
Implementation of Partial Reconfiguration Projects using
OpenPR on the Xilinx development board ML507

Implementación de Proyectos de Reconfiguración Parcial
usando OpenPR en el sistema de desarrollo ML507 de

Xilinx

DORFELL LEONARDO PARRA-PRADA
Electronic Engineer

Connectivity and Signal Processing Research Group
Universidad Industrial de Santander

dorfell.parra@correo.uis.edu.co
Bucaramanga, Colombia

WILLIAM ALEXANDER SALAMANCA-BECERRA
Master in Engineering

Connectivity and Signal Processing Research Group
Universidad Industrial de Santander

williamsalamanca@gmail.com
Bucaramanga, Colombia

Fecha de recibido: 08/12/2013
Fecha de aceptado: 23/10/2014

Forma de citar: PARRA, Dorfell, SALAMANCA, William. Implementacón de Proyectos de Reconfiguración Parcial usando OpenPR en el
sistema de desarrollo ML507 de Xilinx.Rev.UIS Ingenierías,2015,vol.14,n1,p.p 33 - 43.

RESUMEN

Este documento presenta la implementación de proyectos de reconfiguración parcial usando OpenPR, un toolkit
alternativo de reconfiguración parcial de código abierto, en el sistema embebido de desarrollo ML507 de Xilinx.
Se reproducen los resultados del proyecto Counter Project del repositorio de OpenPR y se crea un nuevo proyecto
para una FPGA v5fx70t. Los archivos de configuración para los diseños estático y dinámico son generados e
implementados en el sistema ML507 obteniendo un funcionamiento no esperado. Este funcionamiento conlleva a
la revisión de los archivos de descripción nativa del circuito en FPGA EDITOR, herramienta de enrutamiento de
Xilinx, para verificar la correcta ubicación de los busmacros en el diseño.

Luego se desarrolla la etapa de depuración en el chip usando Chipscope para capturar señales dentro de la FPGA
en cada componente del diseño (e.g. registros, busmacros). Finalmente la evaluación integra las conclusiones y
observaciones de las implementaciones y las depuraciones hechas en el desarrollo de los proyectos de reconfiguración
parcial.

PALABRAS CLAVES: OpenPR, Open-source, Reconfiguración Parcial, FPGA.

ABSTRACT

This paper demonstrates the evaluation of partial reconfiguration projects implementation using OpenPR -an Open-
source partial reconfiguration toolkit alternative-, on the Xilinx embedded system development board ML507.
Results of the OpenPR repository counter example project are reproduced, and a new project targeting a different
FPGA device, the v5fx70t, is created. Configuration files for static and partial design are generated and implemented
in the ML507, getting a non-proper working in the board. This led to the native circuit description files check in
FPGA EDITOR -a Xilinx FPGA routing tool- to verify the correct placement of the busmacros into the design-.

UIS Ingenierías, enero - junio 2015; Facultad de Ingenierías Fisicomecánicas, UIS

34 Dorfell Leonardo Parra-Prada,
William Alexander Salamanca-Becerra

Then debugging on-chip stage is done using Chipscope to test the signals state inside the FPGA in each design
component as registers and busmacros. Observations are made based on these tests. Finally, conclusions of all the
observation process are integrated into this evaluation.

KEYWORDS: OpenPR, Open-Source, Partial Reconfiguration, FPGA.

1. INTRODUCTION

FPGAs are integrated circuits used to design and
implement logical functions through a Hardware
Description Language (HDL)(FPGA, 2012). FPGA
applications include: digital signal processing, ASIC
prototyping, medical imaging and almost every area that
use a digital circuit. Moreover new techniques (as pipeline,
partial reconfiguration) that improve the performance of
the FPGA have been proposed.

One of these techniques is the Partial Reconfiguration.
Partial Reconfiguration is the process of configuring a part
of a programmable chip while the other is still operating
(PR, 2012).

