and water heaters can 

be represented as constant impedance; whereas loads 

such as switch-mode power supplies (SMPS) are 

characterized as sources of constant power [5]. 

 

The component-based approach follows three main steps. 

First, a precise categorization of connected loads is 

performed. Four types of loads are grouped on a 

distribution bus: residential load, commercial load, 

industrial load, and public infrastructure load. Each type 

of load may require different power supply standards and 

has different modeling requirements. Modeling typical 

load classes can be challenging due to the natural 

distribution of load across different classes and the 

potential need for comprehensive data. 

 

Second, the structure and composition of each load 

category are carefully considered. For example, in 

residential loads, appliances such as air conditioning, 

washing machines, clothes dryer, dishwasher, 

refrigerator, cooling or heating pump, lighting, and other 

home electronic devices must be considered. The specific 

composition of the load is tailored to practical situations, 

as end-users may have different appliances in use. 

 

Third, each load category's typical characteristics and 

proportion are clearly estimated. For example, in 

residential loads, different appliances have different 

power characteristics, and their performance may vary 

based on customers' electricity consumption habits. 

Identifying the percentage contributions of each load 

component within a given load category is challenging as 

it requires conducting extensive customer surveys, which 

can be costly in terms of time and money [8]. 

 

On the other hand, the advantages and disadvantages of 

the component-based approach are presented in Table 2. 

 

3.2. Measurement-based approach 

 

The measurement-based load modeling approach 

involves gathering data at the load bus or substation. This 

data comprises measurements of voltages, active powers, 

and reactive powers during voltage or frequency 

disturbances in the system. Utilizing these 

measurements, the load model parameters are estimated 

through strategies that minimize the disparities between 

the measured data and the response of the estimated 

model, as presented in equation (14). 

 

 
 

Figure 1. Component-based modeling approach. Source: [5]. 
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𝑚𝑖𝑛
1

𝑁
∑[(𝑝𝑖

𝑚 − 𝑝𝑖
𝑠)2 + (𝑞𝑖

𝑚 − 𝑞𝑖
𝑠)2]

𝑁

𝑖=1

 (14) 

T 

able 2. Advantages and disadvantages of the 

component-based approach 

 

Component-based approach 

Advantages Disadvantages 

Correlate the 

mathematical formulation 

to the physical 

characteristics of the load 

components  

Difficulty in handling 

temporal load variation 

The load sector data are 

generally available 

The load structure data is 

substation specific 

No need for field 

measurements 

Error in modeling the 

newly connected load 

components 

Adaptable to different 

systems and conditions  

The model parameters 

can vary greatly with 

age, the manufacturer, 

and so on  

Flexibility in load/demand 

control 

Difficult for 

transmission system 

operators to apply  
 

Source: [8]. 

 

Where 𝑝𝑖
𝑚 and 𝑞𝑖

𝑚 represent the measured active and 

reactive powers, respectively, 𝑝𝑖
𝑠 and 𝑞𝑖

𝑠 are the 

estimated active and reactive powers by the model, 

respectively, and 𝑁 is the number of data points for the 

model estimation. The parameter estimation is not 

limited to the use of a particular optimization technique, 

and various techniques can be employed, such as genetic 

algorithms (GA) [19], Kalman filter (KF) [20], 

Levenberg-Marquardt algorithm [21], particle swarm 

optimization (PSO) [9], support vector machines (SVM) 

[16], constrained least squares (CLSQ)  and sensitivity-

driven constrained optimization (SDCO) [22], among 

others. 

 

Figure 2 illustrates the process for applying the 

measurement-based approach in load modeling. 

 

The process consists of the following steps: 

 

Step 1: Collect and process disturbance data. This 

involves taking measurements of voltages for each phase, 

frequency, as well as active and reactive powers. 

 

Step 2: Select an appropriate load model structure. An 

initial load model structure is chosen, which can be 

modified in Step 4 if the parameters are not adequate. 

Step 3: Execute the optimization process to obtain the 

parameters using equation (14). 

 

Step 4: Validate the derived load model. The model is 

compared with additional measurements, and a minimum 

error threshold is established. Cross-validation 

techniques can also be employed to validate the model 

[23]. If the model does not meet the validation criteria, 

the procedure is repeated with a new set of initial 

parameters or even a different load model structure. 

 

Step 5: If the final parameters of the load model are 

suitable, they are selected. However, if they do not meet 

the necessary requirements, it is possible to return to Step 

2 and select another model. When obtaining an 

appropriate load model is not feasible, the collected data 

may not be suitable for this measurement-based 

methodology. 

