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RESUMEN 

 

Un nuevo volumen finito de control es presentado en un enfoque Lagrangiano-Euleriano (ver artículos [1, 28]), en 

este, un dominio de espacio-tiempo es estudiado con el fin de diseñar un esquema localmente conservativo. Tal 

esquema tiene en cuenta el delicado balance no linear, entre las aproximaciones numéricas del flujo hiperbólico y el 

término fuente, en problemas de ley de balance ligados con leyes de conservación puramente hiperbólicas. Además, 

combinando algunas ideas de este nuevo enfoque, hacemos una construcción formal de un nuevo algoritmo para 

resolver importantes problemas de leyes de conservación en dos dimensiones espaciales. Un conjunto pertinente de 

experimentos numéricos para diferentes modelos es presentado para mostrar evidencia que soluciones cualitativamente 

correctas son aproximadas. 

 

PALABRAS CLAVE: Leyes de conservación; Lagrangiano-Euleriano; volumen finito. 

 

 

ABSTRACT 

 

A new finite control volume in a Lagrangian-Eulerian framework is presented (see papers [1, 28]), in which a local 

space-time domain is studied, in order to design a locally conservative scheme. Such scheme accounts for the delicate 

nonlinear balance between the numerical approximations of the hyperbolic flux and the source term for balance law 

problems linked to the purely hyperbolic character of conservation laws. Furthermore, by combining the ideas of this 

new approach, we give a formal construction of a new algorithm for solving several nonlinear hyperbolic conservation 

laws in two space dimensions. Here, a set of pertinent numerical experiments for distinct models is presented to 

evidence that we are calculating the correct qualitatively good solutions. 

 

KEYWORDS: Conservation laws; Lagrangian-Eulerian; finite volume. 

 

 

1. INTRODUCTION 

 

In this work we explore a locally conservative and space-

time finite control volume in a Lagrangian-Eulerian 

framework (see [13, 14, 15, 26]), first developed in the 

context of purely hyperbolic conservation laws, in order 

to design a locally conservative scheme to account the 

balance between numerical approximations of the 

hyperbolic flux function and the source term linked to 

steady solutions. In [1, 28], such Lagrangian framework 

was extended to design a locally conservative 

Lagrangian-Eulerian scheme to account the balance 

between numerical approximations of the hyperbolic flux 

function and the source term linked to steady-state 
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solutions for one-dimensional nonlinear balance law 

problems –scalar and system – given by: 

 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
+
𝜕𝑓(𝑢(𝑥, 𝑡))

𝜕𝑥
=  𝐺(𝑢), 

  𝑢(𝑥, 0) =  𝜑(𝑥),   
−∞ <  𝑥 <  ∞, 𝑡 > 0, 
 

(1)  

We made use of the innovative ideas of [13, 14, 15, 26] 

to develop a locally conservative by construction 

Lagrangian-Eulerian approach as an alternative way to 

define accurate approximation for purely advection 

(hyperbolic) problems in two dimensions, virtually free 

of numerical diffusion [2, 14, 20]. The new Lagrangian-

Eulerian scheme is aimed to be independent of any 

particular structure of the source term. The designed 

scheme makes no use of Riemann solvers for the 

resolution of (local) Riemann problems, but, if Riemann 

solutions are available for a particular problem it is 

somewhat natural to incorporate such information into 

the procedure. This yields flexibility to the development 

of distinct numerical strategies upon the specific model 

under consideration.  

 

We are interested in numerically solving balance law 

problems linked to the homogeneous purely hyperbolic 

conservation law counterpart. In this work, we aim to 

present a Lagrangian-Eulerian scheme in a cell-centered 

framework devoted to this task. This scheme consists on 

another attempt to deal with the difficult issue of the well-

balancing between the computation of the numerical flux 

function and the source term by means of a natural 

unbiased upwinding approach, which in turn is Riemann 

solver-free and seems to be able to handle nonlinear 

scalar and system problems. A variety of efficient 

numerical schemes for hyperbolic systems of 

conservation laws has been developed in the recent past 

for different problem settings. These schemes evolved 

following the natural understanding of fundamental 

concepts from the theory of nonlinear hyperbolic 

conservation laws concerning the characteristic surfaces 

properties, existence, uniqueness, and solution of the 

Riemann problem; see, e.g, [4, 7, 10, 22, 24, 25, 32]. 

