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ABSTRACT 

 

This article presents a comparative study using two global optimization algorithms, Electromagnetic Field 

Optimization (EFO) and Heat Transfer Search (HTS). These techniques are efficient alternatives when classical 

methods find limitations to solve real problems. To verify methods performance, the rectangular microchannel heat 

sink design was implemented formulating the respective  Inverse Heat Transfer Problem (IHTP). Experimental results 

were competitively compared with the traditional Levenberg-Marquardt (LM) outcomes. Moreover, global algorithms 

achieved estimations with errors lower than 5%, and they converged at least three times faster than LM.  

 

KEYWORDS: Electromagnetic field optimization (EFO), entropy generation minimization (EGM), heat transfer 

search (HTS), inverse heat transfer problem (IHTP), Levenberg-Marquardt method (LM), ordinary least squares norm 

(OLSN). 

 

 

RESUMEN 

 

Este artículo presenta un estudio comparativo utilizando dos algoritmos de optimización global, el de Optimización 

por Campo Electromagnético (EFO) y el de Búsqueda por Transferencia de Calor (HTS). Estas técnicas alternativas 

son eficientes cuando los métodos clásicos encuentran limitaciones para resolver problemas reales. Para verificar el 

desempeño de los métodos, se implementó el diseño de un disipador de calor de microcanales rectangulares formulando 

el respectivo problema inverso de transferencia de calor (IHTP). Los resultados experimentales se compararon 

competitivamente con los resultados tradicionales de Levenberg-Marquardt (LM). Además, los algoritmos globales 

lograron estimaciones con errores inferiores al 5%, y convergieron al menos tres veces más rápido que LM. 

 

PALABRAS CLAVE: Optimización por campo electromagnético; minimización de la generación de entropía; 

búsqueda por transferencia de calor; problema inverso de la transferencia de calor; método de Levenberg-Marquardt; 

norma de los mínimos cuadrados ordinarios. 
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1. INTRODUCTION 

 

The modern optimization methods allow us to find 

accurate enough solutions [7], with a wide variety of 

applications in design problems and the availability of 

powerful computers [8]. One of these applications is the 

thermal design through the Inverse Heat Transfer 

Problem (IHTP), which can be a effective tool in 

situations where other methods are incapable or 

inapplicable to find a solution [1]–[3]. IHTP is a 

methodology that consists of estimating unknown 

parameters involved in the physical process; it uses the 

information provided by a given number of 

measurements profiles, obtained by external sensors, 

(e.g., temperature or heat flux) [4][6]. One of the most 

important characteristics of this methodology is that the 

solution includes not only practical data (i.e., by 

experimental procedures as direct or indirect 

measurements) but also theoretical information about the 

physical process, (i.e., design and modeling) [5], [6]. 

Generally, this methodology needs to apply an 

optimization algorithm to minimize some criteria as the 

Ordinary Least Square Norm (OLSN).  

 

This manuscript presents a comparative numerical study 

using two modern optimization algorithms, i.e., 

Electromagnetic Field Optimization (EFO) and Heat 

Transfer Search (HTS), to tackle Inverse Heat Transfer 

Problems (IHTPs). As an illustrative example, the 

parameter estimation of a rectangular microchannel heat 

sink was analyzed, and the results were compared with 

the traditional Levenberg-Marquardt (LM). Obtained 

data showed competitive results against traditional 

methods. Both methodologies (EFO and HTS) achieved 

estimations with errors lower than 5%, and they 

converged at least three times faster than LM.  

 

This document is organized as follows: methodologies 

are presented in Section 2; experimental results are 

described in Section 3; and finally, conclusions are 

discussed in Section 4. 

 

2. METHODS 

 

2.1. Electromagnetic Field Optimization (EFO) 

 

EFO was proposed by Abedinpourshotorban et al. in 

2015, as a metaheuristic optimization algorithm inspired 

on the electromagnets’ behavior [21]. The number of 

design variables defines the number of electromagnets. 

An electromagnetic particle (𝑵𝑒𝑚𝑝), composed by 

electromagnets interacting with others, is a candidate 

solution. Three possible interaction fields, positive, 

negative and, neutral allow the mentioned interaction. 

Thus, the attraction and repulsion forces address suitable 

particles to the global minimal. 