 

 

Figure 2. Measurement-based modeling approach. 

Source: [8]. 

 

Like the component-based approach, the measurement-

based approach also encompasses advantages and 

disadvantages, which are presented in Table 3. 

 

4. Analysis and Recommendations of Dynamic 

Load Modeling in ADNs 

 

In the context of proposed strategies for load modeling in 

ADNs, a predominance of conventional load models has 

been observed [24], [25], [26], [27]. However, these 

models have significant limitations in capturing the 

dynamic complexity and real-time variability inherent in 

the new types of loads present in ADNs. Some loads may 

exhibit notable changes in behavior due to multiple 

factors such as system conditions, time of day, and user 
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activities. Furthermore, the non-linear nature of 

electronic loads or loads with power electronic interfaces 

can generate harmonics, voltage fluctuations, and abrupt 

changes in power demand [8]. 

 

Table 3. Advantages and disadvantages of the 

measurement-based approach 

 

Measurement-based approach 

Advantages Disadvantages 

Collects dynamic 

responses from an 

actual system 

Low frequency of 

disturbances  

Provides a generic 

method applicable to 

model any load  

Lack of generalizability due to 

specific data collection 

location and time  

Captures temporal 

changes in 

connected loads 

Divergence in the 

performance of the objective 

function, resulting in 

suboptimal parameters 

 

Source: [8]. 

 

To accurately address these dynamic aspects, 

sophisticated and flexible models need to be developed 

to accurately reflect loads' real-time behavior. Currently, 

some proposals consider the measurement-based 

approach to represent the variability and complexity of 

loads. Some of these proposals focus solely on individual 

load modeling, while others consider an aggregated 

model of the ADN that includes the interaction between 

loads and other system components. Table 4 provides a 

review of current approaches, highlighting the techniques 

used in each case. 

 

Table 4. Comparison of Measurement-Based Dynamic 

Load Modeling Approaches in ADNs 

 

Ref 

Modelling 
Applied 

Technique Load 
Aggregate 

ADN 

[10]  ✓ Machine Learning 

[11]  ✓ Machine Learning 

[12]  ✓ Gaussian Process 

[13]  ✓ Gaussian Process 

[18] ✓  Hybrid Algorithm 

[22] ✓  CLSQ SDCO 

[28]  ✓ Machine Learning 

[29] ✓  Iterative Algorithm 

[30]  ✓ Machine Learning 

[31]  ✓ Machine Learning 

 

Source: Own elaboration. 

As noticed, there is a predominance of aggregated ADN 

modeling, then it is crucial to highlight the importance of 

considering load models independently. These specific 

load models are necessary for conducting detailed studies 

on stability, resilience analysis, and protection 

coordination, among other relevant analyses [8]. 

 

In terms of stability, load models allow for precise 

evaluation of limits and understanding of the impact of 

load on system dynamics [26]. Furthermore, regarding 

network resilience, critical areas can be identified where 

demand may exceed generation capacity or transmission 

and distribution infrastructure limitations [27]. 

 

On the other hand, to ensure a more accurate 

representation of load models, it is recommended to 

consider relevant exogenous variables, such as temporal 

demand variability and consumption patterns [13]. In this 

regard, the availability of advanced measurement 

equipment like PMUs and smart meters offers a 

significant advantage by enabling the acquisition of 

precise and real-time data for adequate load 

characterization. This availability of detailed and up-to-

date information is essential for achieving a more 

accurate and comprehensive representation of load 

models. 

 

Additionally, in terms of protection coordination, 

individual load models provide a more precise 

representation of current flows during faults and short 

circuits. They also allow for tracking the value of load 

impedance, which is crucial for optimal adjustment and 

configuration of protection devices, avoiding 

unnecessary supply interruptions and minimizing 

impacts on the network. 

 

5. Conclusions 

 

Transition from conventional electric distribution 

networks to ADNs entails the need for continuous studies 

on the modeling of the involved elements. This shift 

towards a more dynamic and decentralized infrastructure 

highlights the importance of understanding and 

accurately representing complex elements such as loads. 

The proper load representation is crucial for 

comprehending and predicting network behavior, 

especially in an environment where distributed 

generation and variations in consumption play a crucial 

role. Accurate load modeling enables reliable system 

operation and stability evaluation and understanding of 

the impacts of distributed generation resources and 

interactions among network components. Load 

characteristics can vary over time and exhibit stochastic 

behaviors, so it is essential to conduct continuous and up-

to-date studies on load modeling in the context of ADNs. 
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Modeling involves collecting and analyzing relevant 

data, developing suitable techniques, and validating 

proposed models through measurements and real-world 

tests. 

