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Abstract 

 

This paper presents the development of a Long Short-Term Memory neural network designed to predict the volume 

fraction of liquid-liquid two-phase flows flowing through horizontal pipes. For this purpose, a comprehensive database 

was compiled using information sourced from existing research, comprising 2156 experimental data points utilized for 

model construction. The input of the algorithm consists of a vector containing the superficial velocities of the 

substances (oil and water), the mixture velocity, internal pipe diameter, and oil viscosity, while the output is the volume 

fraction of oil. Training and validation procedures involved preparing and segmenting the data, using 80% of the total 

information for training and the remaining 20% for validation. Model selection, based on performance evaluation, was 

conducted through 216 experiments. The predictive model with the best performance had a Mean Squared Error (MSE) 

of 3.5651E-05, a Mean Absolute Error (MAE) of 0.0045, and a Mean Absolute Percentage Error (MAPE) of 3.0250%. 

This performance was obtained by structuring the model with a ReLu transfer function, 20 epochs, a learning rate of 

0.1, a sigmoid transfer function, a batch size of 1, ADAM optimizer, and 150 neurons in the hidden layer. 

 

Keywords: Artificial neural network; LSTM; machine learning; two-phase flow; volume fraction;CFD. 

 

Resumen 

 

Este artículo presenta el desarrollo de una red neuronal de memoria a corto plazo diseñada para predecir la fracción 

volumétrica de flujos bifásicos líquido-líquido que circulan por tuberías horizontales. Para ello, se compiló una base 

de datos exhaustiva con información procedente de investigaciones existentes, que comprende 2156 puntos de datos 

experimentales utilizados para la construcción del modelo. La entrada del algoritmo consiste en un vector que contiene 

las velocidades superficiales de las sustancias (aceite y agua), la velocidad de la mezcla, el diámetro interno de la 

tubería y la viscosidad del aceite, mientras que la salida es la fracción volumétrica de aceite. Los procedimientos de 

entrenamiento y validación consistieron en preparar y segmentar los datos, utilizando el 80% de la información total 

https://creativecommons.org/licenses/by-nd/4.0/deed.es
https://doi.org/10.18273/revuin.v23n3-2024002
https://revistas.uis.edu.co/index.php/revistauisingenierias
https://orcid.org/0000-0002-9915-6384
https://orcid.org/0000-0002-9915-6384
https://orcid.org/0000-0002-2778-3389
mailto:cahss77@hotmail.com
mailto:alejandro.cv0414@gmail.com
mailto:agonzale@uis.edu.co


20   
 
 

I C. A. Hernández-Salazar, A. Carreño-Verdugo, O. A. González-Estrada 

para el entrenamiento y el 20% restante para la validación. La selección del modelo, basada en la evaluación del 

rendimiento, se llevó a cabo mediante 216 experimentos. El modelo predictivo con mejor rendimiento tuvo un Error 

Cuadrático Medio (ECM) de 3,5651E-05, un Error Medio Absoluto (EMA) de 0,0045 y un Error Medio Porcentual 

Absoluto (EPAA) de 3,0250%. Este rendimiento se obtuvo estructurando el modelo con una función de transferencia 

ReLu, 20 épocas, una tasa de aprendizaje de 0,1, una función de transferencia sigmoide, un tamaño de lote de 1, un 

optimizador ADAM y 150 neuronas en la capa oculta. 

 

Palabras clave: Red neuronal artificial; LSTM; aprendizaje automático; flujo bifásico; fracción volumétrica;CFD 

 

1. Introduction 

 

Multiphase flows are present in processes in the 

petrochemical industry, which has focused a significant 

portion of its resources on optimizing the production and 

transportation of oil and gas. In light of the development 

of Industry 4.0, the oil industry has focused its attention 

on implementing technologies for the characterization of 

multiphase flows [1], where the goal is to classify the 

type of multi-flow through the pipes. To do this, a 

detailed description of the different spatial distributions 

of the phases (liquid or gas) is required, known as 

regimes or flow patterns, which refer to the fluid 

configuration within the pipe [2, 3]. Predicting the 

behavior of flow patterns, taking into account the phases 

in which the fluids are found, whether solid, liquid, or 

gas, allows for accurate estimates of process parameters, 

optimization of infrastructure, personnel use, and 

reduction of operational costs [4]. 

 

Research has been conducted on two-phase liquid-liquid 

flow studies to understand their behavior under various 

conditions, particularly the mixture of oil and water [5]. 

This type of flow is dependent on numerous variables 

such as the geometry of the pipe (length, inclination, 

material, diameter), as well as the properties present in 

the mixture (surface tension, viscosity, and density), and 

the volume flows [6]. The estimation of pressure 

gradients and fluid volume fractions are directly linked 

to the determination of flow patterns within a pipeline 

[5]. The volume fraction is a dimensionless measure that 

allows us to know the quantity of each component of the 

mixture in a multiphase system, which consists of 

dividing the volume of the component of the system over 

the total volume of the mixture [7]. Also, the calculation 

of the volume fraction is relevant since it can be used to 

determine the amount of water and oil inside a well, and 

to identify zones with high volume fractions of the fluids 

to be extracted [8]. 