 
Pseudocode 1. Electromagnetic Field Optimization (EFO). 

 
Require: Objective function f(x) and xmin ≼ xs ≼ xmax, 
Set Nemp, Pfield, Nfield, Prate, Rrate 

Ensure: Best solution to xs 

1. Initialize Nemp and Evaluate f(Nemp) 
2. Sort Nemp from best to worst according to f(Nemp) 

3. Classify into Positive, Negative or Neutral fields 

4. if Stopping criteria are satisfied then 
print Best solution xs ← Nemp(1) 

5. else 

i ← 1 
6. end if 

7. Select a random Nemp(i) from each field 

8. if rand(0, 1) < Prate then 
Set new position as selected electromagnet from positive 

field 

9. else 
Set new position by Equation (3) 

Go to 12. 

10. end if 
11. i ← i + 1 

12. if i ≤ Electromagnets then 

Go to 8. 
13. else 

if rand(0, 1) < Rrate then 

Change from Nemp with a randomly generated 
Nemp(0) 

else 

Go to 16. 
end if 

14. end if 

15. Evaluate f(Nemp(0)) 
16. if f(Nemp(0)) < f(Nemp(end)) then 

Insert Nemp(0) into Nemp 
Discard worst Nemp(end) 

Go to 5. 

17. else 
Discard (Nemp(0) 

Go to 5. 

18. end if 

Source. Own creation. 

 

EFO Search Process: Optimization process in EFO (see 

Pseudocode 1) starts generating a random population 

𝑵𝑒𝑚𝑝. The fitness function allows to evaluate the 

population, which is ordered into the three possible 

electromagnetic fields. Best particles go to the positive 

field (𝑃𝑓𝑖𝑒𝑙𝑑) where this portion is defined by (1), 

0.05 ≤ 𝑃𝑓𝑖𝑒𝑙𝑑 ≤ 0.10 

 
(1) 

 

the worst ones to the negative (𝑁𝑓𝑖𝑒𝑙𝑑). This portion of 

population is given by (2), 

0.40 ≤ 𝑁𝑓𝑖𝑒𝑙𝑑 ≤ 0.50 

 
(2) 

 

The remaining population goes to the neutral field. Then 

positive and negative random forces appear i.e., 

attraction or repulsion. A neutral electromagnetic particle 

is randomly generated to replace the worst particle of 

𝑵𝑒𝑚𝑝, which is eliminated at each iteration. This particle 

interacts with the forces and depending on the selected 
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electromagnet polarity; it can be either attracted (to good 

solution, positive field) or repulsed (from bad solution, 

negative field). New position of the generated 

electromagnet is determined by Equation (3), 

 
          𝑁𝑒𝑚𝑝(𝑛𝑒𝑤, 𝑖) = 𝑁𝑒𝑚𝑝(𝑛𝑒𝑢, 𝑘)

+ {(𝜑𝑟)[𝑁𝑒𝑚𝑝(𝑝𝑜𝑠, 𝑖)

− 𝑁𝑒𝑚𝑝(𝑛𝑒𝑢, 𝑘)]}

− {𝑟[𝑁𝑒𝑚𝑝(𝑛𝑒𝑔, 𝑖) − 𝑁𝑒𝑚𝑝(𝑛𝑒𝑢, 𝑘)]} 

 
(3) 

 

 

where 𝑁𝑒𝑚𝑝(𝑛𝑒𝑤, 𝑖) is the new electromagnet position for 

design variable 𝑖, 𝑘 is the neutral field index for an 

electromagnet randomly generated, 𝑝𝑜𝑠 and 𝑛𝑒𝑔, the 

positive and negative field indexes, respectively. 

Likewise, 𝑟 is a random value between [0,1] and, 𝜑 

represents a ratio of the attraction and repulsion forces 

(given by the golden ratio 1.6180), due to the repulsion 

force is weaker than attraction in about 5.0 and 10.0%. 

Finally, some important EFO parameters are 𝑃𝑟𝑎𝑡𝑒 , the 

probability of selecting electromagnets of the generated 

𝑵𝑒𝑚𝑝 of the positive field without changing them. 