 

The state-of-the-art review of load modeling in Active 

Distribution Networks using measurement-based 

approaches analyzed in this paper focuses on applying 

machine learning techniques, Gaussian processes, and 

general learning-based algorithms. However, most 

research considers loads within an aggregated ADN 

model, highlighting the need to consider loads 

individually. Although significant progress has been 

made, challenges still need to be solved in achieving 

satisfactory model generalization, where factors such as 

computational burden, load diversity, and system 

disturbances increase this difficulty. Therefore, further 

research is required to improve the accuracy and 

generalization of load modeling approaches, enabling 

more reliable and precise predictions of consumption 

behavior in response to system disturbances. It is 

essential to consider loads individually and develop 

methods that capture their specific characteristics for a 

more accurate and comprehensive representation. 

 

Funding 

 

This research result is funded by the Colombian Science 

Ministry (Minciencias) young researchers program, the 

research program INTEGRA2023, and the Master's 

Program in Electrical Engineering from Universidad 

Tecnológica de Pereira (UTP). This product was obtained 

by the ICE3 research group at the UTP. 

 

Autor Contributions 

 

D. Osorio-Vásquez: state-of-the art, investigation, 

methodology, writing-original draft, writing-review & 

editing, results, visualization.  S. Pérez-Londoño: 

conceptualization, methodology, validation, formal 

analysis, investigation, writing-review & editing, 

visualization, supervision.  J. Mora-Flórez: 

conceptualization, resources, data curation, writing-

review & editing, formal analysis, supervision, project 

administration, funding acquisition. 
  
All authors have read and agree to the published version 

of manuscript. 

 

Conflicts of Interest 

 

The authors declare no conflict of interest. 

 

 

 

Institutional Review Board Statement  

 

Not applicable. 

 

Informed Consent Statement  

 

Not applicable. 

 

References 

 

[1]  N. Pourghaderi, M. Fotuhi-Firuzabad, M. Moeini-

Aghtaie, M. Kabirifar y M. Lehtonen, “Exploiting DERs’ 

Flexibility Provision in Distribution and Transmission 

Systems Interface,” IEEE Transactions on Power 

Systems, vol. 38, pp. 1963-1977, 2023, doi:  

https://doi.org/10.1109/TPWRS.2022.3209132  

[2]  J. Flores-Robert, J. Brouwer, “Optimal design of a 

distributed energy resource system that economically 

reduces carbon emissions,” Applied Energy, vol. 232, pp. 

119-138, 2018, doi: 

https://doi.org/10.1016/j.apenergy.2018.09.029  

[3]  S. P. Chowdhury, P. Crossley, Microgrids and 

active distribution networks. London, United Kingdom, 

2009, doi: https://doi.org/10.1049/PBRN006E  

[4]  C. Wang, P. Ju, F. Wu, X. Pan y Z. Wang, “A 

systematic review on power system resilience from the 

perspective of generation, network, and load,” 

Renewable and Sustainable Energy Reviews, vol. 

112567, p. 112567, 2022, doi: 

https://doi.org/10.1016/j.rser.2022.112567  

[5]  A. Arif, Z. Wang, J. Wang, B. Mather, H. 

Bashualdo, D. Zhao, “Load modeling—A review,” IEEE 

Transactions on Smart Grid, vol. 9, pp. 5986-5999, 2017.  

[6]  L. Chávarro, S. Pérez, J. Mora, “An adaptive 

approach for dynamic load modeling in microgrid,” IEEE 

Transactions on Smart Grid, vol. 12, pp. 2834-2843, 

2021, doi:  https://doi.org/10.1109/TSG.2021.3064046  

[7]  M. Roos, P. H. Nguyen, J. Morren, J. Slootweg, 

“Modeling and experimental validation of power 

electronic loads and DERs for microgrid islanding 

simulations,” IEEE Transactions on Power Systems, vol. 