In figure 1 partial reconfiguration implementation in an
FPGA is shown. The green partitions of the FPGA are the
fixed portion of the hardware circuit that remains without
changes and it is called static region. The black box is the
dynamic region (Reconfigurable Partition). The yellow,
blue and red boxes implemented here, are the hardware
modules, (Reconfigurable Modules); one of them each
time. The static region of the FPGA is configured first. Then,
a partial bitstream (configuration file) with the information
of the reconfigurable modules configures only the
reconfigurable partition without erasing the configuration
of the static region, neither stopping the execution of
any process in that region. Constraints definitions are
required by partial reconfiguration implementations, since
according to the region chosen the reconfigurable module
will have access to specific resources in the FPGA.

In the last few years several software tools which allow
the management of partial reconfiguration projects have
been developed.

Figure 1. Partial Reconfiguration Process. Adapted from (PR
PlanAhead, 2010)

Some of these tools are: JBits; it creates Xilinx Virtex
bitstreams form Java code, Torc; an open-source
infrastructure and tool set for reconfigurable computing,
Xilinx Partial Reconfiguration Toolkit; which proposed
a partial reconfiguration flow using PlanAhead (PR
PlanAhead, 2010) and OpenPR; an open-source Partial
Reconfiguration Toolkit for Xilinx FPGAs.

Private software tools such as the Xilinx Partial
Reconfiguration Toolkit offers a friendly interface for
the user, but its cost could be up to two thousand dollars
and its source code is private. Open-source tools are
in a continuing process of development and nowadays
more users are working to expand their capabilities and
improve their features.

Reviews of these tools, as well as performance
benchmarks are needed by users who are interested in
partial reconfiguration and don’t want to waste time nor
money.

This paper presents an evaluation of the implementation
of partial reconfiguration projects using OpenPR in an
Embedded System Development Board ML507 (in
figure 2) starting with a brief explanation of the OpenPR
partial reconfiguration flow in section 2. Creation of
a partial reconfiguration project is made in section 3.
Debugging results for the implementation of OpenPR
partial reconfiguration project using Chipscope are
exposed in section 4.

Figure 2. Virtex-5 FX70T FPGA ML507 Evaluation Platform.
Taken from (Virtex 5, 2012)

Finally conclusions and observations of this work are
in section 5.

35Implementation of Partial Reconfiguration Projects using OpenPR on the Xilinx
development board ML507

2. THE OPENPR PROCESS (OPENPR,
2012)

OpenPR is an Open-Source Partial-Reconfiguration
Toolkit for Xilinx FPGAs, presented by its designers in
2011.Although

Figure 3.OpenPR Partial Reconfiguration Design

OpenPR only works for Xilinx FPGAs, its functionality
can be expanded to Altera FPGAs with the proper
documentation. This section briefly describes the
software partial reconfiguration flow demonstrated by the
authors in (OpenPR, 2012). Basic partial reconfiguration
concepts are kept in OpenPR. Its flow for creation of
partial reconfiguration projects is shown in figure 4.

The dynamic region in figure 3, represents the
reconfigurable partition where the reconfigurable
modules, known as the partial modules (PM) will be
implemented. OpenPR aims to be an easy and almost
free-manual intervention required tool. In figure 4 the
partial reconfiguration flow is shown. The process is
divided into the four main stages described below.

A. OpenPR XML Project File

The first step is to create the OpenPR XML project file
which has the project information needed by OpenPR.
Some important parameters contained in this file, such as
the busMacroPrefix are listed in table 1. Bus macros are
templates that allow OpenPR to connect partial and static
design as shown in figure 5.

An example of the OpenPR XML project file can be
found in the OpenPR repositories (OpenPR, 2012).

B. Floorplanning

In this stage, the designer uses PlanAhead or another tool
to draw the dynamic region, create an area group and
export the constraints to the OpenPR user constraints
file (ucf), which contains all the design restrictions. This
process is called floorplanning.

The area group must have the same name as the
dynamicAGName parameter in the XML project file.