Otherwise, 𝑅𝑟𝑎𝑡𝑒 is the possibility of changing one 

electromagnet of the generated 𝑵𝑒𝑚𝑝 by a randomly 

generated electromagnet. EFO randomness plays an 

important role in the exploration and exploitation of 

searching space, promote the diversity and avoids falling 

in local minima. 

Table 1. EFO Performance test results (five best parameters 

combination for Rosenbrock function). 
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 𝒇(𝒙∗) 

(𝟏𝟎−𝟐) 
𝒊 

𝒕 (𝒔) 
(𝟏𝟎−𝟐) 

𝝁 ± 𝝈 𝝁 ± 𝝈 𝝁 ± 𝝈 

0.40 0.40 0.10 0.40 100 
1.27± 

1.62 

543.4± 

263.9 

8.86± 

6.33 

0.30 0.10 0.05 0.40 100 
3.10± 

4.86 
464.4± 
334.1 

4.38± 
2.19 

0.40 0.30 0.05 0.40 50 
4.97± 

5.86 
304.6± 
113.8 

3.91± 
1.13 

0.20 0.10 0.05 0.50 150 
6.50± 

5.68 
218.6± 
52.93 

3.00± 
0.73 

0.10 0.20 0.10 0.50 100 
9.44± 

7.20 
262.0± 
90.60 

3.75± 
1.55 

Source. Own creation. 

Table 2. Control parameters for EFO. 

 

Method Parameter 

Possible 

values 
Selected 

values 
Min Max 

EFO 

𝑁𝑒𝑚𝑝 50.0 Dim 100 

𝑃𝑓𝑖𝑒𝑙𝑑 0.05 0.10 0.10 

𝑁𝑓𝑖𝑒𝑙𝑑 0.40 0.50 0.40 

𝑃𝑟𝑎𝑡𝑒 0.10 0.40 0.40 

𝑅𝑟𝑎𝑡𝑒 0.10 0.40 0.40 

Source. Own creation. 

In Table 2, Dim represents the design variables number 

of the problem. If this number is less than 50, the 𝑁𝑒𝑚𝑝 

to choose must be 50, on the contrary 𝑁𝑒𝑚𝑝 must be equal 

to the design variables number. 

 

2.2. Heat Transfer Search (HTS) 

 

It is a metaheuristic optimization algorithm proposed by 

Patel and Savsani in 2015 [22]. HTS is inspired by the 

fundamental thermodynamics laws, where the searching 

agents emulate systems interacting with other systems, 

and their surrounding environment exchanging energy. 

HTS aims at reaching the thermal equilibrium, and 

interactions of the systems are made of the three different 

heat transfer mechanisms: conduction, convection, and 

radiation. HTS is based on the following statement: “any 

system tries to reach the equilibrium with itself and its 

surrounding”. 

 
Pseudocode 2. Heat Transfer Search (HTS). 

 
Require: Objective function f(x) and xmin ≼ xs ≼ xmax, 
Set Nmol, Cdfactor, Cvfactor, Rdfactor 

Ensure: Best solution to xs 
1. Initialize Nmol and Evaluate f(Nmol) 

2. Generate randomly R 

3. if 0.0000 ≤ R ≤ 0.3333 then 
if Iteration < (Gmax/Cdfactor) then 

Select a solution randomly and modify by 

Equation (5) 
else 

Select a solution randomly and modify by 

Equation (6) 
end if 

Go to 7. 

4. else 
if 0.3333 < R ≤ 0.6667 then 

if Iteration < (Gmax/Rdfactor) then 

Select a solution randomly and 
modify by Equation (10) 

else 

Select a solution randomly and 
modify by Equation (11) 

end if 

Go to 7. 
else 

Select the best solution 
Calculate COS by Equation (8) 

Modify solutions according to best solution 

by 
Equation (7) 

Go to 7. 

end if 
5. end if 

6. if f(new solution) < f(best solution) then 

best solution ← new solution 
7. else 

best solution ← best solution 

8. end if 
9. Replace worst solution with current solution 

10. Modify duplicate solutions 

11. if Stopping criteria are satisfied then 
print Best solution xs ← Nmol(iteration) 

12. else 

Go to 3. 
13. end if 

Source. Own creation. 
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HTS Search Process: Its process begins (see Pseudocode 

