
 

 
Este artículo puede compartirse bajo la licencia CC BY-ND 4.0 y se referencia usando el siguiente formato: J.J. Ródenas, J.Albelda, M. Tur, F.J. 
Fuenmayor, “A hierarchical h adaptivity methodology based on element subdivision”, UIS Ingenierías, vol. 16, no. 2, pp. 263 - 280, Julio - Diciembre 

2017.Doi: https://doi.org/10.18273/revuin.v16n2-2017024  

A hierarchical h adaptivity methodology based on element 

subdivision 
 

Metodología jerárquica h adaptativa basada en subdivisión de 

elementos 

 

 

 

Juan Ródenas1, José Albelda2, Manuel Tur3, Francisco Fuenmayor4 

 

 
1 Centro de Investigación en Ingeniería Mecánica, Universitat Politècnica de València, Camino de Vera s/n, 46022-Valencia, 

Spain. Email: jjrodena@mcm.upv.es 
2Centro de Investigación en Ingeniería Mecánica, Universitat Politècnica de València, Camino de Vera s/n, 46022-Valencia, 

Spain. Email:  jalbelda@mcm.upv.es 
3Centro de Investigación en Ingeniería Mecánica, Universitat Politècnica de València, Camino de Vera s/n, 46022-Valencia, 

Spain. Email: matuva@mcm.upv.es 
4Centro de Investigación en Ingeniería Mecánica, Universitat Politècnica de València, Camino de Vera s/n, 46022-Valencia, 

Spain. Email: ffuenmay@mcm.upv.es 

 

RECEIVED: December 20, 2016. ACCEPTED: February 27, 2017. FINAL VERSION: May 15, 2017. 

 

 
ABSTRACT 

 
This paper presents a hierarchical h adaptive methodology for Finite Element Analysis based on the hierarchical 

relations between parent and child elements that come out if these elements are geometrically similar. Under this 

similarity condition the terms involved in the evaluation of element stiffness matrices of parent and child elements are 

related by a constant which is a function of the element sizes ratio (scaling factor). These relations have been the basis 

for the development of a hierarchical h adaptivity methodology based on element subdivision and the use of multi-

point-constraints to ensure C0 continuity. The use of a hierarchical data structure significantly reduces the amount of 

calculations required for the mesh refinement, the evaluation of the global stiffness matrix, element stresses and 

element error estimation. The data structure also produces a natural reordering of the global stiffness matrix that 

improves the behaviour of the Cholesky factorization. 

 

KEYWORDS: Adaptive Modelling, Hierarchical properties, Mesh Enrichment, Mesh Generation. 

 

 

RESUMEN 

 

En este artículo se presenta una metodología h adaptativa para el Análisis por Elementos Finitos basada en las 

relaciones jerárquicas entre elementos padre e hijo que surgen si estos elementos son geométricamente similares. Bajo 

esta condición de similitud, los términos resultantes de la evaluación de las matrices de rigidez de elementos padre e 

hijo están relacionados por una constante que es una función de la relación de tamaños de elemento (factor de escala). 

Estas relaciones han sido la base para el desarrollo de una metodología jerárquica h adaptativa basada en la subdivisión 

de elementos y el uso de restricciones multipunto para asegurar la continuidad C0. El uso de una estructura de datos 

jerárquica reduce significativamente la cantidad de cálculos requeridos para el refinamiento de la malla, la evaluación 

de la matriz de rigidez global, las tensiones de los elementos y la estimación del error del elemento. La estructura de 

datos también produce un reordenamiento natural de la matriz de rigidez global que mejora el comportamiento de la 

factorización de Cholesky. 

 

PALABRAS CLAVE: Modelado Adaptativo, Propiedades jerárquicas, Enriquecimiento de malla, Mallado. 
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1. INTRODUCTION 

 

The context of the developments presented in this paper 

is that of finding a methodology based on the use of the 

h-version of the Finite Element Method (FEM) for the 

accurate analysis of mechanical components with the 

lowest possible computational cost. 

 

The generation of optimal meshes for FE analysis has 

been a particular area of development for many years [1-

3]. It is well known that the cheapest FE mesh to produce 

a solution with a fixed quality at minimum cost is an 

adapted one. As a consequence of this, h-adaptive 

techniques based on the estimation of the FE 

discretization error are commonly used to speed up FE 

analysis. The h-adaptive analysis techniques for the 

control of the discretization error of FE analysis can be 

classified into two groups: the mesh regeneration 

techniques [4, 5], based on the full remeshing of the 

domain, and those based on element splitting, where the 

mesh is enriched (or refined) at a local level. Both of 

them are appropriate techniques to solve the problem 

although, in general terms, the first one provides a 

slightly more accurate solution than the second for a 

given number of degrees of freedom. However, the 

computational cost associated to the first one can be 

higher because, in most cases, the reduction of the error 

level involves the global regeneration of the mesh instead 

of a local modification. The evaluation of element 

matrices is not usually the bottleneck of the FE analysis, 

but it must be taken into account that the full remeshing 

involves the evaluation of the matrices for each element 

of the new mesh, whereas the use of element splitting 

techniques can (totally or partially) avoid these 

computations. A first comparative study between mesh 

enrichment and mesh regeneration techniques can be 

found in Zhu et al [6]. 