35, pp. 2279-2288, 2019, doi:  

https://doi.org/10.1109/TPWRS.2019.2953757  

[8]  “IEEE Guide for Load Modeling and Simulations 

for Power Systems,” IEEE Std 2781-2022, pp. 1-88, 

2022.  

https://doi.org/10.1109/TPWRS.2022.3209132
https://doi.org/10.1016/j.apenergy.2018.09.029
https://doi.org/10.1049/PBRN006E
https://doi.org/10.1016/j.rser.2022.112567
https://doi.org/10.1109/TSG.2021.3064046
https://doi.org/10.1109/TPWRS.2019.2953757


                           101 
 

 

New business models in the Colombian energy market: Energy arbitration through storage systems 

[9]  L. Rodríguez, S. Pérez, J. Mora, “Measurement-

based exponential recovery load model: Development 

and validation,” Dyna, vol. 83, pp. 131--140, 2015.  

[10]  G. Mitrentsis, H. Lens, “Unsupervised learning 

method for clustering dynamic behavior in the context of 

power systems,” IFAC-PapersOnLine, vol. 53, pp. 

13024--13029, 2020, doi: 

https://doi.org/10.1016/j.ifacol.2020.12.2170  

[11]  E. O. Kontis, T. A. Papadopoulos, M. H. Syed, E. 

Guillo, G. H. Burt, G. K. Papagiannis, “Artificial-

intelligence method for the derivation of generic 

aggregated dynamic equivalent models,” IEEE 

Transactions on Power Systems, vol. 34, pp. 2947-2956, 

2019, doi: 

https://doi.org/10.1109/TPWRS.2019.2894185  

[12]  G. Mitrentsis, H. Lens, “Probabilistic dynamic 

model of active distribution networks using Gaussian 

processes,” IEEE Madrid PowerTech, pp. 1-6, 2021, doi: 

https://doi.org/10.1109/PowerTech46648.2021.9494816  

[13]  G. Mitrentsis, H. Lens, “A Gaussian process 

framework for the probabilistic dynamic modeling of 

active distribution networks using exogenous variables,” 

Electric Power Systems Research, vol. 211, p. 108403, 

2022, doi: https://doi.org/10.1016/j.epsr.2022.108403  

[14]  S. Pérez, A. Garcés, M. Bueno, J. Mora, 

“Modelizado de componentes en micro-redes AC, 

Pereira, Colombia”, Universidad Tecnológica de Pereira, 

2020.  

[15]  D. Karlsson, D. Hill, “Modelling and identification 

of nonlinear dynamic loads in power systems,” IEEE 

Transactions on Power Systems, vol. 9, pp. 157-166, 

1994.  

[16]  C. Wang, Z. Wang, J. Wang, D. Zhao, “SVM-

based parameter identification for composite ZIP and 

electronic load modeling,” IEEE Transactions on Power 

Systems, vol. 34, pp. 182-193, 2018, doi: 

https://doi.org/10.1109/TPWRS.2018.2865966  

[17]  S. Arora, P. Balsara, D. Bhatia, “Digital 

implementation of constant power load (CPL), active 

resistive load, constant current load and combinations,” 

2016 IEEE Dallas Circuits and Systems Conference 

(DCAS), pp. 1--4, 2016, doi:  

https://doi.org/10.1109/DCAS.2016.7791138  

 

[18]  M. Overlin, C. Smith, J. Kirtley, “A hybrid 

algorithm for parameter estimation (HAPE) for dynamic 

constant power loads,” IEEE Transactions on Industrial 

Electronics, vol. 68, pp. 10326-10335, 2020, doi: 

https://doi.org/10.1109/TIE.2020.3029470  

[19]  M. Jahromi, M. Ameli, “Measurement-based 

modelling of composite load using genetic algorithm,” 

Electric Power Systems Research, vol. 158, pp. 82-91, 

2018, doi: https://doi.org/10.1016/j.epsr.2017.12.023  

[20]  A. Rouhani, A. Abur, “Real-time dynamic 

parameter estimation for an exponential dynamic load 

model,” IEEE Transactions on Smart Grid, vol. 7, pp. 

1530-1536, 2015, doi: 

https://doi.org/10.1109/TSG.2015.2449904  

[21]  E. Polykarpou, E. Kyriakides, “Parameter 

estimation for measurement-based load modeling using 

the Levenberg-Marquardt algorithm,” 2016 18th 

Mediterranean Electrotechnical Conference 

(MELECON), pp. 1-6, 2016, doi:  

https://doi.org/10.1109/MELCON.2016.7495363  

[22]  S. Rizvi, S. Sadanandan, A. Srivastava, “Real-time 

parameter tracking of power-electronics interfaced 

composite ZIP load model,” IEEE Transactions on Smart 

Grid, vol. 13, pp. 3891-3902, 2021, doi: 

https://doi.org/10.1109/TSG.2021.3119507  

[23]  B. Choi, H. Chiang, Y. Li, H. Li, Y. Chen, D. 