 

In addition, for a scalar balance law, the solution strongly 

depends on certain properties of the source term (see [16, 

10, 22, 4, 7, 24, 25]). For example, when the source term 

is a non-increasing function, the total variation of the 

exact solution of the scalar balance law is also a non-

increasing function, as in the homogeneous case (see, 

e.g., [16, 10]). In general, however, the source term might 

not be decreasing (see [6, 11, 27]) and some semi-

implicit and fully implicit scheme are not applicable, at 

least in a straightforward manner [6, 11]. 

  

In [1, 2, 13, 14, 15, 20, 30] the authors present distinct 

Lagrangian-Eulerian formulations to the linear case [3, 

20] and non-linear [1, 2, 12, 14, 30] transport flow 

problems; to the purely linear transport problem the 

space-time integral curves coincide with characteristic 

equations [2, 20] (see also [4]). Such Lagrangian-

Eulerian approach provides a very accurate solution to 

purely advective problems, virtually free of numerical 

diffusion. Such schemes are derived from the divergence 

forms of the equations. It is the use of the divergence 

form of a parabolic equation that allows relatively easy 

localization of desired conservation principles in a form 

amenable to the application of finite element or finite 

volume approaches in a locally conservative fashion. 

Essentially, this formulation evolves [2, 12, 14] (see also 

[2, 20, 30] and references therein) from the efforts to 

develop fast, accurate, and stable versions of Modified 

Method of Characteristics numerical methods for 

transport-dominated diffusive systems, with the primary 

objective of the evolution being the incorporation of 

changes in these procedures to obtain the preservation of 

desired conservation principles. Here we want to follow 

such ideas to the case of balance laws.  

 

In section 2 we briefly show the ideas of the construction 

of the method for scalar problems of hyperbolic 

conservation laws and balance laws. In section 3 it is 

shown, also briefly, the extension of method to 

numerically solve hyperbolic conservation laws in two 

spatial dimensions. Finally, we show some numerical 

experiments in section 4. 

 

2. THE LAGRANGIAN-EULERIAN METHOD 

 

As in [1, 28], we consider the general balance law 

 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
+
𝜕𝑓(𝑢(𝑥, 𝑡))

𝜕𝑥
=  𝐺(𝑢), 

  𝑢(𝑥, 0) =  𝜑(𝑥),   
−∞ <  𝑥 <  ∞, 𝑡 > 0, 
 

(2) 

where 𝐺(𝑢) is a integrable function. 

 

Following [1, 2, 14, 28, 20], we consider the finite-

volume cell centers 𝐷𝑗 = {(𝑡, 𝑥) ∶   𝑡
𝑛 ≤  𝑡 ≤

 𝑡{𝑛+1}, 𝜎𝑗(𝑡) ≤ 𝑥 ≤   𝜎𝑗+1(𝑡)} where 𝜎𝑗(𝑡)  is a 

parameterized curve such that 𝜎𝑗(𝑡) is a solution of the 

system of ordinary differential equations 
𝑑 𝜎𝑗(𝑡)

𝑑𝑡
=

𝑓(𝑈𝑗
𝑛)

𝑈𝑗
𝑛  

with initial condition 𝜎𝑗(𝑡
𝑛) = 𝑥𝑗

𝑛. Also, we get a CFL 

condition of the form 𝜆 |𝑓𝑗
𝑛| ≤

√2

2
 , where 𝜆 =

𝑘

ℎ
 and 

𝑓𝑗
𝑛  =  

𝑓(𝑈𝑗
𝑛)

𝑈𝑗
𝑛 . 
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Next, from the divergence theorem [2, 14, 28] reads: 

∬ ∇𝑡,𝑥 [
𝑢

𝑓(𝑢)] 𝑑𝑉 
𝐷𝑗

=∬ 𝐺(𝑢)𝑑𝑉
𝐷𝑗

⇔ 

∮ [
𝑢

𝑓(𝑢)] . 𝑛 𝑑𝑠 = ∬ 𝐺(𝑢)𝑑𝐴
𝐷𝑗𝜕𝐷𝑗

 

 

(3) 

Imposition of impermeability condition over curves 

𝜎𝑗(𝑡)  in boundary 𝜕𝐷𝑗 , equation (3), implies that the 

integrals over curves 𝜎𝑗(𝑡) vanish. From this fact, the 

region 𝐷𝑗  will be called “Integral tube” as a natural 

consequence of (3). 