 

Element splitting techniques can be applied both, on 

structured meshes, based on a certain hierarchical 

structure [7], where the topological and geometrical 

relations between the elements are known a-priori; and 

on non-structured meshes [8-10] with elements of 

general shape by using one of the subdivision schemes 

described in the literature (bisection techniques, 4-T 

algorithm of Rivara, etc). The use of a structured element 

splitting, as in the quadtree and octree methods [8, 11] is 

rather efficient as it allows improving the storage of the 

mesh related information. However, other splitting 

techniques, that could be termed non-structured element 

splitting techniques, are more flexible as they can be 

applied on any mesh. 

 

One of the most important factors to be taken into 

account when the element splitting techniques are used is 

the geometrical quality of the elements created during the 

refinement process. The structured element splitting 

allows for a good control of the newly created elements. 

Depending on the non-structured element splitting 

strategy used to refine the mesh, one can obtain more 

distorted elements or elements of an increasing 

geometrical quality [12, 13]. 

 

Another important factor to be considered is that certain 

element splitting techniques provide conforming refined 

meshes, whereas other strategies provide 

non-conforming meshes. In the first case [14], the 

refinement strategy allows for lower control of the 

element shape. The techniques that produce 

non-conforming meshes require additional techniques to 

restore C0 continuity between contiguous elements, such 

as the addition of new elements [9, 15] or the use of Multi 

Point Constraints (MPCs) [16-19]. 

A hierarchical data structure, with parent-child relations 

between existing elements and those obtained during the 

mesh refinement process, can be easily defined if the 

mesh refinement process is based on element splitting. 

This kind of data structure has been the basis to define a 

new h-adaptive methodology for efficient FE analyses. A 

2D h-adaptive FE code with hierarchical features for the 

resolution of the linear elasticity problem based on this 

structure has been created. This code has been used as a 

framework to explore the advantages of using 

hierarchical relations in a FE code with h-adaptive 

analyses capabilities. The data structure has also been 

used to create a natural reordering of the FE system of 

equations that speeds up its resolution with respect to the 

use of other reordering schemes. Therefore, the 

hierarchical h-adaptivity code allows for the use of an 

analysis methodology that improves the efficiency of the 

main parts of the process: mesh refinement, generation of 

the system of equations and its resolution, and any post-

processing that involves volume integrals. 

 

The remaining of the paper is as follows. Section 2 

presents the hierarchical properties between 

geometrically similar elements. Section 3 will describe 

the element splitting technique used to provide 

geometrically similar elements, and then, Section 4 will 

present the main characteristics of the hierarchical 

h-adaptive program that uses this element splitting 

technique. Section 5 will show the natural reordering 

scheme of the linear system of equations provided by the 

hierarchical relations. The advantages of using the 

hierarchical relations will be demonstrated in Section 6, 

devoted to the numerical examples. 

 

2. PROBLEM DEFINITION AND FEM SOLUTION 

 

We will consider the 2D linear elasticity problem on a 

bounded domain 
2RR . The unknown displacement 

field u is the solution of the boundary value problem 
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where GN and GD are the Neumann and Dirichlet 

boundaries, with 0,  DNDN . b are 

body loads per unit volume, t are tractions applied on GN 

(with n the normal vector to the boundary) and u~  are the 

prescribed displacements on GD. In the weak form the 

problem reads: 

Find Vu  such that: 
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being V the standard test space for elasticity problems 

and  
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where s and e represent the stresses and strains. 

 

Let uh be a finite element approximation to u that lies in 

a functional space VV h  associated with a mesh of 

isoparametric finite elements of characteristic size h, 

such that 

 

   )(,, hhhhh laV vvuv   (4) 

 

Using a variational formulation of the problem in (1) and 

a finite element approximation eh
Nuu  , where N are 

the shape functions matrix and ue are the nodal 

displacements, the following system of linear equations 

to evaluate ue is obtained  

 

 fKU   (5) 

 

where K and f are obtained after the assembly of the 

stiffness matrices ke and equivalent force vectors fe of 

each element e given by: 

 
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l
t

e dJDBBk  (6) 
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
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dd t
l

t
e tNJbNf  (7) 

where , D is the elasticity matrix that defines the stresses 

as s = De, B are derivatives of the shape functions N, Wl 

is the element domain in local coordinates and J is the 

Jacobian matrix. The following section will show the 

relations between the terms used to evaluate ke of 

geometrically similar elements. 