Huang, M. Lauby, “Measurement-based dynamic load 

models: derivation, comparison, and validation,” IEEE 

Transactions on Power Systems, vol. 21, pp. 1276-1283, 

2006, doi: https://doi.org/10.1109/TPWRS.2006.876700  

[24]  F. Tuffner, K. Schneider, J. Hansen, M. Elizondo, 

“Modeling load dynamics to support resiliency-based 

operations in low-inertia microgrids,” IEEE 

Transactions on Smart Grid, vol. 10, pp. 2726-2737, 

2018, doi: https://doi.org/10.1109/TSG.2018.2809452  

[25]  A. Mahdavian, A. Ghadimi, M. Bayat, “Microgrid 

small-signal stability analysis considering dynamic load 

model,” IET Renewable Power Generation, vol. 15, pp. 

2799--2813, 2021, doi: 

https://doi.org/10.1049/rpg2.12203  

[26]  J. Penaloza, J. Adu, A. Borghetti, F. Napolitano, F. 

Tossani, C. Nucci, “Influence of load dynamic response 

on the stability of microgrids during islanding 

transition,” Electric Power Systems Research, vol. 190, 

p. 106607, 2021, doi:  

https://doi.org/10.1016/j.epsr.2020.106607  

https://doi.org/10.1016/j.ifacol.2020.12.2170
https://doi.org/10.1109/TPWRS.2019.2894185
https://doi.org/10.1109/PowerTech46648.2021.9494816
https://doi.org/10.1016/j.epsr.2022.108403
https://doi.org/10.1109/TPWRS.2018.2865966
https://doi.org/10.1109/DCAS.2016.7791138
https://doi.org/10.1109/TIE.2020.3029470
https://doi.org/10.1016/j.epsr.2017.12.023
https://doi.org/10.1109/TSG.2015.2449904
https://doi.org/10.1109/MELCON.2016.7495363
https://doi.org/10.1109/TSG.2021.3119507
https://doi.org/10.1109/TPWRS.2006.876700
https://doi.org/10.1109/TSG.2018.2809452
https://doi.org/10.1049/rpg2.12203
https://doi.org/10.1016/j.epsr.2020.106607


102   
 
 

D. Osorio-Vásquez, S. Pérez-Londoño, J. Mora-Flórez 

[27]  K. Rahmati, R. Ebrahimi, V. Darabad, “Optimal 

dynamic multi-microgrid structuring for improving 

distribution system resiliency considering time-varying 

voltage-dependent load models,” Electric Power Systems 

Research, vol. 221, p. 109488, 2023, 

https://doi.org/10.1016/j.epsr.2023.109488  

[28]  G. Mitrentsis, H. Lens, “Data-driven dynamic 

models of active distribution networks using 

unsupervised learning techniques on field 

measurements,” IEEE Transactions on Smart Grid, vol. 

12, pp. 2952-2965, 2021, 

https://doi.org/10.1109/TSG.2021.3057763  

[29]  E. Kontis, G. Papagiannis, M. Syed, E. Guillo, G. 

Burt, T. Papadopoulos, A. Chrysochos, “Development of 

measurement-based load models for the dynamic 

simulation of distribution grids,” 2017 IEEE PES 

Innovative Smart Grid Technologies Conference Europe 

(ISGT-Europe), pp. 1-6, 2017.  

[30]  C. Zheng, S. Wang, Y. Liu, C. Liu, W. Xie, C. 

Fang y S. Liu, “A novel equivalent model of active 

distribution networks based on LSTM,” IEEE 

transactions on neural networks and learning systems, 

pp. 2611--2624, 2019, doi: 

https://doi.org/10.1109/TNNLS.2018.2885219  

[31]  P. Wang, Z. Zhang, Q. Huang, X. Tang, W. Lee, 

“Robustness-improved method for measurement-based 

equivalent modeling of active distribution network,” 

IEEE Transactions on Industry Applications, vol. 57, pp. 

2146--2155, 2021, doi: 

https://doi.org/10.1109/TIA.2021.3057358  

https://doi.org/10.1016/j.epsr.2023.109488
https://doi.org/10.1109/TSG.2021.3057763
https://doi.org/10.1109/TNNLS.2018.2885219
https://doi.org/10.1109/TIA.2021.3057358