2) generating a random population (𝑵𝑚𝑜𝑙), which is 

evaluated by a fitness function. If an improvement exists, 

the population is updated (until 𝐺𝑚𝑎𝑥). This updated can 

be done through three steps such as conduction, radiation, 

and convection (sequence steps are empirically 

serialized). Each one of these steps has the same 

probability and, to ensure an exploration and exploitation 

balance, the variable 𝑅 is used. 𝑅 is a random number 

with a uniform distribution between [0,1]; each step is 

linked with 𝑅 as shown in Equation (4), 

 

𝑓𝑜𝑟 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛     0.00 ≤ 𝑅 ≤ 0.33 

𝑓𝑜𝑟 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛        0.33 < 𝑅 ≤ 0.67 

𝑓𝑜𝑟 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛      0.67 < 𝑅 ≤ 1.00 

 
(4) 

 

 

once 𝑅 is generated randolmly; depending on its value, 

each step works as follows: 

 

2.2.1. Conduction step: 

The Equations (5) and (6) for this step are inspired by the 

Fourier law. If 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 ≤ (𝑮𝒎𝒂𝒙/𝑪𝒅𝒇𝒂𝒄𝒕𝒐𝒓), 

 
𝑵𝑚𝑜𝑙(𝑛𝑒𝑤, 𝑧) = 𝑵𝑚𝑜𝑙(𝑜𝑙𝑑, 𝑧) − 𝑅

2𝑵𝑚𝑜𝑙(𝑜𝑙𝑑, 𝑧) 
 

𝑓𝑜𝑟 𝑧 = {
𝑗 𝑖𝑓 𝑓(𝑵𝑚𝑜𝑙(𝑗)) > 𝑓(𝑵𝑚𝑜𝑙(𝑘))

𝑘 𝑖𝑓 𝑓(𝑵𝑚𝑜𝑙(𝑘)) > 𝑓(𝑵𝑚𝑜𝑙(𝑗))
 

 

 
(5) 

 

where j=1,2,3,…,n, since n is the maximum number of 

molecules and k is a randomly select solution from 𝑵𝑚𝑜𝑙 . 
The typical value for 𝐶𝑑𝑓𝑎𝑐𝑡𝑜𝑟  is 2. By the way, if 

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 > (𝐺𝑚𝑎𝑥/𝐶𝑑𝑓𝑎𝑐𝑡𝑜𝑟), 

 
𝑵𝑚𝑜𝑙(𝑛𝑒𝑤, 𝑧) = 𝑵𝑚𝑜𝑙(𝑜𝑙𝑑, 𝑧) − 𝑟𝑖𝑵𝑚𝑜𝑙(𝑜𝑙𝑑, 𝑧) 

 

𝑓𝑜𝑟 𝑧 = {
𝑗 𝑖𝑓 𝑓(𝑵𝑚𝑜𝑙(𝑗)) > 𝑓(𝑵𝑚𝑜𝑙(𝑘))

𝑘 𝑖𝑓 𝑓(𝑵𝑚𝑜𝑙(𝑘)) > 𝑓(𝑵𝑚𝑜𝑙(𝑗))
 

 

 
(6) 

 

where 𝑟𝑖 is a random number uniformly distributed in 

[0,1]. 

 

2.2.2. Convection step: 

The Equations (7) and (8) are inspired by Newton law, 
 

𝑵𝑚𝑜𝑙(𝑛𝑒𝑤, 𝑗) = 𝑵𝑚𝑜𝑙(𝑜𝑙𝑑, 𝑗) + 𝐶𝑂𝑆 (7) 

 
 

𝐶𝑂𝑆 = 𝑅{𝑵𝑚𝑜𝑙(𝑠) − 𝑇𝐶𝐹[𝑵𝑚𝑜𝑙(𝑚𝑠)]} (8) 

 

where index 𝑠 represents the surrondings temperature 

and 𝑚𝑠 the mean system temperature, and 𝐶𝑂𝑆 is the 

convection stride. 𝑇𝐶𝐹 is the temperature change factor 

given by (9), 

 

𝑇𝐶𝐹 = {
|(𝑅 − 𝑟𝑖)| 𝑖𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≤ (𝐺𝑚𝑎𝑥/𝐶𝑣𝑓𝑎𝑐𝑡𝑜𝑟)

⌈(1 + 𝑟𝑖)⌉ 𝑖𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 > (𝐺𝑚𝑎𝑥/𝐶𝑣𝑓𝑎𝑐𝑡𝑜𝑟)
 (9) 

 

Extensive experimental trials shown that 𝐶𝑣𝑓𝑎𝑐𝑡𝑜𝑟  has a 

typical value of 10. 