 

3. HIERARCHICAL PROPERTIES BETWEEN 

GEOMETRICALLY SIMILAR ELEMENTS 

 

To the authors’ knowledge, there is only a reduced 

number of references related to this topic. Tabarraei and 

Sukumar [11] demonstrated that, for the special case of 

quadtree meshes, for the Poisson equation and for the 

elasticity problem, the stiffness matrix of a subelement is 

the same as the stiffness matrix of the parent. Suzuki and 

Tabata [20] also showed the importance of reusing 

previous calculations studying the structure of the finite 

element mass and stiffness matrices of congruent 

subdomains (each of them being an image of a reference 

subdomain by an affine transformation, see [20] for 

further details). As a result, Suzuki and Tabata were able 

to express the global matrices as functions of the sub-

matrices in the reference subdomain. This reduced the 

amount of memory requirements for the storage of the 

matrices and allowed for the use of a domain 

decomposition solver. 

 

If a finite element Wi can be obtained by translation 

and/or scaling of an original element W0, see Figure 1, a 

hierarchical relationship related to the element geometry 

arises between the terms involved in the evaluation of the 

element stiffness matrices of both elements. 

 
Figure 1. Elements obtained by translation and/or scaling from 

an original element. 

 

Therefore, the evaluation of the stiffness matrix 

corresponding to an element that keeps a geometrical 

similarity with respect to an original element requires no 

additional computations if the matrices associated to the 

original element are available. These findings where 

previously exposed in [21]. 

 

Proposition. Let W0 be an isoparametric finite element 

defined by its nodal coordinates ),,( 0000 nnnn zyxP , 

n=1,…,nnpe, being ‘nnpe’ the number of nodes per 

element. 

 

Let W1 be another isoparametric finite element, 

geometrically similar to W0, such that its nodal 

coordinates, P1n, can be obtained using a linear 

transformation by scaling the nodal coordinates of W0 by 

an scaling factor l and by  imposing a translation by 

means of a vector T=(xt, yt, zt): 

180º

= 1x

y

1

Scaling factor 

0 22
180º

= 1x

y

1

Scaling factor 

0 22
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The following relations are obtained: 

 

Relation 1:      ,,,, 01 JJ   

Relation 2:      


 ,,·
1

,, 01 JJ invinv   

Relation 3: ),,(),,( 01  JJ
d , where d is 

the problem dimension (2 for 2D,…)  

Relation 4: ),,(
1

),,( 01 


 BB   

Relation 5: if  D=constant    0
2

1 kk
 d  

 

Proof of Relation 1: The Jacobian matrix associated to 

the isoparametric coordinates transformation of a point in 

W0 of local and global coordinates (x,h,t) and (x0,y0,z0) is 

calculated as: 
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Considering the shape functions Nn(x,h,t) in the 

interpolation of global coordinates, the first term in 

J0(x,h,t), and similarly any other term, will be given by: 
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Consider now the following relations: 
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The first term of the Jacobian matrix J1(x,h,t) associated 

to element W1 can be evaluated, considering (3) and the 

previous relations, as  
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Similar relations would be found for all terms in J1(x,h,t). 

Therefore, the following relation is obtained  

 

 ),,(),,( 01  JJ    

 

Proof of Relations 2 and 3: These relations are 

immediately derived from Relation 1 . 

 

Proof of Relation 4: All terms in the B(x,h,t) matrix are 

first partial derivatives of shape functions with respect to 

global coordinates, which, for element W0, can be 

evaluated as: 
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Considering Relation 2, the following relation is obtained 

for element W1: 
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All terms in matrices B(x,h,t) for W0 and W1 are related 

by 1/l. Therefore, we finally obtain 

),,(
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 BB    

Proof of Relation 5: Assuming that D = constant 

(s = De), the stiffness matrices for elements W0 and W1 

will be evaluated as: 
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Taking into account Relations 2 and 3 in the expression 

corresponding to k1: 
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Consequently, for the 2D case where d = 2, k0 and k1 are 

exactly the same matrices. For the 1D case these matrices 

will be related by the constant factor 1/l, and by l in the 

3D case. 
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4. SIMILARITY RELATIONS IN REFINEMENT 

BY MESH SPLITTING IN 2D 

 

4.1. Linear triangular elements 

 

Figure 2 shows a parent linear triangular element that has 

been subdivided into 4 child elements placing new nodes 

at the mid-side point of each element side. 

 

The figure shows the scaling factor l that relates parent 

and child elements. With the numbering pattern adopted 

for the new elements, a geometrical similarity relation 

with respect to Elm 0 can be obtained even for Elm 4, 

whose associated scaling factor value is l = -0.5. The 

scaling factor corresponding to child elements 1, 2 and 3 

is l = 0.5. 

 

4.2. Bi-linear quadrilaterals 

 

 

Figure 3 shows the subdivision process of a bi-linear 

element into 4 new elements. The original (parent) 

element is represented in  

Figure 3.a).  

