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ABSTRACT

In this paper, a new program for protein secondary structure prediction is proposed. The program, which is called NN-Pred, 
allows multiple sequences to be submitted and it returns predictions from five secondary structure prediction algorithms. 
In addition, NN-Pred calculates a consensus prediction, which is based on a neural network strategy that is used in this 
paper to improve the prediction accuracy. NN-Pred was obtained by using a methodology called consensus strategy, 
which tries to make a better prediction by integrating some of the most remarkable existing techniques. The NN-Pred 
program provides a three-state (alpha-helix, beta-sheet, and other) prediction of secondary structure. According to the 
test sets, the prediction accuracy of NN-Pred is at least 70%, surpassing most of the existing methods. The experiments 
showed that neural networks can be used as a consensus strategy to producing accurate models for protein secondary 
prediction.   

KEYWORDS: secondary structure prediction, consensus strategy, neural networks.

RESUMEN

En este artículo se propone un nuevo programa para la predicción de la estructura secundaria de la proteína. El programa, 
llamado NN-Pred, recibe como entrada múltiples secuencias de ADN y utiliza cinco algoritmos existentes para la 
predicción de la estructura secundaria de la proteína. Además, NN-Pred calcula una predicción consenso que se basa en 
una estrategia de redes neuronales y que se plantea en este artículo para mejorar la exactitud en la predicción. NN-Pred 
se obtuvo usando una metodología conocida como estrategia consenso que intenta obtener un modelo de predicción 
integrando algunos de los mejores métodos existentes. El programa NN-Pred provee una predicción de tres estados 
(hélices alfa, hojas beta, y otro) para la estructura secundaria de la proteína. De acuerdo a los resultados de las pruebas 
realizadas, NN-Pred alcanza una exactitud de predicción de al menos 70.0%, sobrepasando la mayoría de los métodos 
existentes. Los experimentos realizados mostraron que la técnica de redes neuronales se puede usar como una estrategia 
consenso para obtener modelos precisos para la predicción de la estructura secundaria.

PALABRAS CLAVE: predicción de la estructura secundaria, estrategia consenso, redes neuronales.
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1.	 Introduction

1.1 Secondary structure prediction

Secondary structure prediction addresses the problem of 
assigning a class label (i.e., alpha-helix, beta-sheet, turn 
or coil) to each residue in a given amino acid sequence. 
Although several strategies have been proposed to 
secondary structure prediction, most of the methods 
take the primary structure as input and try to predict the 
secondary structure based on the amino acid sequence. 
The secondary structure prediction problem has been 
studied for almost forty years [1]-[5] and even recent 
methods [6]-[10] are not able to reach the prediction 
accuracy demanded by biologists. 

Several solutions for the secondary structure prediction 
problem have been proposed, and they use different 
approaches such as statistical, neural networks, and 
nearest-neighbour methods. The statistical approach 
is based on trying to calculate the probability of an 
amino acid to be a specific secondary structure by using 
sequences whose secondary structure is known. Chou-
Fasman [1] is one the most representative programs 
that uses the statistical approach. Some other prediction 
programs are based on neural networks such as PHD [4], 
NNPredict [11], and Psipred [12]. These three programs 
are inspired by artificial neural networks theory, which 
establishes that a set of computational neurons is able 
to learn nonlinear deterministic relationships into the 
training dataset. Finally, one of the most successful 
approaches is the nearest-neighbour method. It takes 
the information from the k nearest amino acids whose 
secondary structure is trying to be predicted. Some of 
the most remarkable programs following this approach 
are SOPM [13], SOPMA [14], and PREDATOR [15].

The main efforts in the secondary structure prediction 
problem are related to raising the prediction accuracy 
of the existing methods. There is an import issue in 
secondary structure prediction; the prediction of the 
existing methods do not coincide for some residues of 
many amino acid sequences (i.e., there is no consensus 
in the existing methods). Having a different prediction 
even for the same sequence can confuse biologists 
in real-life situations. For instance, the secondary 
structure prediction for the sequence TMIPAV obtained 
by the Chou-Fasman method is HHHEEN, which 
means residues T, M, I are classified as helix (H); P, A as 
sheets (E), and V as neither a helix nor a sheet (N). The 
same amino acid sequence was given to the DSC [16] 
program and the resulting secondary structures were 
HHENEE. As can be seen, different classifications were 
obtained for the same residues I, P, and V.  