 

In search of greater accuracy and flexibility in the 

analysis of industrial process data in real-time, 

improvements in connectivity have been implemented 

through the use of technologies such as the Internet of 

Things (IoT), cloud storage, robotics, and artificial 

intelligence (AI) [9], [10]. Artificial intelligence (AI) can 

process large amounts of data and obtain accurate 

predictions about future process conditions [11]. In this 

way, greater accuracy in modeling system operation is 

achieved and the understanding of the phenomena related 

to fluid transport in multiphase flows is improved [12], 

[15]. 

 

Utilizing artificial neural networks (ANN) proves 

valuable in addressing challenges encountered in 

controlling processes involving multiphase flows. The 

efficacy of ANNs lies in their capability to discern 

intricate behavioral patterns within extensive datasets 

[16], thereby enabling the resolution of issues associated 

with characterizing two-phase systems [17], [18]. The 

goal of machine learning is to create computational 

models and methods that, without the need for 

specialized programming, enable machines to learn from 

data and prior experiences [19]. Three steps make up the 

learning process: training, validation, and testing. The 

model is fed a set of data, including sample inputs and 

expected outputs, during the training phase. In this 

process, an optimizing algorithm is used by the algorithm 

to modify the internal parameters to reduce the error 

between the predicted and expected results [19]. To 

ensure that the model produces appropriate values for the 

output and is not overfitted to the training data, model 

validation is subsequently carried out by analyzing a data 

set that was not used in training [20]. Once the model has 

been trained and validated, it is tested on a completely 

unseen dataset called the test set. Testing ensures that the 

model can generalize well to new, unseen data and 

provides an estimate of its real-world performance. 

Machine learning models can be supervised, 

unsupervised, or use reinforcement learning, depending 

on the requirements of the application [21]. Supervised 

models are used to predict an output from input data, 

while unsupervised models are used to identify patterns 

in data without requiring prior outputs [22]. 

Reinforcement learning focuses on learning decision-

making through interactions with the environment [21]. 

Deep learning is a machine learning technique based on 

neural networks with multiple layers that allows 

processing large datasets without clear structuring, such 

as images, voice, text, and video, to identify complex 
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patterns and relationships that are not easily detected by 

humans [23]. In the oil and gas industry, deep learning is 

used for production process optimization, predictive 

maintenance, equipment monitoring, prediction of oil 

and gas reserves, and processing and analysis of satellite 

images related to oil exploration and production [24]. 

 

Recurrent neural networks (RNNs), a type of machine 

learning model that can remember previously worked 

information and use it to make future predictions, are 

used in the processing of data streams, such as text and 

audio [25]. The architecture of RNNs behaves in such a 

way that the output of one neuron is used as input to the 

next, allowing information to flow through time and 

behavioral patterns to be captured in complex temporal 

sequences [25]. However, the performance of RNNs 

faces difficulties in deep network training due to the 

disappearance of the gradient. Therefore, a variant of 

RNNs called LSTM (Long Short Term Memory) 

networks was developed that solves this problem [26]. 

LSTM networks differ from RNNs in their structure, as 

they function as gates that control the flow of information 

by deciding what information is important to remember 

and what information is not relevant [26]. LSTM 

networks are composed of memory cells connected by 

input, output, and forgetting gates [27]. The function of 

these gates is to control the storage of information in each 

cell such that the network learns to remember only 

information relevant to the process and discards 

unimportant information [28]. LSTM networks have 

been very successful in various applications, including 

natural language processing, behavioral pattern 

regression, and image classification, thanks to their 

ability to work with long and complex data sequences 

[28]. 

 

The modeling discussed typically employs CFD with 

RANS models, which are computationally efficient. 

However, these methods have limitations, particularly 

when dealing with complex geometries and highly 

transient flows. While RANS models provide time-

averaged solutions and are less computationally intensive 

compared to more detailed simulations like DNS (Direct 

Numerical Simulation), they often fail to capture fine-

scale turbulence and transient phenomena accurately 

[29], [30]. In this context, the development of LSTM 

models presents a significant opportunity. LSTM 

networks, designed for handling sequential data and 

capturing temporal dependencies, offer the potential to 

predict flow dynamics in real-time with a higher degree 

of accuracy [30]. These models can serve as a 

complementary or alternative approach to traditional 

CFD, potentially reducing computational costs while 

enhancing predictive capabilities [31]. Recent studies 

have demonstrated that integrating LSTM models into 

CFD frameworks can significantly improve the accuracy 

of flow predictions, particularly in complex flow 

scenarios [30], making them a powerful tool for 

industrial applications where both precision and 

efficiency are critical. 