C. Static Design Flow

Every project in OpenPR has a Makefile for the static
directory and a Makefile for the partial directory. These
makefiles run scripts with the routines needed to execute
the partial reconfiguration. Some of these routines are to
synthesize, translate, map, place & route and bitstream
generations. The map and place & route processes have
a Native Circuit Description (NCD) file output, where
the physical description of the design is made (NCD
file, 2012). The bitstream generation process has two
outputs, one file to configure the static design in the
FPGA, and the second one for the partial design. Once
the constraints defined in the floorplanning stage have
been added to the ucf file, it’s time to use the Makefile.
The designer can create the bit file for the static design
with the command:make static.

Table 1. OpenPR Project File Parameters. Adapted from
(OpenPR, 2012)

Parameter Description
designName Top-level design entity.
staticPath Full path static design directory.
partialPath Full path partial design directory.

isPartial Boolean value indicating whether project
is a sandbox or a partial module.

ucfPath Full path to UCF file with pin/timing con-
straints for static design.

dynamicAGName Name of dynamic region AREA_GROUP
as defined in UCF file.

busMacroPrefix Naming prefix for bus macro defining tar-
get architecture and bus macro type.

passThroughNet
Name

For sandbox, identify nets passing
through dynamic region; for partial de-
sign, identify nets connecting virtual IO
pins to dynamic region inputs/outputs.

clkNetNames Collection of clock nets in the design.
busWidth Width of dynamic region datapath.
deviceName Full device name.

regionDefined Boolean value indicating whether Open-
PR region is defined yet.

x/y Min/Max Vertices of dynamic region.

D. Partial Module Design Flow

The partial directory has a similar static design Makefile,
but in the XML project file the isPartial parameter is
set to 1, to indicate that the directory contains a partial
design. This makefile must be used after successfully
running the static design makefile to compile the files
for the partial design.

36 Dorfell Leonardo Parra-Prada,
William Alexander Salamanca-Becerra

Partial bit file is created with the command: make
partial.

Figure 4. Overview of the OpenPR design process

Figure 5. Static and Dynamic Region connection using bus
macros. Adapted from (Sohanghpurwala et al., 2011)

3. CREATING RECONFIGURATION
PROJECTS WITH OPENPR

This section demonstrates the tracking of the OpenPR
Partial Reconfiguration Project flow using the Counter
demo project, which is an OpenPR project example for
Virtex 5 LX FPGAs. Then, a new project is created to
evaluate the OpenPR capabilities.

A. Counter project

The Counter demo is available from OpenPR repository,
which has Documentation, source-code and OpenPR
example projects. OpenPR projects have a directory
structure shown in figure 6.

There are OpenPR Project files in both the Sandbox
and Partial module (PM) folders with the parameter
isPartial defined to indicate the software whether the
folder has a Static or a partial design. Static design files
are in a Sandbox folder, while the partial designs are in
PM folders. Routines needed to create bit files for the
static and partial design are in the Makefile.

Hardware description language files (*.vhd) have
design descriptions and are used to synthesize the
digital circuits; Physical constraints are in an ucf file
and a precompiled folder has bus macros templates.

Figure 6. OpenPR Partial Reconfiguration Projects Directory
Structure. Taken from(Sohanghpurwala et al., 2011)

37Implementation of Partial Reconfiguration Projects using OpenPR on the Xilinx
development board ML507

Figure 7. Counter Example Circuit

Table 2. Partial Modules Description
Partial
Module Description Implementation

Passthrough

Input-
Output bus

macros direct
Connection

Leds show SWs state

Increment Ascending
counter Leds blinking

Decrement Descending
counter

Leds blinking

Data_reg_i and data_reg_o are the registers dedicated
to the LEDs and SWs peripherals, as it is shown in
figure 7. Bus macros, in red, allow the connection of the
dynamic region with the static design.

The partial modules names in the Counter example
are: “passthrough”’, “increment”’ and “decrement”. In
the passthrough module the SWs state is shown in the
LEDs. Increment and decrement modules are counters
with their first value given by the SWs state. The
dynamic region definition for any of the three modules
can be made using PlanAhead. Table 2 summarizes
their behavior.

In figure 8 a) the architecture of a Virtex 5 LX series
FPGA is shown.The rows in the FPGA are known as
clock regions. There are 6 of them.