 

2.2.3. Radiation step: 

Inspired by Stefan-Boltzmann law, it is described by 

Equations (10) and (11). After many trials, typical value 

of 𝑹𝒅𝒇𝒂𝒄𝒕𝒐𝒓 is 2. Otherwise, if 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 ≤ (𝑮𝒎𝒂𝒙/

𝑹𝒅𝒇𝒂𝒄𝒕𝒐𝒓), 

 
𝑵𝑚𝑜𝑙(𝑛𝑒𝑤, 𝑗) = 𝑵𝑚𝑜𝑙(𝑜𝑙𝑑, 𝑗) 

                            −𝑧𝑅[𝑵𝑚𝑜𝑙(𝑜𝑙𝑑, 𝑘) − 𝑵𝑚𝑜𝑙(𝑜𝑙𝑑, 𝑗)] 
 

𝑓𝑜𝑟 𝑧 = {
+1 𝑖𝑓 𝑓(𝑵𝑚𝑜𝑙(𝑗)) > 𝑓(𝑵𝑚𝑜𝑙(𝑘))

−1 𝑖𝑓 𝑓(𝑵𝑚𝑜𝑙(𝑘)) > 𝑓(𝑵𝑚𝑜𝑙(𝑗))
 

 
 

 
(10) 

 

now, if 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 > (𝐺𝑚𝑎𝑥/𝑅𝑑𝑓𝑎𝑐𝑡𝑜𝑟), 

 
𝑵𝑚𝑜𝑙(𝑛𝑒𝑤, 𝑗) = 𝑵𝑚𝑜𝑙(𝑜𝑙𝑑, 𝑗) 

                −𝑧𝑟𝑖[𝑵𝑚𝑜𝑙(𝑜𝑙𝑑, 𝑘) − 𝑵𝑚𝑜𝑙(𝑜𝑙𝑑, 𝑗)] 
 

𝑓𝑜𝑟 𝑧 = {
+1 𝑖𝑓 𝑓(𝑵𝑚𝑜𝑙(𝑗)) > 𝑓(𝑵𝑚𝑜𝑙(𝑘))

−1 𝑖𝑓 𝑓(𝑵𝑚𝑜𝑙(𝑘)) > 𝑓(𝑵𝑚𝑜𝑙(𝑗))
 

 

 
(11) 

 

Equations (4) and (11) permit to calculate molecules new 

position to HTS algorithm for each step. 

Table 3. HTS Performance test results (five best parameters 

combination for Rosenbrock function). 
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l 𝒇(𝒙∗) 

(𝟏𝟎−𝟓) 
𝒊 

𝒕 (𝒔) 
 

𝝁 ± 𝝈 𝝁 ± 𝝈 𝝁 ± 𝝈 

2.0 10 2.0 50 
4.17± 

4.94 

160.4± 

36.58 

1.05± 

0.24 

1.5 10 2.0 50 
14.5± 
16.97 

169.4± 
25.14 

1.09± 
0.16 

1.0 10 1.5 200 
18.23± 
14.07 

193.4± 
89.34 

1.84± 
0.83 

2.0 1.0 2.0 150 
21.17± 
17.91 

175.2± 
19.23 

1.14± 
0.12 

2.0 5.0 1.0 100 
45.87± 
62.27 

169.8± 
61.15 

1.11± 
0.40 

Source. Own creation. 

Table 4. Control parameters for HTS. 

 

Method Parameter 

Possible 

values 
Selected 

values 
Min Max 

HTS 

𝑁𝑚𝑜𝑙 10.0 2500 50.0 

𝐶𝑑𝑓𝑎𝑐𝑡𝑜𝑟 1.00 2.00 2.00 

𝐶𝑣𝑓𝑎𝑐𝑡𝑜𝑟 1.00 10.0 10.0 

𝑅𝑑𝑓𝑎𝑐𝑡𝑜𝑟 1.00 2.00 2.00 

Source. Own creation. 