 

This research primarily focuses on studying the behavior 

of liquid-liquid two-phase flow, specifically involving 

water and oil. We consider key characteristics such as 

substance viscosities, pressure differentials within the 

pipeline, and volume fractions. The objective is to 

explore the feasibility of employing Long Short-Term 

Memory (LSTM) neural networks to estimate the volume 

fraction in a horizontal pipe where both oil and water are 

present. Assessing the accuracy of the prediction model 

is crucial, achieved by comparing outcomes obtained 

through training different neural network architectures. 

This approach aims to leverage artificial intelligence to 

enhance the understanding and prediction of fluid 

behavior. 

 

2. Materials and Methods 

 

An analysis of experimental information obtained from 

previous research [11], [32], [33], investigating the 

behavioral characteristics of a two-phase fluid, was 

conducted. In this study, information collected from 13 

authors focused on the behavior of a mixture of oil and 

water in horizontal piping, and 17 different schemes were 

presented, see Table 1. The dataset comprises a total of 

2,156 experimental data points gathered from previous 

research.  

 

In addition to the analysis of the experimental data, 216 

experiments were systematically designed and conducted 

to explore the influence of key parameters on the 

predictive model's performance. These experiments did 

not strictly follow a Design of Experiment (DoE) 

approach but were structured to vary parameters such as 

the number of neurons, learning rate, batch size, and the 

number of epochs in a controlled manner. This approach 

allowed for a comprehensive evaluation of each 

variable's individual impact and the interactions between 

them, providing insights into the optimal configuration 

for predicting the volume fraction in a two-phase flow. 

 

The collected variables include the internal diameter of 

the pipe, 𝐷, oil viscosity, 𝜇𝑜, oil density, 𝜌𝑜 which are 

critical in determining the flow characteristics and are 

used in conjunction with other parameters like surface 

velocities and volume fractions of oil and water. 
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Table 1. Summary of collected database  

 

Autor 𝑫 [𝑚] 𝝁𝒐 [Pa.s] 
𝝆𝒐 

[kg/m³] 

No. of 

data 

[34] 0.021 0.799 886 138 

[35] 0.1064 0.00188 800 49 

[36] 0.1 0.002 825 99 

[6] 0.0445 0.1077 881 27 

[37] 

0.0508 0.0288 884 106 

0.0508 0.013 858.5 30 

0.0508 0.013 858.5 88 

[38] 0.026 5.6 910 69 

[39] 
0.019 0.012 875 196 

0.0254 0.012 875 268 

[40] 0.025 0.107 889 536 

[41] 0.032 0.0054 825 57 

[42] 0.059 0.022 - 76 

[43] 0.0828 0.00717 831.4 43 

[44] 
0.026 5 910 64 

0.0056 0.0052 818 213 

[45] 0.007 0.0052 818 97 

 

Fuente: [11], [32], [33]. 

 

2.1. Neural network design 

 

In order to structure the network effectively, 

preprocessing of the data is essential. This was 

accomplished using Python software, utilizing libraries 

such as Pandas and Matplotlib for data analysis and 

visualization [46]. The appropriate process of 

organization and preprocessing of the raw data was 

fundamental to achieve an adequate transformation and 

cleaning of the data. Since the information was in 

different scales, a normalization process of the database 

was performed to compare them properly and avoid 

extreme values dominating the analysis. 

 

The data set was separated in such a way that the input 

vector with the required information and the output 

vector could be obtained. In this process, the input vector 

𝑋 was specified with a dimension of five rows, excluding 

the data of the volume fraction of the oil: 

 

𝑋 =

[
 
 
 
 

𝐽𝑜
𝐽𝑤

 𝐽𝑜+𝑤
𝜇𝑜

 𝐷 ]
 
 
 
 

 
(1) 

The surface velocities of oil, 𝐽𝑜, and water, 𝐽𝑤, the sum of 

the surface velocities of oil and water, 𝐽𝑜+𝑤, and the 

volume fraction of both oil, ɛ𝑜, and water, ɛ𝑤, in the fluid 

were crucial parameters in the modeling process. 

Similarly, the process of organizing the output vector 𝑌 

of the system was carried out, consisting of the selection 

of the data with the volume fraction of the oil: 

 

𝑌 = [𝜀𝑜]  (2) 

 

Once the correct vectorization of the information was 

achieved, the data was segmented for training and testing 

the system, using a proportion of 80% and 20% of the 

total information, respectively, adhering to conventional 

practices that promote effective learning and ensure 

robust model generalization. These values were selected 

to maintain the balance of the system. Therefore, the 

training data consisted of 1724 independent records, 

while the test data consisted of 432 records to evaluate 

model performance. 

 

For this study, the use of a recurrent neural network 

(RNN) is proposed to develop a predictive model of oil 

and water volume fraction in a two-phase flow. The RNN 

architecture is capable of processing and predicting data 

sequences thanks to its memory function and feedback 

connections, which differentiates it from conventional 

neural networks. 