Figure 3.b) shows the standard splitting procedure. In this 

procedure the new elements are obtained by using 2 

straight lines that join the mid-side points of opposite 

sides of the element. This technique will provide child 

elements geometrically similar to the parent element 

only in the case where the parent element is a 

parallelogram. This picture shows that, in general, the 

child elements created using this technique are not 

geometrically similar to the parent element.  

For this linear quadrilateral elements, the element 

subdivision procedure proposed in this paper and 

represented in  

Figure 3.c), consists of joining the mid-side points of 

each side of the element with the mid-side point of any 

of the diagonals of the quadrilateral (the longest diagonal 

has been considered in the implementation). As shown in  

Figure 3.c, the child elements located over the selected 

diagonal will be geometrically similar to the parent 

element, whereas the other two child elements created, 

which are not similar to the parent element, will be 

parallelograms. Therefore, if any of the child elements is 

further subdivided, the new elements created will always 

be geometrically similar to either the original parent 

element ( 

Figure 3.a)) or the dummy parallelogram parent elements 

represented in  

Figure 3.d). 

 

Figure 4 represents a sequence of successive subdivisions 

of the element represented in  

Figure 3.a). The same colour has always been used to 

represent all the geometrically similar elements. It can be 

clearly observed that, for any subdivision level, only 3 

different kinds of geometrically similar quadrilaterals 

will appear. 

 

4.3. Elements over curved boundaries 

 
Two different types of parent elements are generated 

during the mesh refinement based on subdivision of 

elements. Type A elements are defined as parent elements 

whose child elements are geometrically similar which 

will, therefore, inherit the element calculations. On the 

other side, type B elements are defined as parent elements 

 
Figure 2. Subdivision of parent triangular element into 4 child elements. 

 

 
Figure 3. Subdivision of bi-linear parent element into 4 child elements. 
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with at least one child element not geometrically similar. 

The child elements created from a type B element will not 

inherit element calculations. 

 

As represented in Figure 5, when subdividing one 

element, if any of its sides lies over a curved boundary, 

the new nodes to be generated over this boundary will not 

be located over the straight line that defines the side of 

the original element. Therefore, there will not be a 

geometrical similarity relation between parent and child 

elements. According to the previous paragraph’s 

definitions, this kind of parent elements will be of type 

B. Let Wp be a parent element with none of its sides 

located over a curved boundary. As previously explained, 

under these circumstances, the element can be subdivided 

in such a way that the geometrical similarity relations 

between parent and child elements hold. Therefore, 

element Wp is of type A. 

 

 
 

4.4. Higher order 2D elements 

 

Let’s consider quadratic triangles and serendipity 

quadrilaterals with mid-side nodes located at the mid-

side point of the vertex nodes at each side of the element 

in the global reference system. The local to global 

mapping functions x(x,h) and y(x,h) of these elements 

and their linear version are exactly identical. Thus, the 

subdivision procedure described for linear triangles and 

bi-linear quadrilaterals will also provide child elements 

geometrically similar to their parent elements for these 

elements. If quadratic triangles or serendipity 

quadrilaterals are not defined by straight line segments 

with mid-side nodes located over the mid-side point of 

each side of the element, then, they will be type B 

elements. 

 

4.5. Refinement level 
 

The refinement level re for an element e is defined as the 

number of subdivision steps required to obtain element e 

from its ancestor in the original mesh. According to this 

definition, the refinement level for every element in the 

original mesh will be re = 0, the refinement level for 

elements directly obtained from subdivision of elements 

with re = 0 will be re = 1, re = 2 for elements obtained by 

subdivision of elements with re = 1, and so on. 

 

Let Wp be a Type A parent element. The scaling factor 

with respect to Wp (or, in the case of quadrilateral 

elements, with respect to the dummy parent elements 

associated to Wp, see  

Figure 3.d) corresponding to the elements obtained by s 

successive subdivisions of Wp will simply be a function 

of  the difference between refinement levels, s. Thus, the 

scaling factor will be |l| = 0.5s. 

 

5. A HIERARCHICAL H-ADAPTIVE CODE: 

DATA STRUCTURE 

 

A code for the resolution of the 2D linear elasticity 

problem, which can be described as a Finite Element 

hierarchical h-adaptive program, has been developed 

a    

   

 
 
Figure 4. Quadrilateral: Subdivision sequence. 

 
Figure 5. Subdivision of elements over curved boundaries. Type A and type B elements. 

B

AAA

A

B
B

B
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using Matlab® [22]. The code, which requires an initial 

conforming mesh of linear triangles or quadrilaterals, 

uses a hierarchical data structure to drive the 

h-refinement process, mainly based on the following 

objects, whose description can be found in appendix A: 

 

- Node: stores data associated to each node. 

- Element: stores data associated to each element. 

- KMatrix: stores data associated to each stiffness 

matrix. Geometrically similar elements will be related to 

a single KMatrix object. 

 

The idea behind the development of this code was to 

create a framework to test the benefits of the use of 

hierarchical relations in h-adaptivity. Apart from the 

hierarchical relations between parent and child elements 

described in previous sections, the program also uses the 

following relations. 