Figure 8 b) is a detailed view of how FPGA logic
resources like: Slices -in blue-, Ram block (BRAM) -in
Red-, and Digital Signal Processing (DSP) -in green-,
are organized in columns of the FPGA. A slice is a set
of 4 CLB.

Indications of specific places in the FPGA are made
using slices coordinates.(i.e. SLICEX0Y0, where X and
Y are the positions of the slice) (UG190, 2010).

The area group selected for the counter project is shown
in figure 8 c). The constraints for this region were:

AREA_GROUP “counter” RANGE=SLICE_
X8Y60:SLICE_X23Y79;
AREA_GROUP “counter” RANGE=DSP48_
X0Y24:DSP48_X0Y31;
AREA_GROUP “counter” RANGE=RAMB36_
X0Y12:RAMB36_X0Y15;

FPGA_editor is a Xilinx Tool that allows the edition
of the internal FPGA circuit routing (FPGA Editor,
2008). Figure 9 shows the *.ncd file generated with the
bus macros correctly placed. The blue rectangle is the
FPGA and the red point is the Busmacro position.

Implementation of the project was made executing the
Makefiles for the static and partial design. That process
resulted in the successful generation of the static and
partial bit file.

B. Creating a New Project

A new Counter project based on the demo was created to
evaluate the proper working of OpenPR in the ML507
development board.

Makefiles were changed to use the ML507 FPGA as
well as the place for the area_group. This new position
of the area group is shown in figure 10 where the black
box represents the PowerPC hardcore processor for
this Virtex 5 FX FPGA.

(a)

(b)

38 Dorfell Leonardo Parra-Prada,
William Alexander Salamanca-Becerra

(c)
Figure 8. FPGA Virtex 5 LX. a) Virtex 5 LX FPGA architecture.
b) FPGA resources. c) Area Group Counter selected

Figure 9. Counter example bus macro position in the LX
FPGA

Constraints for this new position were:

AREA_GROUP “counter” RANGE=SLICE_
X4Y20:SLICE_X29Y39;
AREA_GROUP “counter” RANGE=RAMB36_
X0Y4:RAMB36_X1Y7;

After floorplanning stage implementation process
produced some errors. In the next section these errors
are shown as well as the explanation of the tests done
for the project.

4. DEBUGGING IMPLEMENTATION
OF PR PROJECT

The counter project for the ML507 development board
created in the previous section was used to evaluate
the proper operation of the OpenPR. Implementation
process and an analysis of the results are presented in
this section.

Figure 10. Area Group Counter Selected for the New Project

All the tests made can be summarized in two cases with
different dynamic regions selected.

A. Region 1

The Area group counter in region 1 for the reconfigurable
modules was placed in:

AREA_GROUP “counter” RANGE=SLICE_
X4Y20:SLICE_X29Y39;
AREA_GROUP “counter” RANGE=RAMB36_
X0Y4:RAMB36_X1Y7;

as is shown in figure 11 a). The resources in this area
group are magnified in figure 11 b). Once the Makefile
was executed the mapping process produced one error
shown in figure 12.

In the mapping report this error was repeated by each
bus macro component of the Counter project. There are
two possible causes:

39Implementation of Partial Reconfiguration Projects using OpenPR on the Xilinx
development board ML507

(a)

(b)
Figure 11. Area group counter location. a) Area group counter
place in region 1. b) Area group counter resources in region 1

• The first is that OpenPR assumes that the design
requires DSP resources, but the region doesn’t have
these resources, so it produces an error message saying
that the other resources needed by the components
are blocked; “Some of the logic associated with this
structure is locked” in figure 12.

• The second possible reason is that OpenPR
assumes the whole left side of the FPGA as a
region, and it has a PowerPC hardcore processor,
so the PowerPC resources are considered to be
locked and OpenPR cannot place the bus macros
nor the other components of the project.