 

Long Term Memory Networks (LSTM) are a special 

variant of Recurrent Neural Networks (RNN), designed 

to achieve better prediction of long-term data sequences 

[46], [47], [48]. This is due to the presence of memory 

cells that update their internal information in each cycle, 

allowing a better retention of relevant information 

throughout the sequence. In this type of model, the 

network is required to have at least one hidden layer to 

achieve a good prediction. The neurons in each hidden 

layer use the backpropagation process to adjust the 

synaptic weights of the neural connections to minimize 

the prediction error in the network output. This 

adjustment is performed from the output layer to the 

input layer. After the adjustment of the synaptic weights, 

a ReLu-type transfer function is used to improve the 

accuracy in determining the desired output value. 

Mathematically, the net input function 𝐼(𝑡) can be 

expressed as: 

 

𝐼(𝑡) = 𝑓[𝑤𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖] (3) 

 

Where 𝑓 represents the activation function ReLu, 𝑤𝑖  the 

matrix of synaptic weights, 𝑥𝑡 the input at time 𝑡, 𝑈𝑖 the 

weight matrix of the previous output, ℎ𝑡−1 the output of 

the neuron at time 𝑡 − 1, and 𝑏𝑖 the bias vector. 

 
The appropriate selection of activation functions was a 

crucial step in the development of the model. 
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Considering the nature of the dataset and the focus of this 

study, we chose the Rectified Linear Unit (ReLU), 

Sigmoid (Sigmoid), and Hyperbolic Tangent (Tanh) as 

our activation functions.  

 

The operational ranges for ReLU and Sigmoid are [0,1], 

while for Tanh, it is [-1,1], which adequately suits the 

needs for analyzing our data. These functions are defined 

as: 

 

𝑅𝑒𝐿𝑈(𝐼𝑜) =  {
0        ; 𝐼𝑜 ≤ 0
𝐼𝑜         ; 𝐼𝑜 > 0

} (4) 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐼𝑜) =  
1

1 + 𝑒−𝐼𝑜
 (5) 

𝑇𝑎𝑛ℎ (𝐼𝑜) =
1 − 𝑒−𝐼𝑜

1 + 𝑒−𝐼𝑜
 (6) 

 

The output function 𝐼𝑜 is described in terms of the flow 

rates of oil 𝐽𝑜 and water 𝐽𝑤, the sum of the surface 

velocities of oil and water 𝐽𝑜+𝑤, and the volume fraction 

of both oil 𝜀𝑜 and water 𝜀𝑤 within the fluid. The output 

function represents the result obtained after the neuron 

has completed its processing and will be used as input to 

the next neuron in the next hidden layer. The proposed 

model was implemented using Python libraries tailored 

for machine learning and data processing, including 

Sklearn, TensorFlow, and Keras. Figure 1 shows the 

overall architecture of the structured neural network. 

 

In total, 216 experiments were conducted to fine-tune 

critical hyperparameters such as the number of epochs, 

learning rate, batch size, and the configuration of hidden 

layers. The neurons in the hidden layers varied across 

four configurations: 25, 50, 100, and 150, typically 

arranged in one to three hidden layers. The epochs used 

in the experiments were 10, 20, and 50, learning rates 

were either 0.1 or 0.2, and batch sizes were adjusted to 1 

or 3. For the hidden layer, ReLU activation functions 

were chosen to efficiently handle the issue of vanishing 

gradients. In the output layer, ReLU, sigmoid, and Tanh 

functions were utilized to normalize the model’s outputs 

within a range of 0 to 1, important for accurately 

representing the volumetric fraction. The optimizers 

ADAM and RMSprop were tested, ADAM proved 

superior due to its ability to adapt weights through 

adaptive gradients effectively, while RMSprop was 

beneficial for its capability to adjust the learning rate 

based on an average of recent gradients, enhancing 

convergence in recurrent models like the LSTM. This 

detailed approach in optimizing hyperparameters 

significantly enhanced the model's accuracy in predicting 

biphasic flows and provided valuable insights into the 

optimal configuration of hyperparameters for its 

application. 

 

 

 

 

 

 

Figure 1. Schematic representation of the artificial neural network structure used. 
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2.2. Model validation and error analysis 

 

In the model training process, various errors may emerge 

that can significantly influence the overall performance 

and accuracy of the predictive model. These errors are 

often associated with several key factors in the 

architecture and training protocol of the neural network. 

One such factor is the number of neurons in each layer, 

which can affect the ability of the model to generalize 

from the training data to unseen data. Additionally, the 

choice of optimizer, whether ADAM, SGD, or others, 

plays a critical role in how effectively the model 

converges to a minimum error during training. 