 

The previous item allows us to define the evolution step 

from time 𝑡𝑛 to 𝑡𝑛+1 as 

𝑈̅𝑗
𝑛+1 =

1

ℎ𝑗
𝑛+1 [∫ 𝑢(𝑥, 𝑡𝑛)𝑑𝑥 

𝑥𝑗+1
𝑛

𝑥𝑗
𝑛 +∬ 𝐺(𝑢)𝑑𝐴

𝐷𝑗
], (4) 

where ℎ𝑗
𝑛+1 = ℎ + (𝑓𝑗+1

𝑛 − 𝑓𝑗
𝑛)𝑘, 𝑘 = Δ𝑡𝑛. 

 

Next, the local approximation 𝑈𝑗
𝑛+1, 𝑗 ∈ 𝑍, is projected 

over the original grid, as follows: 

𝑈𝑗
𝑛+1 =

1

ℎ
((

ℎ

2
− 𝑓𝑗

𝑛𝑘𝑛) 𝑈̅𝑗−1
𝑛+1 + (

ℎ

2
+ 𝑓𝑗

𝑛𝑘𝑛) 𝑈̅𝑗
𝑛+1) . (5) 

 

In the linear case, along with 𝐺(𝑢)  =  0, the 

approximations to the simple scalar conservation law 
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
+
𝜕(𝑎 𝑢)

𝜕𝑥
=  0, 

  𝑢(𝑥, 0) =  𝜑(𝑥),   
−∞ <  𝑥 <  ∞, 𝑡 > 0, 
 

(6) 

Is also the simple finite difference Lagrangian-Eulerian 

scheme [1,28] 

𝑈𝑗
𝑛+1 =

1

4
[𝑈𝑗−1

𝑛 + 2𝑈𝑗
𝑛 +𝑈𝑗+1

𝑛 ] −
𝑎𝑘

ℎ
[𝑈𝑗+1

𝑛 −𝑈𝑗−1
𝑛 ] 

(7) 

 

Based on numerical domain of influence and domain of 

dependence, for (7) the following Courant-Friedrichs-

Lewy CFL like stability condition is 𝑎𝑘ℎ−1 < 2−1. 

 

3. THE NEW LAGRANGIAN- EULERIAN 

FRAMEWORK FOR TWO-DIMENSIONAL 

HYPERBOLIC CONSERVATION LAWS 

 

We discuss a Lagragian-Eulerian technique for 

approximation of the following two-dimensional initial 

value problem for conservation laws (see [1, 28]), 
𝜕𝑢

𝜕𝑡
+
𝜕𝑓(𝑢)

𝜕𝑥
+
𝜕𝑔(𝑢)

𝜕𝑦
= 0 

𝑢(𝑥, 𝑦, 𝑡0) =  𝜂(𝑥, 𝑦) 
(𝑥, 𝑦, 𝑡) ∈ Ω × (𝑡0, 𝑇] 

(8) 

 

Along with the approximations of derivatives 

respectively. We write (8) as, (for 𝑤 = (𝑥, 𝑦, 𝑡)) 

{
 
 

 
 
𝜕𝑢

𝜕𝑡
+
𝜕𝑓(𝑢)

𝜕𝑥
= −(

𝜕𝑔(𝑢)

𝜕𝑦
)
𝑗

, 𝑤 ∈ 𝐷𝑖,𝑗
𝑛

𝜕𝑢

𝜕𝑡
+
𝜕𝑔(𝑢)

𝜕𝑥
= −(

𝜕𝑓(𝑢)

𝜕𝑦
)
𝑖

, 𝑤 ∈ 𝐷
𝑖,𝑗

𝑛+
1
2

 

 

(9) 

 