In this paper, a novel secondary structure prediction 
program is proposed. The program uses a consensus 
strategy achieved by using a neural network that is 
trained to predict the secondary structure of amino 
acids. There is a major difference between this work 
and the existing methods; the way of integrating 
different predictor programs proposed in this paper had 
never been used. In addition, there is an improvement 
in accuracy by using the new strategy of combining 
predictors.  

1.2 Consensus strategy to classify biological 
sequences

The consensus strategy has been applied in several 
prediction problems in bioinformatics [17]-[20]. The 
hypothesis behind a consensus strategy establishes that 
a better prediction model can be built by combining 
several experts rather than using a single one. Each 
predictor program is considered an expert. The 
consensus strategy follows the idea of running several 
prediction programs with the same input and comparing 
or integrating the outputs to make a better decision than 
by using individual methods. The consensus decision 
can be as easy as the majority wins criteria in which 
the decision taken by most of the n given experts is the 
consensus decision. However, a consensus decision 
can be taken based on a more complex model (i.e., a 
decision tree or a neural network). One of the consensus 
strategies is called ensemble methods [21]-[23]. 
Ensemble methods try to integrate the result of different 
individual experts by using a combination of simple 
learners. Another consensus strategy is called mixture 
of experts. Unlike ensemble methods, a mixture of 
experts model try to cover different input regions with 
different learners to obtain a better overall accuracy.

Neural networks have been used as a mixture of expert 
strategy in bioinformatics. In [24], a neural network is 
proposed as a mixture-of-expert model to integrate ten 
secondary structure prediction programs. The model 
obtained has a higher accuracy in comparison with each 
of the ten individual experts. In [25], a decision tree is 
proposed to predict genes by combining the outputs of 
three gene predictors: GeneMark [26], GlimmerM [27], 
and GenScan [28]. The consensus model outperforms 
even the best individual method. 

In this paper, a new program for secondary structure 
prediction, called NN-Pred, is proposed. NN-Pred 
makes decisions based on mixing five experts. Each 
expert is a well-known secondary structure prediction 
program. The five experts used in this paper were 
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selected by considering the availability of the source 
code. The experts selected were Chou-Fasman [1], 
GOR [29], DSC [16], SIMPA96 [30], and PREDATOR 
[15], which exhibit  an accuracy of 60%, 65%, 70.1%, 
67.7%, and 68%, respectively. 

There is a major difference between the work presented 
in this paper and some methods based on mixture of 
experts that use neural networks such as [24] and [31]. 
The information used to feed the neural network has 
a different approach. The current mixture-of-expert 
methods integrate the output of n given individual 
predictors. However, the output values integrated are 
the secondary structure labels (i.e., alpha-helix, beta-
sheet, turn or coil). A different approach is used in this 
paper and it is related to taking the scores calculated 
by each individual method as the values to be mixed. 
For instance, when Chou-Fasman predicts a single 
amino acid as a-helix, instead of taking the predicted 
label a-helix as the value to integrate, we propose to use 
the score calculated by the method. In this paper, the 
integration of experts is done by using the numerical 
values of the prediction scores instead of the discrete 
values of the prediction labels. This approach is not 
as rigid as the current strategies used for mixture of 
experts in secondary structure prediction.