 

The activation functions selected, such as ReLU, 

Sigmoid, or Tanh, also impact the learning dynamics of 

the model. Each function has specific characteristics that 

can either aid or hinder the training process depending on 

the nature of the data being processed. Moreover, the 

volume of data available for training is crucial, as 

insufficient data can lead to overfitting, where the model 

performs well on training data but poorly on new, unseen 

data. 

 

To quantify and monitor these errors, we utilized the 

mean squared error (MSE) as a primary evaluation 

metric, which evaluates the average squared difference 

between the estimated values and the actual value, and 

reads: 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑌(𝐸𝑥𝑝,𝑚) − 𝑌(𝑃𝑟𝑒𝑑,𝑚))

2

𝑛

𝑚=1

  (7) 

 

Where 𝑛 represents the total number of input data, 𝑌(𝐸𝑥𝑝) 

the experimental value of the output, and 𝑌(𝑃𝑟𝑒𝑑) the 

value obtained with the intelligent model. 

 

In addition to using the mean square error (MSE) to 

evaluate model accuracy, it is also proposed to use the 

mean absolute error (MAE) and the mean absolute 

percentage error (MAPE). The inclusion of these 

parameters allows for comprehensive validation of 

information, facilitates result comparison, and aids in 

identifying configurations with superior accuracy. 

 

𝑀𝐴𝐸 =  
1

𝑛
∑|(𝑌(𝐸𝑥𝑝,𝑚) − 𝑌(𝑃𝑟𝑒𝑑,𝑚))|

𝑛

𝑚=1

 (8) 

𝑀𝐴𝑃𝐸 =  
100

𝑛
∑ |

(𝑌(𝐸𝑥𝑝,𝑚) − 𝑌(𝑃𝑟𝑒𝑑,𝑚))

𝑌(𝐸𝑥𝑝,𝑚)
|

𝑛

𝑚=1

 (9) 

 

 

 

 

3. Results  

 

Based on the parameters discussed in Section 2, which 

describes the methodology for evaluating model 

performance and determining optimal configurations, we 

present our findings segmented by the number of neurons 

in the hidden layers. Accordingly, we conducted a series 

of 216 experiments to analyze the performance of the 

system. This involved a comparative assessment of the 

model’s outputs against a designated set of validation 

data, reserved specifically for testing purposes. 

The different configurations implemented in the system 

generate distinctive behaviors in the results. Notice that 

one of the modified parameters was the maximum 

number of epochs of the system, which was set at 50. The 

results for test 4 which for 50 epochs showed the lowest 

value of the MSE, with 6.54E-06, and MAPE of 3.37%. 

Comparatively, test 35 conducted over 20 epochs yielded 

an MSE of 3.56E-05 and a MAPE of 3.02%. Despite the 

slight performance variance under 0.4% between these 

two setups, the longer epoch length increased 

computational time by approximately 4 to 5 minutes. 

Consequently, it was decided to lower the number of 

epochs to 20 and, if necessary, to 10 in future tests to 

optimize both performance and computational 

efficiency. 

 

Additionally, during the experiments, it was observed 

that configurations with a larger number of neurons and 

a greater number of epochs required significantly longer 

processing times. For example, configurations with 150 

neurons and 50 epochs showed an improvement in model 

accuracy but at a considerably higher computational cost, 

increasing training time by 50% compared to 

configurations with 20 epochs. This trade-off between 

computational cost and accuracy emphasizes the 

importance of finding an optimal balance, particularly in 

scenarios where computational resources are limited or 

real-time processing is required. 

 

Table 2 shows the 10 configurations with the best MSE, 

structured in their hidden layers with 150 neurons. The 

results show that with this type of configuration an MSE 

of 6.5416E-06 can be achieved, as well as an MAE of 

0.0058 and an MAPE of 3.3738%. 

 

In Table 3, the performance of the model with an 

architecture of 100 neurons in its hidden layer and with 

20 epochs presents an MSE of 6.38E-05, compared to the 

3.56E-05 presented in Table 2. Similarly, the MAPE 

presents a performance of 4.08% and an MAE of 0.0048, 

obtaining a lower performance than the configurations 

presented in Table 2. 
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Table 4 shows the results for the 10 configurations with 

the best MSE, considering 50 neurons in the hidden layer. 

The system presents a behavior where, in comparison 

with Table 3 the values of the MSE and MAPE present 

an increase, reaching in this case 5.59E-05 and 3.33%, 

respectively, while the MAE remains stable. This 

comparison still does not exceed the performance 

presented in Table 2. On the other hand, notice that the 

model has better performance in this configuration when 

using a batch size of 1 as well as a learning rate of 0.1 by 

performing 20 epochs in the process and implementing. 

On the other hand, notice that the model has better 

performance in this configuration when using a batch size 

of 1 as well as a learning rate of 0.1 by performing 20 

epochs in the process and implementing activation 

functions such as sigmoid and hyperbolic. 