B. Region 2

The area group counter in region 2 for the reconfigurable
modules was placed in:
RANGE=SLICE_X40Y120:SLICE_X67Y139; Logic
Resources
RANGE=DSP48_X0Y48:DSP48_X1Y55; DSP
Resources
RANGE=RAMB36_X3Y24:RAMB36_X4Y27RAM
BLOCK

Phase 1.1 Initial Placement Analysis ERROR:
Place:346 - The components related to Macro
Instance <busmacro_xc5v_async_vert_input_0_0>
of the Macro Definition <busmacro_xc5v_async_
vert_input_0> cannot be placed in the required
relative placement form.

The following components are part of this structure:
L U T b u s m a c r o _ x c 5 v _ a s y n c _ v e r t _
input_0_0/$COMP_3, locked to site
SLICE_X5Y39 LUTbusmacro_xc5v_async_
vert_input_0_0/$COMP_4 LUTbusmacro_xc5v_
async_vert_input_0_0/$COMP_5 LUTbusmacro_
xc5v_async_vert_input_0_0/$COMP_0

The reason for this issue is the following: Some of
the logic associated with this structure is locked.
This should cause the rest of the logic to be locked.
A problem was found at site SLICE_X4Y39 where
we must place LUT busmacro _xc5v_async_vert_
input_0_0/$COMP_0 in order to satisfy the relative
placement requirements of this logic. This site
appears to be prohibited.

Figure 12. Mapping Process Error Message

as it is shown in figure 13a). A detailed view of the
resources in that region is shown in figure 13b), where it
can be seen that the area group now has DSP resources.
Placing the area group in region 2 allowed OpenPR to
successfully finish the execution of the Makefile.

(a)

40 Dorfell Leonardo Parra-Prada,
William Alexander Salamanca-Becerra

(b)
Figure 13. Area group counter new locations. A) Area group
place in region 2. b) Area group resources in region 2

The *.ncd files for the sandbox and the passthrough
partial modules were checked using FPGA_editor. In
figure 14a) the input and output bus macros have been
automatically placed by OpenPR in the boundaries
of the reconfigurable region for the static design in
sandbox, but in figure 14b) the .ncd for the partial
module Passthrough, analyzed in FPGA_editor, shows
that the bus macros appear in another position different
to the position seen before in the static design.

(a)

(b)
Figure 14. Native Circuit Description for Static and
Partial design. a) Bus macros structure and position for
Sandbox. b) Bus macro structure and position for the
PM Passthrough

Therefore, there is no match between the static design
bus macro location and the dynamic design bus macro
location.

After the .ncd files check, testing the generated .bit files
is the next step. Configuration of the FPGA was made
using the impact tool provided by Xilinx, downloading
first the static bit file and then the partial bit file. The bit
files generated are listed in table 3. Partial bit file has a
smaller size than the static bit file because the partial
module circuit is smaller than static circuit.

Module Bit file Size

Sandbox genesys_top.bit 3.2 [MB]

Passthrough top_full.bit
top_partial.bit

 3.2 [MB]
86.5[kB]

Table 3. Bit files generated

The circuit was tested using the board, but according
to the behavior listed in table 2, there wasn’t a proper
working of the example. This led to the debugging
process.

C. Debugging Process using ChipScope

ChipScope was used to get a better image of the
behavior of the circuit. ChipScope offers the ChipScope
Pro Core Inserter to create IPcores as ILA, ICON,
IBERT, etc, which capture signals inside the chip, and
the ChipScope Analyzer to show the signals that are
being checked.

The generation of the IPcores ICON and ILA involved
the parameters in table 4 which are related to the names
in figure 7.

Data_reg_i and data_reg_o were associated to data
channels [0:15], and the module_in and module_out,
which are the signals that connect the input/output
registers to the busmacros, were associated with data
channels [16:31].

Once the ILA and ICON core were inserted into the
design, ChipScope Analyzer was used to inspect the
signals.