1.3 Evaluating predictions

There are several measures to evaluate the accuracy in 
the secondary structure prediction problem. The three-
state per-residue accuracy (Q3) is frequently used to 
evaluate and compare secondary structure prediction 
methods. Q3 (1) gives the percentage of residues 
predicted correctly for alpha-helix (qa), beta-strand (qb), 
and other (qc) from the total number of residues (N) in 
a given amino acid sequence. The Q3 measure indicates 
the percentage of correctly predicted residues and is 
defined as follows:

       
Another measure that is commonly used is the Matthew 
Correlation Coefficient (2) [32]. It is a real number 
between 0 and 1 and depends on the number of true 
positive (Tp), true negative (Tn), false positive (Fp), and 
false negative (Fn) predicted residues. The Matthew 
Correlation Coefficient is defined as follows:

2.	 METHODOLoGY

2.1 Selecting and preparing the datasets

A neural network needs to be trained to be able to learn 
the information included in patterns. Patterns are the 
training data, which include the input/output values. 
During the training process, each pattern is presented 
to the neural network, which tries to adjust its weights 
to get the corresponding output in the pattern. After the 
training process, a set of weights are obtained in such a 
way that feeding the inputs of each pattern produces the 
expected output.

The selection of patterns in the training set is a major 
decision because the generalization capability of the 
model can be affected. A test set is also needed, which 
is a dataset with data not included in the training set 
that is used to measure the accuracy during prediction. 
The datasets used in this work were composed of 300 
proteins. Proteins were extracted from the PDB (Protein 
Data Bank, http://www.pdb.org/pdb/home/home.do) 
and include domains from 20 different families. Table 1 
shows the datasets used in this work.

Table 1. Datasets

Dataset 
reference

Amount 
of 

helixes 

Amount 
of sheets

Amount of neither 
helix nor sheet 

residues
dataset 1 150 150 100
dataset 2 120 120 120
dataset 3 270 270 270
dataset 4 149 108 121

A total of 80% of each dataset was used as the training 
set and 20% as the test set. Both training and test 
datasets were submitted to the DSSP program [33] to 
obtain the actual secondary structure. All the amino 
acid sequences were also submitted to five structure 
prediction programs, those to be mixed by the neural 
network. This paper only considered the a-helix, b-sheet 
and “other” as the secondary structure labels. The DSSP 
structures 3-10 helix (G), pi helix (I), short beta bridge 
(B), bend (S), Turn (T), and Coil (C) were not included 
in this work.

2.2 Secondary structure prediction programs 

The secondary structure prediction programs used 
in this paper were five well-known methods, Chou-
Fasman, GOR, DSC, SIMPA96, and PREDATOR. An 
explanation of each program is presented as follows. 
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•	 Chou-Fasman [1]. It is based on a table whose 
values indicate the probability that a specific amino 
acid is an alpha-helix or a beta-sheet. The values 
are used to make predictions and are associated 
with an algorithm that indicates the way those 
values should be used to make the prediction. The 
prediction accuracy of the Chou-Fasman method 
ranges from 50% to 60%.

•	 GOR [29]. It uses a window of 17 amino acids to 
predict the structure of the residue at position 9 of 
the window (i.e., the residue in the center of the 
window). GOR uses two scoring tables for each 
residue in the window of 17 amino acids, one 
for alpha-helix and another for beta-sheet. The 
prediction accuracy of the GOR method is 65%.

•	 DSC [16]. DSC (Discrimination of Secondary 
structure Class) is a secondary structure prediction 
method that uses a window size of 17 amino 
acids. DSC integrates statistical criteria such as 
the conformation of each residue and some other 
criteria based on concepts related to folds. The 
concepts used by DSC are length of the amino 
acid at the end of the chain, hydrophobic moments 
for alpha-helix and beta-sheet, and conservation 
moments for alpha-helix and beta-sheet. The 
prediction accuracy of DSC is 70.1%.

•	 PREDATOR [15]. It is a method for secondary 
structure prediction based on the strategy of 
immediate neighbours. PREDATOR predicts the 
secondary structure of an amino acid analysing 
the structure of its neighbours. It uses a database 
of sequences with known secondary structure 
for short segments of amino acids. In addition, 
PREDATOR uses statistics to predict pairs of 
amino acid hydrogen bonds between neighbours. 
The prediction accuracy of PREDATOR is 68% for 
individual sequences and 75% for sets of related 
sequences.

•	 SIMPA96 [30]. It is a method based on three 
elements: a database of proteins with known 
secondary structure, a scoring matrix, and a 
prediction algorithm. The prediction accuracy of 
the SIMPA method is 67.7%.