Table 5 shows the results for configurations with a 

structure of 25 neurons in its hidden layer. It shows a 

decrease in the performance of the MSE and MAE with 

respect to the previous configurations, presenting an error 

of 8.2504E-05 and 0.0063, respectively. Regarding the 

analysis of the MAPE, an improvement can be seen with 

respect to Table 4 since it presents a value of 3.1885% 

compared to 3.3392% of the previous result, showing an 

improvement of 0.15%. 

Figure 2 shows the behavior of the mean square error and 

its relationship with the varying parameters: number of 

neurons and number of epochs in the system. Higher 

number of neurons showed lower values of MSE. Lower 

values of epochs showed higher values of MSE. Note that 

during the development of the 216 tests, there was no 

marked trend in the behavior of the system, and a more 

detailed analysis of the performance of the model is 

required. To perform a more detailed analysis of the 

system performance results, it was proposed in Figure 3 

to organize the MSE values from smallest to largest and 

compare them in the number of neurons to review the 

correlation between them and show the influence of this 

Table 2. Model performance varying the main parameters, and using 150 neurons, for the 10 configurations with the 

best MSE 

 

Test 
No. 

Neurons 

No. 

Epochs 

Learning 

rate 

Lot 

size 
Optimizer 

Output 

activation 
MSE MAPE MAE 

4 150 50 0.1 3 ADAM Relu 6,54E-06 3,3738 0,0058 

11 150 50 0,1 1 ADAM Sigmoid 1,10E-05 1,4288 0,0022 

23 150 50 0,2 1 ADAM Sigmoid 1,77E-05 1,6007 0,0028 

24 150 50 0,2 1 ADAM Tanh 3,05E-05 2,9303 0,0033 

35 150 20 0,1 1 ADAM Sigmoid 3,56E-05 3,0250 0,0045 

8 150 50 0,1 1 RMSprop Sigmoid 3,58E-05 3,2018 0,0038 

20 150 50 0,2 1 RMSprop Sigmoid 4,11E-05 2,3200 0,0034 

12 150 50 0,1 1 ADAM Tanh 4,26E-05 3,1312 0,0054 

36 150 20 0,1 1 ADAM Tanh 4,38E-05 3,5740 0,0051 

6 150 50 0,1 3 ADAM Tanh 4,53E-05 3,1567 0,0054 

 

Table 3. Model performance with a full variation of main parameters, using 100 neurons 

 

Test 
No. 

Neurons 

No. 

Epochs 

Learning 

rate 

Lot 

size 
Optimizer 

Output 

activation 
MSE MAPE MAE 

78 100 20 0,1 3 ADAM Tanh 6,38E-05 4,0851 0,0048 

77 100 20 0,1 3 ADAM Sigmoid 6,53E-05 3,6244 0,0054 

81 100 20 0,1 1 RMSprop Tanh 6,71E-05 3,3238 0,0045 

89 100 20 0,2 3 ADAM Sigmoid 6,92E-05 2,9174 0,0050 

83 100 20 0,1 1 ADAM Sigmoid 8,03E-05 4,2026 0,0058 

94 100 20 0,2 1 ADAM Relu 8,60E-05 3,9164 0,0067 

80 100 20 0,1 1 RMSprop Sigmoid 9,11E-05 3,6893 0,0061 

82 100 20 0,1 1 ADAM Relu 1,06E-04 5,8229 0,0076 

107 100 10 0,1 1 ADAM Sigmoid 1,12E-04 4,9202 0,0089 

104 100 10 0,1 1 RMSprop Sigmoid 1,25E-04 4,5328 0,007 
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parameter on the model performance. Notice that with 

configurations with 150 and 100 neurons, better MSE 

performances are achieved in the system. 

 

Figure 4  shows the correlation between the number of 

neurons implemented in the system and the result of the 

mean absolute error (MAE) metric. It can be seen that, 

unlike the results presented by the MSE, which were 

much more segmented, in this case, the values are very 

similar. However, it is possible to see a small difference 

between the systems with 150 and 100 neurons and those 

with 50 and 25, respectively.  

Table 4. Model performance varying the main parameters, using 50 neurons, and for the 10 configurations with the 

best MSE 

 

Test 
No. 

Neurons 

No. 

Epochs 

Learning 

rate 

Lot 

size 
Optimizer 

Output 

activation 
MSE MAPE MAE 

131 50 20 0,1 1 ADAM Sigmoid 5,59E-05 3,3392 0,0048 

128 50 20 0,1 1 RMSprop Sigmoid 6,94E-05 3,6845 0,0047 

132 50 20 0,1 1 ADAM Tanh 7,86E-05 6,2786 0,0062 

129 50 20 0,1 1 RMSprop Tanh 9,38E-05 5,3622 0,0063 

137 50 20 0,2 3 ADAM Sigmoid 9,83E-05 3,5328 0,0059 

125 50 20 0,1 3 ADAM Sigmoid 1,00E-04 4,1487 0,0074 

142 50 20 0,2 1 ADAM Relu 1,06E-04 4,0291 0,0074 

156 50 10 0,1 1 ADAM Tanh 1,10E-04 3,9565 0,0074 

153 50 10 0,1 1 RMSprop Tanh 1,26E-04 3,4953 0,0078 

127 50 20 0,1 1 RMSprop Relu 1,26E-04 5,1179 0,0077 

Table 5. Model performance varying the main parameters, using 25 neurons, and for the 10 configurations with the 

best MSE 

 

Test 
No. 