 

In Table 1 and Table 3, 𝑖 represents the required iterations 

to converge. Similarly, those tables show the results from 

performance tests on Rosenbrock function to determine 

the best combination of parameters to ensure the 

convergence of the algorithms. 𝒙∗ represents the optimal 
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value from Rosenbrock function, in this case 𝒙∗ =
 [1.00,1.00,1.00, … ,1.00],  From these tests, the 

configuration parameters were selected. 

 

2.3. Rectangular Micro-Channel Heat Sink Model 

 

The used model for a Rectangular Micro-Channel Heat 

Sink was studied by Cruz et al. [19]. The Equation (12) 

describes the total entropy generation rate �̇�𝑔𝑒𝑛[W/K] in 

the RMCHS model, 

 

�̇�𝑔𝑒𝑛 =
�̇�𝑑
2

𝑇𝑎𝑇𝑖
𝑅𝑒𝑞 +

𝐺𝑑
𝑇𝑎
∆𝑃 (12) 

 

Where �̇�𝑑[W] is the heat power dissipated by the 

electronic device, 𝑅𝑒𝑞[K/W] is the equivalent thermal 

resistance, 𝑇𝑎[K] and 𝑇𝑖[K] are the surrounding and 

interface temperatures, respectively, 𝐺𝑑[m3/s] is the 

volume flow rate, and ∆𝑃[Pa] is the total pressure drop. 

Geometrical characteristics, material and fluid type are 

the design variables. The geometrical ones are, 

 

𝛼𝑐 =
𝑊𝑐
𝐻𝑐

 (13) 

  

and 

 

𝛽 =
𝑊𝑐
𝑊𝑝

 (14) 

 

where 𝑊𝑐[m] represents the channel width, 𝐻𝑐[m] the 

channel height, and 𝑊𝑝[m] the wall width. 

 

2.4. Inverse Heat Transfer Problem 

 

This methodology has four different techniques to solve 

inverse problems. Levenberg-Marquardt (LM) [20], is 

the main method used for solving IP parameters 

estimation in the Technique I, according to Ozisik et al. 

[6]. The current inverse problem can be solved via the 

Technique I, which is composed of five phases depicted 

in Figure 1. Once the direct and inverse problem 

statements are mathematically defined, an efficient 

optimization method is proposed to minimize the 

Ordinary Least Squares Norm (OLSN) using the 

measurements profile and the process model. The 

procedure iterates to converge until the stopping criteria 

are fulfilled. The phases sequence concludes with a 

computational algorithm, which wraps the previous 

phases to obtain the complete and particular IP solution. 

 

 

Figure 1. Inverse Heat Transfer Problem methodology 

scheme. Source. Own creation.  

 

The direct problem (DP) requires to minimize the entropy 

generation of a RMCHS. The other variables are 

assumed as known with an adequate precision degree. 

The DP uses as design variables a set of parameters 

related to the device geometry and, it is mathematically 

expressed by Equation (15), 

 
𝑚𝑖𝑛
(𝜃𝐷)

{�̇�𝑔𝑒𝑛} =
𝑚𝑖𝑛
(𝜃𝐷)

{
�̇�𝑑
2

𝑇𝑎𝑇𝑖(𝜃𝐷)
𝑅𝑒𝑞(𝜃𝐷) +

𝐺𝑑
𝑇𝑎
∆𝑃(𝜃𝐷)} 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

{
 
 

 
 𝑔1 =

𝑊𝑐
𝐻𝑐
− 1 ≤ 0

𝑔2 = 1−
𝑊𝑐
𝑊𝑝

≤ 0
 

 

(15) 

 

 

where 𝜃𝐷 = (𝛼𝑐, 𝛽)
T and T means the transposed vector. 