 

Neighbourhood relations. 

 

- Element to element neighbourhood relations. The 

following information is stored at each side of each 

element: neighbour element and neighbour element’s 

side number.  

- Element - boundary relations. For sides of elements 

located over the boundary of the domain the boundary 

identification code is also stored. 

 

These two relations (element-element, element-

boundary) can be inherited by the new elements created 

during the mesh refinement. The use of this information 

simplifies and accelerates the refinement process. 

 

Nodal hierarchical relations. 

 

During the splitting process of each element, new nodes 

are created. The location of these new nodes can always 

be expressed as a function of the location of the nodes of 

the parent element. To do this, the code stores the values 

of the parent element shape functions evaluated at the 

location of the new node. Therefore, each new node will 

keep information about its parent nodes (the nodes of the 

parent element) and the influence of each of these parents 

over the node (value of the element shape functions 

calculated at the location of the new node). 

This hierarchical parents-child relationship between 

nodes has two main uses in the program: 

 

- MPC’s equations. These parents-child relations can be 

used to impose the multi-point constraint equations used 

to ensure C0 continuity between adjacent elements with 

different subdivision levels. 

- Data interpolation-extrapolation between different 

meshes.  Nodal values evaluated in one mesh can be 

easily interpolated to more refined meshes or 

extrapolated to coarser meshes by using the parents-child 

relations between nodes. 

 

5.1. Further advantages of the hierarchical data 

structure 
 

The hierarchical data structure has some further 

advantages: 

 

- Stress evaluation at Gauss points. These values can be 

easily evaluated by using sG = DBue (ue displacement 

vector at nodes of element e, D Hook’s matrix 

corresponding to the stress-strain relation s = De) 

because the values of the B matrix evaluated at Gauss 

points are available for the elements used to create each 

of the KMatrix objects. 

 

- Determinant of the Jacobian matrix at Gauss points. 

The evaluation of any result involving element integrals 

(equivalent load vector corresponding to body loads, 

strain energy, energy norm, error estimation in energy 

norm,…) requires the evaluation of the determinant of 

the Jacobian matrix |J| at Gauss Points. These values are 

available for the elements used to create each of the 

KMatrix objects. 

 

6. STIFFNESS MATRIX REORDERING 

 
Matrix reordering plays an important role on the 

performance of the direct solver. Reordering the columns 

of a matrix can often make its LU or QR factors sparser. 

Reordering the rows and columns can often make its 

Cholesky factorization sparser. This allows for a 

reduction of the time required to obtain the solution of 

the problem. Finding the optimal ordering is usually not 

possible, but finding a good ordering is. Matlab® [22], 

which has been used to develop our FE code, 

incorporates a number of reordering algorithms, some of 

which involve the use of an iterative process to obtain the 

reordering. 

 

This section is intended to show how the hierarchical data 

structure of the program can be used to directly obtain a 

reordering of the system matrix that speeds up the 

Cholesky factorization process. 

 

6.1. Reordering based on a nested domain 

decomposition (NDD) 

 

The mesh splitting technique used produces a natural 

decomposition of the domain. The elements contained in 

the initial mesh can be considered as the subdomains into 

which the original domain is divided. For the following 

meshes, the elements to be considered in each subdomain 

are those obtained by the subdivision of the original 

elements. The subdomains defined by the elements 
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included in the first mesh of the analysis can be termed 

0-Level subdomains. This idea can be recursively applied 

into each of the original subdomains. Thus, as 

represented in Figure 6, new sub-subdomains (1-Level 

subdomains) could be defined into the 0-Level 

subdomains, and so forth. 

The value of a new nodal property called .Subdom, which 

stores a code that indicates the subdomain number in 

which each node is created at each subdivision level, is 

easily obtained by using the hierarchical data structure 

during the mesh generation process. The value 0 will be 

assigned to those nodes created over the interfaces 

between the subdomains. Taking this into account the 

sample nodes highlighted in Figure 6 would have the 

codes shown in Figure 7: 

  

 0
-L

ev
el

 

1
-L

ev
el

 

2
-L

ev
el

 

3
-L

ev
el

 

Sample node   Node.Subdom =  1 2 2 0 

        
Sample node   Node.Subdom =   1 3 0 0 

       
Figure 7.  Codes for sampling nodes shown in Figure 6. 

 

The value of this property allows for a simple reordering 

of the linear system of equations using a dictionary-type 

reordering (sortrows  command in Matlab® [22]). The 

reordering thus obtained will be denoted as NDD 

reordering. Figure 8.a) shows the original structure of a 

stiffness matrix corresponding to a problem with 3 

elements in the original mesh which has been uniformly 

refined. The arrowhead-like structure represented in 

Figure 8.b) is obtained if the system of equations is 

reordered taking into account the value of the .Subdom 

property for the 0-Level. Observe that the degrees of 

freedom (dofs) placed in the first 0-Level subdomain 

(element number 1 of the original mesh) are located first; 

then, those in the second 0-Level subdomain, and so 

forth. The last dofs of the reordered matrix correspond to 

the dofs of the interfaces between the 0-Level 

subdomains. Finally, the structure represented in Figure 

8.c) is obtained if the complete nested subdomains 

structure is used to reorder the system of equations. 