Neurons 

No. 

Epochs 

Learning 

rate 

Lot 

size 
Optimizer 

Output 

activation 
MSE MAPE MAE 

191 25 20 0,2 1 ADAM Sigmoid 8,25E-05 3,1885 0,0063 

189 25 20 0,2 1 RMSprop Tanh 8,57E-05 2,651 0,006 

175 25 20 0,1 1 RMSprop Relu 1,31E-04 5,431 0,0078 

192 25 20 0,2 1 ADAM Tanh 1,41E-04 4,5988 0,0083 

188 25 20 0,2 1 RMSprop Sigmoid 1,67E-04 4,3604 0,0095 

176 25 20 0,1 1 RMSprop Sigmoid 1,70E-04 4,7803 0,0095 

171 25 20 0,1 3 RMSprop Tanh 1,89E-04 5,8035 0,0098 

203 25 10 0,1 1 ADAM Sigmoid 2,05E-04 6,3683 0,0096 

178 25 20 0,1 1 ADAM Relu 2,07E-04 7,7444 0,0101 

173 25 20 0,1 3 ADAM Sigmoid 2,23E-04 6,0608 0,0092 

 

  
Figure 2. MSE behavior related to the number of 

neurons and epochs in the system. 

 

Figure 3. Correlation between the number of neurons in 

the hidden layer and the MSE of the system. 
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This analysis supports what was mentioned in Table 2. 

MAPE results were compared with the number of 

neurons present in the system, as shown in Figure 5. 

Similar to previous results, the configurations with 150 

and 100 neurons in their internal structure exhibited less 

error during training. The configurations with 50 and 25 

neurons were not poorly designed, they simply 

demonstrated lower efficiency compared to their 

counterparts.  

 

To determine the optimal operational values for the 

model, we examined the relationship between the number 

of epochs and the mean squared error (MSE) metric, as 

depicted in Figure 6. This analysis incorporated findings 

from previous assessments concerning the number of 

neurons in the system. To facilitate a clearer 

interpretation of the data, we arranged the results in 

ascending order of MSE.  

 

Similar to the analysis in Table 2, notice that when 10 

epochs are implemented in the system, there are low 

performances and high errors. While extending the 

training to 50 epochs improves outcomes, it significantly 

increases computational cost. Therefore, using 20 epochs 

strikes the optimal balance between performance and 

efficient use of computational resources. 

 

After having performed the analysis of the results, and to 

obtain the optimum variation of parameters, it was 

proposed to select the 10 best configurations, taking into 

account that for efficiency reasons, and as mentioned in 

Table 2, the tests with 50 epochs will not be taken into 

account. Table 6 presents various neural network 

configurations with 150, 100, and 50 neurons in their 

hidden layers, all maintaining a consistent 20 epochs for 

training. The ADAM optimizer and the sigmoid 

activation function were predominantly used across these 

setups. Among these, test 35 emerged as the most 

effective option, yielding the best performance.  

 

Figure 7 displays four performance graphs of the chosen 

model. These graphs compare the number of epochs to 

the mean squared error (MSE), mean absolute error 

(MAE), and mean absolute percentage error (MAPE), 

and illustrate the alignment between the predictions of 

the model and the test data.  

 

 

  
Figure 4. Variation of the mean absolute error (MAE) 

considering the number of epochs. 

Figure 5. Variation of the mean absolute percentage 

error (MAPE) considering the number of neurons. 

 
Figure 6. Analysis of mean squared error (MSE) behavior versus number of epochs. 
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Additionally, Figure 8 illustrates the behavior of the 

predicted data against the 432 data points used for 

validation, providing a clear view of the system's 

operation and its effectiveness. 

 

4. Discussion and conclusions 

 

This study demonstrates the potential of Artificial Neural 

Networks (ANNs) and Long Short-Term Memory 

(LSTM) networks in predicting the volume fraction of oil 

in horizontal pipes. Despite the inherent challenges in 

validating and optimizing these models, their application 

in the oil and gas industry is promising. Different ANN 

models using LSTM were defined to calculate the 

volume fraction of oil and water in horizontal piping 

through the processing and prediction of data series.  

 

  
(a) (b) 

 
 

(c) (d) 

Figure 7. Performance graphs of the selected configuration, showing (a) a decreasing trend in Mean Squared Error 

over epochs, (b) a decline in Mean Absolute Error with more training iterations, (c) fluctuations in Mean Absolute 

Percentage Error across epochs, and (d) a scatter plot comparing predicted values against actual test data. 