As seen in the scalar case, we consider cell-centered 

finite-volume cell centers in the Lagrangian-framework 

as follows: 𝐷𝑖,𝑗
𝑛 = {(𝑥, 𝑦, 𝑡): 𝑡𝑛 ≤ 𝑡 ≤ 𝑡𝑛+

1

2, 𝑦
𝑗−

1

2

𝑛 ≤ 𝑦 ≤

  𝑦
𝑗+

1

2

𝑛 , 𝜎𝑖
𝑛(𝑡) ≤ 𝑥 ≤  𝜎𝑖+1

𝑛 (𝑡)} and 𝐷
𝑖,𝑗

𝑛+
1

2 =

{(𝑥, 𝑦, 𝑡): 𝑡𝑛 ≤ 𝑡 ≤ 𝑡𝑛+
1

2, 𝑥
𝑗−

1

2

𝑛 ≤ 𝑥 ≤   𝑥
𝑗+

1

2

𝑛 , 𝛾
𝑖

𝑛+
1

2(𝑡) ≤

𝑦 ≤  𝛾
𝑖+1

𝑛+
1

2(𝑡)}, where 𝜎𝑖
𝑛(𝑡) and 𝛾

𝑖

𝑛+
1

2(𝑡) are solutions of 

𝑑 Θ(𝑡)

𝑑𝑡
=
𝐻(𝑢)

𝑢
≈
𝐻(𝑈∗)

𝑈∗
, 𝐻 = 𝑓, 𝑔 

 

(10) 

 

We prove the stability in 𝑙ℎ
𝑝
 norm, under CFL condition  

𝜆 |𝑓𝐻𝑗
𝑛| ≤

√2

2
 , where 𝜆 =

𝑘

ℎ
, 

 

Finally, we sequentially solve each balance law problem 

given by (9)-(10), in each control volume and 

respectively, by using the numerical scheme (3), (4) and 

(5) as a building block (see also [28] for more details). 

 

4. NUMERICAL EXPERIMENTS 

 

We provide some numerical experiments with specific 

model test problems, in order to show the algorithm 

behavior and its applicability, linked to the firm 

mathematical underpinnings used into the previous 

sections for the construction of the proposed new 

algorithm. 

 

Insight in the qualitative behavior (see numerical 

experiments from Figure 1 to Figure 4) can be obtained 

by regarding the so-called modified equations of the 

discretization. It is worth mentioning that here we will 

use modified equations with the aim of understanding the 

qualitative behavior of approximations (related to the 

two-level Lagrangian-Eulerian scheme (7)) in the spirit 

of critical work of [5] (see also [17, 31]), that related it 

with the Fourier-von Neumann method for the linear 

stability analysis of the linear initial-value problem (Lax 

stability in PDEs as before) of two-level linear difference 

schemes. Let -(x; t) in C1, with all bounded derivatives 

with respect to x and t, in the setting of modified 

equations and plug this into (7) along with the stability 

results pointed out in [1, 28]. 
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In the linear case, the complicated behaviors exhibited by 

the Fourier series sums would serve as a good testing 

ground for the application of numerical methods for 

diffusive/dispersive waves to rough data. Thus, let us 

discuss the application of the Lagrangian-Eulerian 

scheme (7) with three types of initial data: 

a. 𝐶∞ smooth data (see Figure 1 and Figure 2), 

b. a Lipschitz initial data (see Figure 3) and 

c. piecewise discontinuous initial data (Figure 4). 

 

For all cases we will also show the observed numerical 

convergence rates (see Tables 1, 2 and 3) along with 

comments on the captions and figures. In other words, the 

classical convergence (consistency + stability) property 

of a numerical scheme does not suffice to guarantee its 

suitability for providing good approximations to the 

controls that might be needed in applications since such 

nice properties may be lost under numerical 

discretization as the mesh size tends to zero due to the 

existence of high-frequency spurious solutions for which 

the group velocity vanishes not fast enough. We will not 

suggest any specialized remedies since we are primary 

interest in discuss the properties (we have found) in the 

most simple framework, which is conducive to analysis 

and verification by representative numerical tests. 

 
Table 1. Errors between the numerical approximations (𝑈) and 

exact solutions (𝑢) in 𝑙ℎ
1  (𝑙ℎ

2) for problem 𝑢𝑡 + 𝑢𝑥 = 0 with 

smooth initial condition at time frame 𝑇 = 2 and CFL condition 

equal to 
√2

2
. 

Cells Smooth ‖𝑢 − 𝑈‖𝑙ℎ
1  (‖𝑢 − 𝑈‖𝑙ℎ

2) 

32 5.921 × 10−1(2.980 × 10−1)  
64 2.082 × 10−1(1.146 × 10−1) 
128 5.571 × 10−2(3.171 × 10−2) 
256 1.399 × 10−2(8.006 × 10−3)  
𝐸(ℎ) 1.673 ℎ1.811(0.835 ℎ1.75) 

Source: Author development. 