Some of these methods such as DSC, PREDATOR, and 
SIMPA96 are available via FTP public servers. Some 
other algorithms such as Chou-Fasman and GOR were 
developed because there was no source code available.

2.3 Preparing the neural network input

Some specific tasks were performed to prepare the data 
to feed the neural network:

•	 The source code of the five secondary structure 
prediction programs were modified to obtain 
the score of each individual method. The source 
code was studied and the specific lines in which 
the score is calculated were identified. It allowed 
having a numeric value for the secondary structure 
prediction of each residue.

•	 Each secondary structure prediction program 
calculates different values to make a final decision. 
For instance, Chou-Fasman calculates two values, 
the sheet score and the helix score. These two scores 
are calculated using tables proposed by Chou and 
Fasman and correspond to the probabilities of each 
amino acid to be a particular secondary structure. 
Each predictor calculates different values; we 
decided to take them all as inputs for a neural 
network. The values obtained from the predictors 
are presented in Table 2.

Table 2. Values obtained from the secondary structure 
predictors
Secondary 
structure 
prediction 
program

Value Description

GOR
GOR_E Sheet propensity calculated by 

GOR

GOR_H Helix propensity calculated by 
GOR

CHOU-
FASMAN

CHOU_E Sheet propensity calculated by 
CHOU-FASMAN

CHOU_H Helix propensity calculated by 
CHOU-FASMAN

DSC

DSC_E Sheet propensity calculated by 
DSC

DSC_H Helix propensity calculated by 
DSC

DSC_N Propensity to neither sheet nor 
helix structure calculated by DSC

PREDATOR

PREDATOR_E Sheet propensity calculated by 
PREDATOR

PREDATOR_H Helix propensity calculated by 
PREDATOR

PREDATOR_N
Propensity to neither sheet nor 
helix structure calculated by 

PREDATOR

SIMPA

SIMPA_E Sheet propensity calculated by 
SIMPA

SIMPA_H Helix propensity calculated by 
SIMPA

SIMPA_N
Propensity to neither sheet nor 
helix structure calculated by 

SIMPA
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•	 According to the amount of secondary structure 
prediction programs selected and the values 
calculated by each of them, a total of 13 scores can 
be obtained for the same amino acid.

•	 The training set was submitted to the new version 
of the prediction algorithms to obtain the scores 
for each amino acid. Besides, the actual secondary 
structure was assigned using the DSSP program.

The set composed of the 13 scores corresponds to the 
input that feeds the neural network. The secondary 
structure assigned by DSSP is taken as the expected 
output of the neural network. According to the artificial 
intelligence theory, a neural network is able to learn 
from these input/output values to predict the secondary 
structure of future unseen amino acid sequences.

2.4 Obtaining the neural network

A neural network was designed to learn the training 
dataset and eventually predict secondary structure for 
unseen residues. The network was composed of three 
layers (input, hidden, and output). The input layer has 
13 units; each unit corresponding to a score calculated 
by the prediction programs. The hidden layer is 
composed of five units. The number of neurons in the 
hidden layer was obtained by using the BIC criterion 
(Bayesian Information Criterion). The output layer has 
three neurons (a-helix, b-sheet, and “other”). The output 
of the network is 1 0 0 when the input corresponds to 
a helix, 0 1 0 for a sheet, and 0 0 1 when the input is 
neither a helix nor a sheet. Figure 1 shows the topology 
of the neural network.

Figure 1. Consensus neural network 

The backpropagation learning algorithm was used. 
The number of iterations in the learning process was 

optimized to 200 to save time without losing the learning 
performance of the network. A logistic function was 
used as the activation function. In the training process, 
the whole proteins in the training set were presented to 
the neural network. 

The neural network can be used as a secondary structure 
predictor by feeding the inputs with the 13 values of a 
given uncharacterised amino acid sequence. Although 
there are many secondary structure predictors following 
the consensus strategy, none of them uses numerical 
values from the experts as inputs to the neural network.
 