 

The numerical results presented in Section 7 will show 

the advantages obtained by using the natural reordering 

provided by the hierarchical h-adaptivity code. 

 

7. NUMERICAL EXAMPLES 

 

7.1. Domain with straight boundaries 

 

When evaluating element stiffness matrices, the biggest 

advantages of the program emerge when the boundary of 

the component can be represented by straight-line 

segments. Under this situation, all the elements in the 

mesh will be Type A elements. Then, the only KMatrix 

objects to be evaluated will correspond to the elements in 

the original mesh and their dummy elements (see  

Figure 3), if the elements are non-parallelograms 

quadrilaterals.  

As an example of this kind of domains, the plate with a 

crack represented in Figure 9 has been studied. Due to the 

 

Figure 6. FE model. Subdomains in different levels. 

1-Level subdomains 2-Level subdomains 3-Level subdomains

Initial mesh

Subdom 

1

Subdom 

3

Subdom 

2

Subdom 

4
Subdom 

5

Refined mesh

0-Level subdomains

0

0

4321 5

Inactive nodes in level  

(interface nodes in previous levels)

Interface nodes

Nodes of different subdomains

Sample nodes 




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problem’s symmetry, only the right hand side of the 

domain has been considered in the analyses. 

 

The problem has been studied using a h-adaptive analysis 

based on the estimation of the discretization error in 

energy norm. In order to evaluate an estimate ese  of the 

exact value of the discretization error in energy norm 

exe , Zienkiewicz-Zhu [23] developed the ZZ estimator 

proposing the use of the following expression 

 

    
  dh

T
h

es σσDσσe *
1

*
2

 (15) 

 

where domain W can refer to either the whole domain or 

a local (element) subdomain, h
σ  represents the stresses 

evaluated using the Finite Element Method, *σ  is the so-

called smoothed or recovered stress field, that is a better 

approximation of the exact solution than hσ . 

 

 
Figure 9. Plate with crack under traction. 

 

Equation (15) is rewritten as follows in terms of local 

coordinates for the evaluation of the error in energy norm 

at element e: 

 

    
 

l

l
h

T
h

ees dJσσDσσe *
1

*
2  (16) 

 

We have used Relation 3 to reduce the computational 

cost of the evaluation of |J|. Observe that the 

computational cost of any domain integral can be reduced 

by means of the use of Relation 3. 

 

An enhanced version [24] of the Superconvergent Patch 

Recovery technique (SPR) [25]  has been employed in 

the error estimation process. This version of the SPR 

technique provides a very accurate recovered stress field 

as it uses constraint equations to impose the exact local 

satisfaction of the equilibrium and compatibility 

equations in the patch of elements surrounding each 

vertex node. 

 

The criterion used to define the size of the elements in 

new meshes is based on the criterion of minimization of 

the number of elements in the new mesh described by 

Ladeveze et al. [26, 27] and Coorevits et al [28]. 

 

Figure 10 shows two sequences of h-adapted meshes, 

obtained with quadratic triangles and quadrilaterals, used 

to analyse the problem represented in Figure 9. Note that 

some of the quadrilateral elements used in the first mesh 

of the sequence were deliberately distorted to illustrate 

the use of quadrilateral elements of arbitrary shapes. In 

Figure 10 all the elements associated to the same KMatrix 

object have been represented with the same colour. The 

statistics of the mesh sequence have been shown in  

. 

 

 

 clearly shows the advantages obtained when the 

hierarchical relations between elements are used. For 

example, when triangular elements have been used, the 

last mesh in the sequence contains 9135 elements, some 

of them with a refinement level r = 11, and has required 

the creation of 12168 elements. However, only 36 

KMatrix objects have been evaluated to create the 

problem stiffness matrix for this mesh with 19592 nodes. 

 

7.2. Domain with curved boundaries 

 

Parent elements with one or more of their sides lying 

over curved boundaries will not be geometrically similar 

to their child elements. Therefore, when the mesh is 

refined, new KMatrix objects will be required to be 

created. In any case, it must be taken into account that 

this will only happen along curved boundaries. It can be 

intuitively observed that, whereas the number of 

   

a) Original  b) Reordered matrix considering   

0-Level subdomains 

c) Reordered matrix considering  

full nested subdomains structure 

Figure 8. Stiffness matrix for a problem with 3 subdomains in the original mesh. 
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elements, in the 2D case, will grow as a function of the 

area of the domain, the number of KMatrix objects to be 

created will be a function of the length of the curved 

boundaries, i.e. one less dimension. 