 
Table 2. Errors between the numerical approximations (𝑈) and 

exact solutions (𝑢) in 𝑙ℎ
1  (𝑙ℎ

2) for problem 𝑢𝑡 + 𝑢𝑥 = 0 with 

continuous initial condition at time frame 𝑇 = 2 and CFL 

condition equal to 
√2

2
. 

Cells Continuous ‖𝑢 − 𝑈‖𝑙ℎ
1  (‖𝑢 − 𝑈‖𝑙ℎ

2) 

32 7.834 × 10−1(4.521 × 10−1)  
64 3.898 × 10−1(2.267 × 10−1) 
128 1.428 × 10−1(9.095 × 10−2) 
256 6.541 × 10−2(4.869 × 10−2)  
𝐸(ℎ) 1.550 ℎ1.219(0.808 ℎ1.096) 

Source: Author development. 

 

 

 

 

 

Table 3. Errors between the numerical approximations (𝑈) and 

exact solutions (𝑢) in 𝑙ℎ
1  (𝑙ℎ

2) for problem 𝑢𝑡 + 𝑢𝑥 = 0 with 

non-continuous initial condition at time frame 𝑇 = 2 and CFL 

condition equal to 
√2

2
. 

Cells NonContin. ‖𝑢 − 𝑈‖𝑙ℎ
1  (‖𝑢 − 𝑈‖𝑙ℎ

2) 

32 1.192 × 10−1(5.454 × 10−1)  
64 7.984 × 10−1(4.458 × 10−1) 
128 5.639 × 10−1(4.374 × 10−1) 
256 3.552 × 10−1(2.887 × 10−1)  
𝐸(ℎ) 1.679 ℎ0.574(0.646 ℎ0.27) 

Source: Author development. 

 

Approximate numerical solutions given by scheme (7) to 

the Linear hyperbolic PDE (6), are shown in Figure 1, 

along with smooth Gaussian initial condition 𝑢(𝑥, 0) =

 𝜂(𝑥) = 𝑒−𝑥
2
. It is shown initial condition (top left) and 

computed solutions at t = 2 (top right), t = 4 (bottom left) 

and t = 8 (bottom right) with CFL number 𝑣 =
√2

2
. As 

expected from the modified equation analysis the 

solutions start to exhibit dispersion since the range of the 

dominant dispersion regime is controlled by 
1

2
< 𝑣 <

√2

2
. 

 

In [1, 28] we establish a convergence proof in 𝑙2-space 

by means of von Neumann analysis for the Lagrangian-

Eulerian scheme, see Figure 2. Although the CFL number 

is in the range 
1

2
< 𝑣 <

√2

2
 where the diffusion is in 

balance or dominates the dispersion, the above numerical 

experiments related to those in Figure 1, illustrate the fact 

of entire truncation error vanishing (see right picture) at 

all grid points under grid refinement, as expected from 

previous theoretical analysis. At this point (left and right 

picture) notice the excellent resemblance between the 

exact and approximate solutions computed by the 

Lagrangian- Eulerian scheme with any reminiscence of 

the spurious effects from the numerical 

dispersion/diffusion artifacts. 

 

The numerical experiment in Figure 3 illustrates again 

both cases where the diffusion are in balance (bottom 

left) or dominates (bottom middle) the dispersion as ℎ →
0 with ratio 𝑘 = ℎ fixed corresponding essentially to 

what is shown in Figure 1 and in Figure 2, but with a 

Lipschitz initial condition where 𝜂(𝑥) = 𝑥 + 1,−1 <
𝑥 < 0, 𝜂(𝑥) =  −𝑥 + 1, 0 < 𝑥 < 1 and 𝜂(𝑥) = 0 

elsewhere. 
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Numerical experiment in Figure 4 illustrates again both 

cases where the diffusion are in balance (bottom left) or 

dominates (bottom middle) the dispersion as ℎ → 0 with 

ratio 𝑘 = ℎ fixed corresponding essentially to what is 

shown in Figure 1 and in Figure 2, but with a 

discontinuous initial condition where 𝜂(𝑥) = 1,−2 <
𝑥 < 2 and 𝜂(𝑥) =  0 elsewhere. As in [23], in Figure 5, 

we show preliminary numerical approximations of the 

model problem with 𝑓(𝑢)  =  𝑢 and 𝐺(𝑢) =  −𝛽𝑢(𝑢 −
1)(𝑢 − 𝜇) and 𝜇 =  0.5, this model was used in [23] to 

Figure 3. Numerical solutions given by scheme (7) along with smooth Gaussian initial condition. 