2.5 The NN-Pred program

Once the neural network is obtained, a new strategy 
to predict protein secondary structure is achieved. The 
neural network was implemented as a program that 
allows users to submit an amino acid sequence and 
make the prediction based on the consensus strategy 
proposed in this paper. The program is called NN-
Pred and it is available for academic purposes from the 
authors upon request.

2.5.1 Case study

A user can input a single sequence or multiple sequences. 
The NN-Pred program allows running five secondary 
structure prediction programs: Chou-Fasman, GOR, 
SIMPA96, PREDATOR, and DSC. In addition, there is 
an option that includes the consensus decision. In the 
case study, dataset 1 was used to train and validate the 
neural network.  As can be seen in Figure 2, the user 
can easily compare the results from all of the predictors. 
When the consensus prediction is selected, the neural 
network model is used to calculate the output. As an 
advantage, the program allows users to compare results 
with the DSSP output values. The program also presents 
the DSSP assignment for each residue. Finally, the Q3, 
CH, CE, and CN values for each individual prediction 
program and the consensus decision are also presented. 
NN-Pred has an easy-to-use interface, which is a helpful 
tool for comparing the secondary structure prediction 
programs included in this version of the software. 

In this case study, the Q3 measure was calculated to 
compare the individual methods and the consensus 
strategy. The structure assigned by DSSP program is 
taken as the actual secondary structure. Table 3 shows 
the Q3 values. The values presented for the existing 
methods were calculated for the specific case study and 
thus, they may differ from the theoretical accuracy.



56
Oscar Fernando Bedoya Leiva, 

Eduard Alberto Satizábal Tascón

Figure 2. NN-Pred in a case study

The highest accuracy is reached by the NN-Pred 
consensus strategy. As can be seen in Table 3, the 
individual methods are not as accurate as the neural 
network proposed in this paper.  

Table 3. Accuracy values in the case study

Method Q
3

GOR 42.3%
CHOU-FASMAN 47.3%
DSC 52.1%
PREDATOR 63.5%
SIMPA 66.1%
NN-Pred 82.1%

3.	 Results

In a first experiment, the accuracy of the consensus neural 
network included in the NN-Pred program was obtained 
using the dataset 2. Dataset 2 is composed of 360 residues 
distributed in 120 helixes, 120 sheets, and 120 amino 
acids whose secondary structures were neither helix nor 
sheet. The experiment can be carried out following the 
methodology explained in Section 2. The source codes 
of the five structure prediction programs (i.e., GOR, 
Chou-Fasman, DSC, PREDATOR, and SIMPA) have to 
be modified. Each predictor calculates a set of internal 
values before a final prediction is made. Table 2 can be 
used to define the specific values to be obtained from 
each predictor. Then, the topology shown in Figure 1 
has to be achieved. A neural network simulator can be 
used to obtain a network with thirteen (13) neurons in 
the input layer, five (5) neurons for the hidden layer, 
and three (3) neurons for the output layer. The logistic 
activation function and the backpropagation learning 

algorithm should be used. Finally, every residue in the 
dataset 2 has to be input for the individual predictors in 
order to obtain the 13 values. These values are used to 
feed the neural network. When the learning process is 
completed, a set of weights are obtained, which are used 
to predict the secondary structure of unseen residues.

The accuracy values of the consensus strategy using the 
dataset 2 are shown in Table 4. The Q3 and C values 
reach 100% in training. The previous result shows that 
the topology used is appropriate for secondary structure 
prediction. Besides, a test set was presented to the 
network by using the weights calculated in training. The 
Q3 and C values for the test set are also shown in Table 
4. According to the results, unseen sequences reduce the 
accuracy of the model. However, the Q3 and C values 
are still acceptable compared with some of the existing 
methods.

Table 4. Accuracy values using dataset 2

Dataset 2 Q3

C 
CH  CE CN

Training 
set 100% 100% 100% 100%

Test set 71.8% 50.7% 47.0% 55.3%

A second experiment was related to calculating the 
capability of the consensus neural network to learn the 
dataset 3. In this case, a set of 810 amino acids was 
used. The Q3 and C values are shown in Table 5. Q3 of 
100% and C value of 100% were obtained in training. 
A test set was presented to the network by using the 
weights calculated in training. The Q3 and C values for 
the test set are also shown in Table 5.