The example presented in this section corresponds to a 

gravity dam. The initial mesh used in this problem has 

been represented in Figure 11. The objective of the 

analysis is the evaluation of the mean value of the von-

Mises stress in an area of interest which has been defined 

by the highlighted elements. Quadratic triangular 

elements have been used in this problem. 

 

A Goal Oriented h-Adaptive process has been used in this 

case. The adaptive process is based on the estimation of 

the error in the magnitude of interest Q(ees) using the 

recovery type error estimator given in the following 

expression for element e, as proposed for example in [29] 

and [30]: 

 

    
 

l

l
h
dd

T
h
ppees dQ JσσDσσe *

1
*)(  (17) 
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Figure 10. Plate with crack under traction. Sequence of h-adapted meshes. Representation of elements with the same KMatrix 

object. 

 

Table 1. Plate with crack under traction. H-adaptive refinement data. 

 

 Triangular elements Quadrilateral elements 

 

Mesh 

 

Nodes 

Created 

Elements 

Active 

Elements 

KMatrix Obj. 

evaluated 

 

Nodes 

Created 

Elements 

Active 

Elements 

KMatrix Obj. 

evaluated 

1 91 36 36 36 73 18 18 46 

2 359 196 156 36 678 262 201 46 

3 1496 896 681 36 1881 746 564 46 

4 5781 3572 2688 36 5479 2218 1668 46 

5 19592 12168 9135 36 15594 6446 4839 46 
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where h
pσ  and *

pσ  represent the FE and recovered stress 

fields corresponding to the primal problem and h
dσ  and

*
dσ  represent those corresponding to the dual problem 

used to extract the magnitude of interest. The standard 

SPR technique was used in this case to obtain the 

recovered stress fields *
pσ  and *

dσ . As in the previous 

example, Relation 3 was used in the evaluation of (17) to 

reduce the computational cost asociated to the evaluation 

of |J|. 

 

The hierarchical data structure has been used to define 

the area of interest in more refined meshes, by simply 

taking into account that when a parent element into the 

area of interest is subdivided into four children elements, 

the children elements will also be part of the area of 

interest. A detail of mesh 4 of the h-adaptive mesh 

sequence around the area of interest is represented in 

Figure 12. 

 

Figure 13 shows mesh 4 entirely. Elements with the same 

KMatrix object have been represented with the same 

colour in these two figures. A graphical comparison 

between the number of KMatrix objects evaluated and the 

number of elements used in each mesh is represented in 

Figure 14. This figure clearly shows that the number of 

elements used in each mesh, which is a function of the 

area, grows faster than the number of KMatrix objects 

evaluated, which is a function of the length of curved 

contours. 

 

 

 

 

 

 

7.3. Solver improvement 

 

Different direct solvers strategies that make use of the 

Cholesky factorization of the stiffness matrix 

(symmetrical and positive definite, once the 

displacement constrains have been imposed) have been 

considered in this section. The factorization time, 

evaluated for a sequence of h-adapted meshes, used by 

the chol  MatLab® command [22] has been considered as 

the main parameter for the comparison. The MatLab® 

profiling tool has been used to evaluate the CPU time 

employed by the chol(K(p,p))command, where K(p,p) 

represents a permutation p of the system matrix K. Each 

of the five strategies under comparison corresponds to a 

different permutation p. The first four strategies, denoted 

by colperm, symrcm, symamd and amd, respectively 

correspond to the permutations obtained by using the 

colperm, symrcm, symamd and amd commands available 

in MatLab®. A description of the algorithms used by each 

of these commands can be found in the MatLab® 2009b 

Help [22] and the references therein. The last strategy, 

denoted by ndd, makes use of the natural reordering 

directly provided by the program’s hierarchical structure. 

 

 
Figure 12. Gravity Dam. Detail of Mesh 4 around the area of 

interest. 

 

 
Figure 11. Gravity dam. Mesh 1. Quadratic triangular elements. 
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a) h-adapted mesh of quadratic triangular elements. 

 

 
b). Elements with the same KMatrix object. 

Figure 13. Gravity Dam. Mesh 4. 
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Figure 14. Gravity Dam. Evolution of the number of active 

elements and the number of KMatrix objects. 

 

Figure 16 shows the evolution of the factorization times 

with respect to the number of degrees of freedom of the 

system matrices of the mesh sequences. The graph 

clearly shows that the best performance is obtained with 

the ndd reordering. The colperm and symrcm reorderings 

are not competitive with the rest of the methods as they 

soon produce an out of memory error in the computer 

used for the analyses. The  symamd, amd and ndd 

reorderings produce similar factorization times but, in an 

average sense, the Cholesky factorization times with the  

symamd and amd reorderings required 45% and 33% 

more time than with the ndd reordering. 

 

 
Figure 16. Cholesky factorization times obtained with each 

reordering scheme for a sequence of h-refined meshes. 