 

Figure 2. Convergence in l2-space. 

 

Figure 1. Numerical approximation with a Lipschitz initial condition. 
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illustrate a current well-known deficiency of most 

numerical schemes for hyperbolic conservation laws 

with stiff source terms. These schemes obtain 

propagation at a nonphysical speed that is purely an 

artifact of the numerical method. The problem lies with 

the smearing of the discontinuity caused by the 

advection, which introduces a nonequilibrium state into 

the calculation making to appear numerical fronts that 

propagate at non-physical speeds [23]. The model 

problem is a scalar linear advection equation with a 

nonlinear reaction source term, which can be stiff. The 

parameter 𝛽 controls the stiffness character of the model. 

For   𝛽 > 0, the associated ODE has stable equilibria at 

𝑢 =  0 and 𝑢 =  1, and an unstable equilibrium 

precisely at 𝑢 = 𝜇. 
 

We also report in Figure 6 a preliminary approximate 

numerical solution given by scheme [28] proposed in 

[21], where it is treated a balance law system problem, in 

which it is computed solutions for h (height of the free 

surface on the left) and for v (averaged horizontal 

velocity right). The problem considered is a 2 x 2 

nonlinear system of balance laws ℎ𝑡 + (ℎ𝑣)𝑥 =

 0; (ℎ𝑣)𝑡 + (𝑣
2ℎ + (

1

2
) ℎ2)

𝑥
=  ℎ −  𝐶 (

1−ℎ

𝑡𝑎𝑛(𝜃)
) 𝑣2 

where the friction coefficient C is taken to be 0.1, with 

the inclination angle 𝜃 =
𝜋

6
. The initial velocity is taken 

to be 𝑣0  =  1.699, while the initial height of the free 

surface consists of a triangular perturbation of the 

uniform flow level, ℎ0(𝑥) =  𝑥 +  1.5, −0.5 ≤ 𝑥 ≤ 0, 

ℎ0(𝑥) =  −𝑥 +  1.5, 0 ≤ 𝑥 ≤ 0.5 and 1 elsewhere, in 

which with no friction (C = 0), two symmetrical waves 

will arise from the announced initial data. On the other 

hand, the introduction of friction not only slow down the 

velocity of these waves, but also changes their shape. 

 

Figure 4. Numerical approximation with a discontinuous initial condition. 

 

Figure 5. The model problem proposed by LeVeque and Yee in [23]. 
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In order to add one more test problem, see Figure 7, we 

will use the two-dimensional Lagrangian-Eulerian 

scheme (9) for the two-dimensional Burgers’ equation 

proposed in [8]. We consider the following two-

dimensional initial value problem for associated to the 

inviscid Burgers’ equation 

 

𝜕𝑢

𝜕𝑡
+
𝜕

𝜕𝑥
(
𝑢2

2
) +

𝜕

𝜕𝑦
(
𝑢2

2
) = 0 

(11) 

 

with (𝑥, 𝑦, 𝑡) ∈  [0, 1] × [0, 1] × [0, 0.5], and initial 

condition 

 

𝑢(𝑥, 𝑦, 0) = {
2.0,   𝑥 < 0.25, 𝑦 < 0.25
3.0,   𝑥 > 0.25, 𝑦 > 0.25

1.0,   otherwise.
 

(12) 

 

Figure 7. Initial condition. 

 

As before, our numerical solutions are in very good 

agreement as reported in [8], with a central scheme with 

a non-structure computational mesh grid. In addition, we 

also show a mesh refinement study in order to address the 

observed numerical order of convergence rate in discrete 

𝐿𝑝, 𝑝 = 1,2,∞-spaces,  (see Tables 4-6). 

 
Table 4. Errors between the numerical approximations (𝑈) and 

exact solutions (𝑢) in 𝑙ℎ
1  for problem 𝑢𝑡 + 𝑢𝑥 + 𝑢𝑦 = 0 with 

initial 𝑢(𝑥, 𝑦, 0) = sin(𝜋(𝑥 + 𝑦)). 