 

Table 6. Overall performance results using the MSE as a benchmark 

 

Test 
No. 

Neurons 

No. 

Epochs 

Learning 

rate 

Lot 

size 
Optimizer 

Output 

activation 
MSE MAPE MAE 

35 150 20 0,1 1 ADAM Sigmoid 3,56E-05 3,0250 0,0045 

36 150 20 0,1 1 ADAM Tanh 4,38E-05 3,5740 0,0051 

131 50 20 0,1 1 ADAM Sigmoid 5,59E-05 3,3392 0,0048 

29 150 20 0,1 3 ADAM Sigmoid 5,82E-05 3,3211 0,0050 

78 100 20 0,1 3 ADAM Tanh 6,38E-05 4,0851 0,0048 

77 100 20 0,1 3 ADAM Sigmoid 6,53E-05 3,6244 0,0054 

81 100 20 0,1 1 RMSprop Tanh 6,71E-05 3,3238 0,0045 

89 100 20 0,2 3 ADAM Sigmoid 6,92E-05 2,9174 0,0050 

128 50 20 0,1 1 RMSprop Sigmoid 6,94E-05 3,6845 0,0047 

132 50 20 0,1 1 ADAM Tanh 7,86E-05 6,2786 0,0062 
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The models presented an input vector that included the 

surface velocities of each fluid, the internal diameter of 

the pipe, the velocity of the mixture, and viscosity. Based 

on performance evaluations, the best model exhibited a 

mean absolute percentage error of 3.02% and a mean 

absolute error of 0.0045. 

 

The implementation of an LSTM network showcased the 

versatility of these models for time series prediction. 

Furthermore, recent studies have shown that LSTM 

networks combined with ReLU layers can significantly 

enhance the accuracy of flow regime prediction in two-

phase systems, achieving up to 95.6% accuracy in 

specific configurations. This is comparable to our 

model's results, which showed an MSE of 3.5651E-05, 

underscoring the competitiveness of our LSTM 

configuration. Another comparative study used GA-BP 

neural networks and random forest algorithms to predict 

oil-water flow patterns, achieving up to 93.75% accuracy 

in some cases. However, our LSTM approach has proven 

superior in reducing the mean absolute error (MAE) and 

mean absolute percentage error (MAPE), reinforcing the 

effectiveness of our network for volume fraction 

prediction in two-phase flows [11].  

 

The experimental design in this study meticulously 

assessed the performance of a LSTM neural network in 

predicting the volume fraction in two-phase flows. 

Focused on optimizing the predictive accuracy of the 

model, we varied critical neural network parameters, 

including the number of neurons, epochs, learning rates, 

and activation functions. Through 216 distinct tests, each 

with different configurations, we evaluated the impact of 

these variations on key metrics such as Mean Squared 

Error (MSE), Mean Absolute Error (MAE), and Mean 

Absolute Percentage Error (MAPE). This structured 

approach enabled the determination of the most effective 

network configuration, achieving an optimal balance of 

accuracy and computational efficiency. The selected 

model incorporated 150 neurons with a ReLU transfer 

function, two hidden layers, an ADAM optimizer, and an 

output layer designed for predicting the oil volume 

fraction. 

 

It is important to note that these models, while accurate, 

they do not necessarily capture the underlying physics of 

the problem. However, this limitation highlights the 

potential for integrating neural networks with traditional 

Computational Fluid Dynamics (CFD) models. While 

CFD simulations are known for accurately capturing the 

physical phenomena in fluid flows, they are 

computationally expensive, particularly for complex and 

transient flows. By combining LSTM networks with 

CFD, it is possible to create hybrid models that leverage 

the strengths of both approaches maintaining the physical 

accuracy of CFD while reducing computational costs 

through neural network approximations. This integration 

could enhance the predictive capabilities of fluid 

dynamics models, making them more applicable for real-

time and large-scale industrial applications, and offering 

a promising direction for future research in this field.  

 

Furthermore, while this model was developed 

specifically for horizontal oil-water flows, its framework 

can be extended to other multiphase flow scenarios. For 

instance, with appropriate adjustments, the model could 

be applied to gas-liquid flows or flows in inclined and 

vertical pipes. Additionally, the model's adaptability to 

different geometries and boundary conditions, such as 

varying pipe diameters or materials, suggests its potential 

utility in a broad range of industrial applications. Future 

work could explore these extensions, refining the model 

to ensure accuracy across diverse conditions. 

 

 
Figure 8. Performance of the selected model. 
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This research lays the groundwork for future 

investigations in this field. Continued focus on model 

validation and optimization could significantly advance 

predictive capabilities in the oil and gas industry. Future 

research should aim to improve the robustness of these 

models and explore their applicability across different 

operational conditions and pipe configurations. 
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