 

Figure 15 shows an example of comparison of the 

reordered matrices obtained with the different 

permutation schemes. It can be observed that the methods 

that produce the best performances of the Cholesky 
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Figure 15. Comparison of reordering schemes of a stiffness matrix, denoted by Original K (15054 degrees of freedom). Each 

plot represents the reordered system matrix obtained by the different permutation. 
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factorization, the symamd, amd and ndd permutations, 

produce similar reordering patterns. 

 

 

Figure 17 represents the factorization of the permuted 

matrices represented in Figure 15, except for the case of 

the original matrix, whose factorization generated an out 

of memory error. The symamd, amd and ndd 

permutations produce similar Cholesky factorizations of 

a similar number of non-zero terms (indicated below each 

plot). 

 

8. CONCLUSIONS 

 

This paper has presented a hierarchical h-adaptivity 

methodology implemented in a FE code for the resolution 

of the 2D linear elasticity problem. Linear and quadratic 

isoparametric triangles and quadrilaterals can be used in 

the mesh refinement process, which is based on element 

subdivision and on the use of multi-point constraints to 

satisfy the C0 continuity condition between adjacent 

elements with different refinement levels. 

 

The main conclusions arising from this paper are listed 

below. 

- It has been shown that if two finite isoparametric 

elements are geometrically similar, the terms 

involved in the evaluation of their element stiffness 

matrices are related by a constant value. This 

constant value is simply a function of the scaling 

factor that relates both elements. In fact, under this 

geometrical similarity condition, in the 2D case, the 

element stiffness matrices for geometrically similar 

elements are exactly equal if the Hooke’s tensor is 

constant. 

- In 2D mesh refinement processes based on element 

subdivision, if a parent element has straight-line 

contours not lying over curved boundaries with mid-

side nodes exactly located over the mid-side point of 

each side of the element, then, child elements can be 

created geometrically similar to their parent 

element. In this case, the matrices used to evaluate 

the element stiffness matrix of the parent element, 

after their multiplication by a constant value related 

to the scaling factor, will be reused by the child 

elements without any further calculation. 

 
 

Figure 17. Comparison of the factorizations of the matrices shown in Figure 15. The number of non-zero terms of the 

factorizations is indicated below each plot. The Cholesky factorization of the original matrix, without any reordering, produced 

an out of memory error. 
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- The hierarchical h-adaptive program code notably 

reduces the computational cost associated to the 

evaluation of the problem stiffness matrix, but also 

the cost associated to the computation of any result 

involving the terms used in the evaluation of the 

element stiffness matrix (strains and stresses at 

integration points, volume integrals,…). 

- The hierarchical data structure is particularly well 

suited for the implementation of a multi-grid solver. 

- The hierarchical data structure would also simplify 

the implementation of a domain decomposition 

solver, and, therefore, the parallelization of the 

process. 

 

The code can be described as hierarchical due to the 

following reasons: 

 

- A hierarchical data structure, with parent-child 

relations, is used to store data corresponding to 

elements and nodes. 

- The hierarchical data structure simplifies the 

generation of the new nested meshes. 

- The hierarchical data structure simplifies the 

implementation of iterative solvers in which the 

initial guess could be taken as the solution of 

previous analyses. 

- As in the p-hierarchical formulation of the FEM, 

stiffness matrix information can be reused in other 

analyses. 

 

Basic implementations of direct and iterative domain 

decomposition solvers that make use of the nested 

arrowhead structure have been already developed [31-

34]. 
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10. APPENDIX A: OBJECTS IN THE 

HIERARCHICAL DATA STRUCTURE 

 

This appendix shows a basic description of the main 

objects used to create the hierarchical data structure of 

the FE code: 

 

- Node: stores data associated to each node 

- Element: stores data associated to each element 

- KMatrix: stores data associated to each stiffness 

matrix. Geometrically similar elements will be related 

to a single KMatrix object. 

 

The following acronyms will be used in the definitions of 

the most important properties of these objects shown in 

Tables 2 to 4.  

 

nnpe Number of nodes per element 

nsides Number of sides of each element 

nmesh Number of meshes in the h-adaptive sequence 

ndofpe Number of degrees of freedom per element: 

ndofpe = nnpe x 2 (2-D) 

ngauss Number of integration Gauss points used into 

each element 

nlevels Number element levels. 

Table 2. Node object. 

 

Node(n) 

 

Property Type Size Information 

.XYZ Double 2 × 1 Geometrical coordinates of node n (2D) 

.NParents Int 1 × 1 Total number of parent-nodes for node n  

.Parents Int 1 × NParents Numbers of the parent-nodes corresponding to node n 

.Weights Double 1 × NParents Value of the shape functions of parent-nodes evaluated at n 

(child-node) 

.HangingNode Boolean 1 × nmesh Flag used to indicate if node n is/is-not a hanging node in 

each of the meshes in the mesh sequence 

.Boundary Int 1 × 1 Code of geometrical entity associated to n (zero if n is in the 

interior of the domain) 

.Subdom Int 1 × nlevels Subdomain in which the node is located at each level 
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