Cells h ‖𝑢 − 𝑈‖𝑙ℎ
1  

64 × 64 0.016 5.156 × 10−2 

128 × 128 0.007 2.046 × 10−2 

256 × 256 0.004 1.309 × 10−2 

512 × 512 0.002 6.090 × 10−3 

LSF 𝐸(ℎ)  2.911ℎ0.989 
Source: Author development. 

 
Table 5. Errors between the numerical approximations (𝑈) and 

exact solutions (𝑢) in 𝑙ℎ
2 for problem 𝑢𝑡 + 𝑢𝑥 + 𝑢𝑦 = 0 with 

initial 𝑢(𝑥, 𝑦, 0) = sin(𝜋(𝑥 + 𝑦)). 

Cells h ‖𝑢 − 𝑈‖𝑙ℎ
1  

64 × 64 0.016 5.573 × 10−2 

128 × 128 0.007 2.493 × 10−2 

256 × 256 0.004 1.467 × 10−2 

512 × 512 0.002 6.034 × 10−3 

LSF 𝐸(ℎ)  3.051ℎ0.972 
Source: Author development. 

 
Table 6. Errors between the numerical approximations (𝑈) and 

exact solutions (𝑢) in 𝑙ℎ
∞ for problem 𝑢𝑡 + 𝑢𝑥 + 𝑢𝑦 = 0 with 

initial 𝑢(𝑥, 𝑦, 0) = sin(𝜋(𝑥 + 𝑦)). 

Cells h ‖𝑢 − 𝑈‖𝑙ℎ
1  

64 × 64 0.016 1.339 × 10−1 

128 × 128 0.007 6.509 × 10−2 

256 × 256 0.004 3.761 × 10−2 

512 × 512 0.002 1.835 × 10−2 

LSF 𝐸(ℎ)  6.534ℎ0.939 
Source: Author development. 

Figure 6. 2 × 2 nonlinear system of balance laws with friction. 
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5. CONCLUDING REMARKS 

 

The new locally conservative Lagrangian method 

proposed in [28] seems to be promising for the 

approximation of nonlinear problems in 1D and 2D for 

hyperbolic conservation laws and balance laws, scalar 

and system (in this work we discuss an original extension 

for two-dimensional problems). To the best of our 

knowledge we have introduced a new approach for 

construction of a new family of approximate solutions for 

multidimensional hyperbolic conservation laws (as well 

as for balance law problems) thanks to an appropriate 

reformulation of the original differential governing 

equation by means of an equivalent system of balance 

laws. Thus, in order to establish such connection between 

multidimensional hyperbolic conservation laws and 

system of balance laws, it will be necessary to revisit the 

Lagrangian-Eulerian framework in order to perform a 

rigorous numerical analysis as such given in [28] for 

discrete 𝐿𝑝, 𝑝 = 1,2,∞-spaces, but keeping good 

mathematical properties such as the asymptotic 

preserving and the well-balancedness of the scheme, as 

in modern numerical procedures to this end (see, e.g., 

[16]) for hyperbolic conservation laws and balance laws 

linked to (quasi-)steady solutions.  

 

In [28], we also derived the modified equation associated 

to the Lagrangian-Eulerian scheme and described the 

dispersive dissipative relation to explain the one-

dimensional numerical experiments results. We were 

able to write the Lagrangian-Eulerian scheme in 

conservative form for nonlinear hyperbolic conservation 

laws as well as we construct a Lipschitz continuous 

consistency condition to the Lagrangian-Eulerian 

numerical flux function. The Harten theory [18, 19], the 

Majda and Crandall theory [9] and the ideas in Smoller’s 

book [29] were used to prove the convergence of the 

approximate solutions, obtained using our Lagrangian-

Eulerian scheme for entropic solution of non-linear scalar 

hyperbolic conservation law in both numerical methods. 

Furthermore, numerical experiments for hyperbolic 

conservation laws with convex and non-convex flux 

functions were also present to illustrate the qualities of 

the new scheme. In particular, it was discussed the 

stability and convergence issues of the Lagrangian-

Eulerian scheme for linear and nonlinear balance law 

problems. 

Figure 8. Christov & Popov (JPC), two-dimensional Burgers’ equation [8]. Approximations with the new approach (9)-(10). 
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