 

The inverse problem (IP) requires to estimate the 

parameters of a RMCHS, which produce the minimal 

entropy generation. The other variables are assumed as 

known with an adequate precision degree. Additional 

data are 𝑇𝑖  (given by an external sensor), as a function of 

𝐺𝑑. For all set of parameters linked to the RMCHS 

geometry, the IP formulation based on the OLSN is 

shown in Equation  

(16), 

 

𝑚𝑖𝑛
(𝜃𝐼)

{𝑆(𝑷)} =
𝑚𝑖𝑛
(𝜃𝐼)

{∑[𝑇𝑖(𝐺𝑑(𝑖)) − �̂�𝑖(𝑷, 𝐺𝑑(𝑖))]
2

𝑀

𝑖=1

} 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

{
 
 

 
 𝑔1 =

𝑊𝑐
𝐻𝑐
− 1 ≤ 0

𝑔2 = 1−
𝑊𝑐
𝑊𝑝

≤ 0
 

 

(16) 

 

 

where 𝜃𝐼 is (𝛼𝑐, 𝛽)
T. 

 

The fundamental element of the iterative procedure to get 

a reliable solution, through the recurrent minimization of 

the OLSN is formally expressed by Equation (17), 

 

𝑆(𝑷) =∑[𝑇𝑖(𝐺𝑑(𝑖)) − �̂�𝑖(𝑷,𝐺𝑑(𝑖))]
2

𝑀

𝑖=1

 (17) 
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where 𝑆 represents the squared errors sum, and 𝑇𝑖(𝐺𝑑(𝑖)) 

gives the measured temperature in the interface between 

the electronic device and the heat sink. 𝑇𝑖 is recurrently 

measured by a sensor for different values of 𝐺𝑑. 

Likewise, 𝑷 is the unknown parameters vector, which is 

defined as 𝑷 = (𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑁)
T. �̂�𝑖(𝑷,𝐺𝑑(𝑖)) is the estimated 

temperature by using the RMCHS model that is updated 

according to current parameters at each iteration 𝑖. 𝑁 

represents the number of unknown parameters, and 𝑀 is 

the number of measurements. The condition, 𝑀 ≥  𝑁, 

guarantees an adequate estimation. In the experiments, 

this condition is valid because of the maximum number 

of parameters is set to two (𝑁 = 2), and the number of 

measurements is one hundred (𝑀 =  100). The 

minimization is achieved by means of the evaluation of 

two recent optimization algorithms: the Electromagnetic 

Field Optimization (EFO) and the Heat Transfer Search 

(HTS), which substitute the traditional LM method. 

 

The first criterion (Equation (18)) is the saturation 

condition (also known as stagnation state). The second 

one (Equation (19)), shows the criterion based on the 

statistical treatment of solution. 𝜇 and 𝜎 are the mean and 

the standard deviation of the solutions from the objective 

function. The tolerance value 𝛿 must be defined by the 

user. In our experiments, this value was defined as 1.0, 

arbitrarily. 

 
𝑚𝑠𝑎𝑡 ≤ 𝑀𝑚𝑎𝑥  ∧ 𝑓(𝑷

𝑖+1) = 𝑓(𝑷𝑖) (18) 

 
|𝑓(𝑷𝑖) − 𝜇| < 𝛿𝜎 (19) 

 

The serial and the parallel strategies are proposed to look 

for reliable results in heat sink parameters estimation. For 

the former (Serial Strategy), the tests were performed (its 

sequence depends on the model variable influence, 

starting with the most sensitive). The test estimates a 

couple of geometric characteristics parameters (𝛼𝑐, 𝛽). 
For the latter, the Parallel Strategy, also known as multi-

parametric, the geometric parameters (𝛼𝑐, 𝛽) are 

simultaneously estimated. In the experiments, the design 

variables are: the channel aspect ratio 𝛼𝑐, width ratio of 

channel to pitch 𝛽. Additionally, some constraints are 

included to ensure algorithmic convergence. Therefore, 

main searching space is detailed in Equation (20). 

 
1.0(10−3) ≤ 𝛼𝑐 ≤ 10(10−3) 

1.0 ≤ 𝛽 ≤ 5.0 

0.1(10−3)[𝑚3/𝑠] ≤ 𝐺𝑑 ≤ 10(10
−3)[𝑚3/𝑠] 

(20) 

 

Reference values to the thermophysical and geometric 

variables are shown in Table 5. The number of chosen 

repetitions (𝑅𝑒𝑝) is 50, with a maximum number of 

iterations (𝑀𝑚𝑎𝑥) predefined at 100000. For evaluation 

purposes, synthetic data were contaminated with additive 

white gaussian noise (AWGN) at ten different levels of 

signal-to-noise ratio, 10 dB ≤ SNR ≤ 100 dB. 