41Implementation of Partial Reconfiguration Projects using OpenPR on the Xilinx
development board ML507

Table 4. ILA and ICON parameters
Parameters Value
Input Netlist top.ngc
Device Family Virtex 5
Trigger Width 1
Match Units 1
Data Same As Trigger Unchecked
Data Width [0:31]
Data Depth 1024 samples
Clock Signals Clk_BUFGP
Trigger Signals Clk_BUFGP
Data CH [0:7] data_reg_i[0:7]
Data CH [8:15] data_reg_o[0:7]
Data CH [16:23] module_in[0:7]
Data CH [24:31] module_out[0:7]

Table 5 shows the leds and switch status for the sandbox
implementation. The connections between SWs and the
data_reg_i are working as seen in table 6. It is important
to note that there is no connection between the data_
reg_i and data_reg_o because any partial bit file has
been downloaded to the FPGA.

Table 5. SW and LEDs state for Sandbox implementation
SWs LEDs
0x00 0xff

Table 6. Data Channel Outputs for Sandbox
Data Channel Output
DataPort [0:7] 0x00
DataPort [8:15] 0xFF
DataPort [16:23] 0x00
DataPort [24:31] 0xFF

Table 7 shows the behavior of the implementation of the
top_full bit file. It seems similar to the sandbox bit file
described in table 5, but as it is shown intable 8, all the
signals have the boolean value 1 as output. Therefore,
there are no connections between the data_reg_i and the
dip switches.

Table 7. SWs and LEDs state for top_full.bit implementation
SWs LEDs
0x00 0xff

Table 8. Data Channel Outputs for Partial Module
Passthrough

Data Channel Output
DataPort [0:7] 0xFF
DataPort [8:15] 0xFF
DataPort [16:23] 0xFF
DataPort [24:31] 0xFF

In order to continue with the process the partial
bitstream was downloaded to the FPGA, but instead of
configuring just the area group counter, it changed the
whole configuration of the FPGA, erasing the chipscope
IPcores. In table 9 the SWs and LEDs status are shown.

Table 9. SWs and LEDs state for top_partial.bit
implementation

SWs LEDs
0x00 0xC4

5. CONCLUSIONS

This paper has demonstrated an evaluation of OpenPR
working on the development board ML507. The
evaluation process follows the design flow proposed
by the authors (Sohanghpurwala et al., 2011), including
a debugging on-chip stage using Chipscope. The main
conclusions of this work will be shown below.

The OpenPR partial reconfiguration design flow has
been documented giving a brief description of each stage
of the process, furthermore, the Partial Reconfiguration
OpenPR project creation using the OpenPR examples
and a review of the walk-through is demonstrated.

Although the implementation on the ML507 board was
not successful, the information obtained in the debug
stage led to the following observations.

The automatic location of the bus macros depends on the
resources outside the partial region that are available.
OpenPR does not take into account the resources when
it places the bus macros for the partial region, because
as seen before, bus macros encountered logic resources
blocked for the XC5V70T-ff1136-1 where the left
chip architecture is different than the right, due to the
PowerPC hardcore processor. The causes of this leak of
information might be in the structure definition made in
the Virtex5DeviceInfo file.

42 Dorfell Leonardo Parra-Prada,
William Alexander Salamanca-Becerra

Once that OpenPR has located the bus macros for the
static region in sandbox, the location of the bus macros
in the partial modules differs from the previous place
chosen in the static design, leading to mismatches in
the implementation of the FPGA partial configuration.
A consequence of these mismatches is the loss of design
parts.

Partial bitstream generation is not being correctly made.
It is shown by tests, that when a user downloads the
partial bitstream, part of the static design is changed.
This issue is expected to be corrected in future OpenPR
updates.

In spite of these bugs, OpenPR is free, allowing more
users to get involved in the process without paying for
expensive tools. Its Open Source code admits to include
others FPGAs that are not supported by private tools
these days. OpenPR sets a strong alternative in FPGA
reconfiguration tools, and its development process will
be the key for the next improvements, like user graphics
interfaces, and support for the Virtex 5 FX series.