Table 5. Accuracy values using dataset 3

Dataset 3 Q3

C 
CH  CE CN

Training set 100% 100% 100% 100%

Test set 80.2% 75.7% 70.5% 72.5%

Another experiment was related to comparing the 
individual methods with the consensus neural network. 
Dataset 4 was used in this experiment. Dataset 4 is 
composed of 378 residues distributed in 149 helixes, 
108 sheets, and 121 amino acids whose secondary 
structures were neither helix nor sheet. Q3 and C values 
are shown in Table 6. These values were also calculated 
for the individual methods (GOR, Chou-Fasman, DSC, 
PREDATOR, and SIMPA).
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Table 6. Comparison of Q3 values

Method q
H

q
E

q
N

Q
3

GOR 95 60 22 31.8%
CHOU-FASMAN 152 18 10 32.3%
DSC 93 36 189 57.1%
PREDATOR 129 46 170 62.0%
SIMPA 113 39 193 62.0%
NN-Pred 129 97 99 85.9%

NN-Pred achieves a Q3 of 85.9%, which is clearly 
higher than the best individual expert (i.e. PREDATOR 
or SIMPA). The overall performance of NN-Pred  was 
more accurate than the individual experts. In general, 
accuracy of secondary structure prediction is improved 
drastically when numeric scores, instead of the discrete 
values, are used. Neural networks showed a high 
generalization capability, which is usually better than 
some other classifying techniques (i.e., decision tree 
or Bayesian networks). Tests allowed finding out that 
neural networks are suitable as a consensus strategy for 
secondary structure prediction. 

The prediction model proposed in this paper is a 
consensus neural network. The strategy is based on 
training a neural network as a model that integrates 
the output of five secondary structure predictors. The 
prediction accuracy of the model was tested using four 
datasets. It can be seen that the accuracy of the model 
during the prediction phase achieves a Q3 value that 
was at least 71.8%, which is a high threshold for the 
secondary structure prediction problem. The prediction 
model is able to classify unseen amino acids in three 
classes: helixes, sheets, and secondary structures that are 
neither helix nor sheet. Finally, Table 6 shows that the 
prediction model based on a consensus neural network 
surpasses the accuracy of the individual experts, a result 
that might expected when a consensus strategy is used. 

4.	 CONCLUSIONS

The objective of this study was to obtain a neural network 
capable of classifying the secondary structure of the 
protein. The NN-Pred program includes a consensus 
neural network formed by three layers with 13 nodes 
in the input layer, five neurons in the hidden layer, and 
three units in the output. The neural network showed 
perfect accuracy values during the training process, 
which means that the topology used was appropriate 

for the problem of classifying secondary structures of a 
protein. In the test sets, the Q3 value was at least 71.8%, 
which is a high threshold for the secondary structure 
prediction problem. The Q3 values obtained in the 
experiments are shown in Figure 3. According to the Q3 
values, it can be seen that the neural network is capable 
of identifying a high portion of the helixes and sheets 
out of the total number of amino acids in the test set. 

Figure 3. Summary of Q3 values

The main difference between the existing methods 
for secondary structure prediction and the strategy 
proposed in this paper is the way of integrating 
different predictor programs. In this paper, numerical 
values are used instead of discrete labels. Analysing 
Table 6, there is a large gain when numeric scores are 
considered to make a consensus strategy. As a result, a 
fair recommendation would be to consider the values 
behind individual predictors when a consensus strategy 
is going to be used.

There is also a major achievement in this work; the NN-
Pred is capable of learning to guarantee 100% accuracy. 
It means a biologist could train the network with a 
particular dataset of interest and use it being absolutely 
sure the program is correct. 

The NN-Pred program allows users to interact with 
an easy-to-use interface, which can graphically 
compare the results of both individual methods and 
the consensus. The program also presents accuracy 
values to carry a fair comparison of the methods. NN-
Pred could be improved by adding some other experts 
or predictors whose source code is available. Besides, 
numerical values from individual experts could also be 
integrated by using support vector machines or some 
other classification techniques.
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