6. REFERENCES

FPGA. Field-programmable gate array, 2012 [Online]
Available:http:/www.altera.com/products/fpga.
html?GSA_pos=3&WT.oss_r=1&WT.oss=FPGA

STARBOARD. StarBoardDesign: Specializing in rapid,
effective, analog and mixed-signal electronic design,
2009 [online] Available: http://www.starboarddesign.com/
examples.html

KUON, I; ROSE, J. Measuring the gap between FPGAs
and ASICs, Proceedings of the international symposium on
Field programmable gate arrays-FPGA’06, 2006

VIRTEX 5. Virtex-5 FXT FPGA ML507 Evaluation
Platform, 2012 [Online] Avaliable: http://www.xilinx.com/
products/boards-and-kits/HW-V5-ML507-UNI-G-image.
htm

MONEY, D; HARRIS, S. Digital Design and Computer
Architecture, Morgan Kaufmann Publications, 2007

PR, Partial re-configuration, 2012 [Online].Avaliable:http://
en.wikipedia.org/wiki/Partial_re-configuration

GUCCIONE, S; LEVI, D; J Bits: A Java-Based Interface
to FPGA Hardware, Xilinx, 1998.

GUCCIONE, S; LEVI, D; JBits: A Java-Based Interface

for Reconfigurable Computing, Xilinx, 1998.

SOHANGHPURWALA, A; ATHANAS, P;FRANGIEH,
T; WOOD, A.OpenPR:An Open-SourcePartial-
Reconfiguration Toolkit for Xilinx FPGAs, IEEE, 2011.

STEINER, N. et al. M.Torc: Towards an Open-Source Tool
Flow, Proceedings of the 19th ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA
2011 (Monterey, California).

STEINER, N; A Standalone Wire Database for Routing
and Tracing in Xilinx Virtex, Virtex-E, and Virtex-II FPGAs.
Virginia Polytechnic Institute and State University, 2002,
(Blacksburg, Virginia).

PR PlanAhead. Using PlanAhead to manage the Partial
Reconfiguration flow, 2010 [Online]. Available: http://
www.xilinx.com/tools/partial-reconfiguration.htm

JBits SDK, 2012 [Online]. Available: http://www.xilinx.
com/products/jbits/index.htm

OpenPR, OpenPR FPGA ToolKit, 2012. [Online].
Available: http://openpr-vt.sourceforge.net/OpenPR/
OpenPR.html

STEINER, N et al. French, M.Torc: Tools For Open
Reconfigurable Computing, 2011 [Online]. Available:
http://torc-isi.sourceforge.net/documentation.php

NCD file, 2012 [Online].Available: http://www.xilinx.com/
itp/xilinx10/help/iseguide/mergedProjects/floorplanner/
html/fp_d_ncd_file.html

UG190, Virtex-5 FPGA User Guide UG190, 2010 [online].
Available: http://www.xilinx.com/support/documentation/
virtex-5_user_guides.htm

FPGA Editor, 2008 [Online].Available: http://www.xilinx.
com/itp/xilinx10/isehelp/ise_n_fed_navpage.htm

GCC, the GNU Compiler Collection, 2012. [Online].
Available: http://gcc.gnu.org/

Boost C++ Libraries, 2012 [Online]. Available: http://
www.boost.org/

Bison\-GNU Parser Generator, 2012 [Online]. Available:
http://www.gnu.org/software/bison/

Flex: The Flast Lexical Analyzer, 2012 [Online].
Available:http://flex.sourceforge.net/

43Implementation of Partial Reconfiguration Projects using OpenPR on the Xilinx
development board ML507

7. ACKNOWLEDGEMENTS

The author would like to thank God, to his mother
Elisa,his father Felix, his two little sisters Dori and
Nubia and his girlfriend Laura.The author would also
like to say thanks to CPS, Sergio, Carlos A, Carlos F, for
their support and especially to William for his patience.
And last but not least, he thanks his friends for their
support, understanding and love.

8. CURRICULUM

Dorfell L. Parra Prada is a Master
student graduated from the Universidad
Industrial de Santander. He is a hard
working reserved man, who is now
involved in the digital design, robust
control, RTOS, and GPGPU applied to
the Seismic research field.

William A. Salamanca B. is a PhD
student who has a master degree
in electronic engineering from the
Universidad Industrial de Santander.
He is interested in high performance
computing using alternative devices
such as GPGPU and FPGA applied to
the oil industry.