Table 5. Reference and average values for thermophysical 

properties to aluminum and air. 

 
Parameter Reference value 

𝜶𝒄 3.61(10−3) 

𝜷               2.074 

�̇�𝒈𝒆𝒏 379(10−3) 

𝑮𝒅 5.45(10−3) 

Source. Own creation. 

 

3. EXPERIMENTAL RESULTS 

 

A desktop iMac, Processor Intel CoreTM i5 @ 2.7-3.2 

GHz, 8 GB RAM @ 1600 MHz, 64 bit with macOS 

Sierra was used for the experimental procedures. Table 2 

and Table 3 presents the representative control 

parameters values used in the experiment. These data 

show the typical value and warranted range to obtain a 

fast convergence. Selected values experimentally 

determined from the performance output from a testing 

study using ten different standard benchmark functions 

(See Table 1, Table 3 and, Table 6).  

Table 6. Standard benchmark functions and tested dimensions 

 
Function Dimensions 

Ackley 2, 5, 10 

Bird 2 

Bukin #6 2 

Carrom Table 2 

Chichinadze 2 

Goldstein-Price 2 

Helical Valley 2 

Plateau 2, 5, 10 

Rosenbrock 2, 5, 10 

Test Tube Holder 2 

Source. Own creation. 

 

The results on the Rosenbrock function (21) are shown 

as examples of the algorithms performances. 

 

𝑓(𝐱) =∑ [100(𝑥𝑖
2 − 𝑥𝑖+1)

2 + (𝑥𝑖 − 1)
2]

𝑛−1

𝑖=1
 

(21) 

 

 Searching domain: 𝑥𝑖 ∈ [−5.00, 5.00] 
for 𝑖 = 1, 2, 3, … , 𝑛. 

 Global optimum: 𝑓(𝑥𝑖) = 0.00 

for 𝑥𝑖 = [1.00, 1.00, 1.00, … , 1.00] 

when 𝑖 = 1, 2, 3, … , 𝑛. 
 Dimensions: n. 
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Figure 2. Three-dimensional representation of Rosenbrock 

function. Source. Own creation. 
 

3.1. Performance test 

 

The convergence of the algorithms was tested with the 

standard benchmark functions. Figure 3 and Figure 4 

show the convergence of EFO and HTS, respectively. 

 
Figure 3. EFO algorithm convergence. Source. Own creation. 

 

 
Figure 4. HTS algorithm convergence. Source. Own creation. 

 

3.2. Total entropy generation rate estimation 

 

The estimation of the total entropy generation rate (�̇�𝑔𝑒𝑛  

that was obtained compiling the individual parameters 

estimations. Therefore, Figure 5 shows that estimation to 

EFO and HTS algorithms for 50 dB of SNR. Before 0.4 

of 𝐺𝑑, the estimation error was fewer than 1.00%, it was 

a reiterative result for all the SNR levels. The cause of 

that result is due to the RMCHS model depends on 

conduction and convection heat transfer mechanisms. 

The convection mode is directly related to the 𝐺𝑑 value, 

when this value is near to zero, the conduction mode 

takes over the process and the heat transfer is almost 

constant because of the material body heat sink nature. 

Conduction mode is independent of the work substance 

quantity flowing through the heat sink microchannels. In 

this part, the estimation process can be achieved without 

clear complications. But the estimation in that part is not 

relevant because the optimal points are in another zone. 

Once the 𝐺𝑑 value increases both heat transfer modes are 

present and the high non-linearity is more remarkable. 

Thus, the estimation process shows differences regard to 

the reference values. 

 

 
Figure 5. Estimation of �̇�𝑔𝑒𝑛 (Normalized) with reference value 

to 50 dB of SNR. Source. Own creation. 

 

Besides, the process was observed stable to SNR greater 

than 30 dB. However, estimations from EFO algorithm 

had relative errors of at least 112%, with quantities of 

noise between 10 and 20 dB, this is mainly due to high 

noise levels. 

 

Estimated relative errors (𝜖𝑟) were inferior to 5.00% 

when SNR is equals 50 dB.  Relative errors was 

calculated by (22), 

 

𝜖𝑟 =
𝑉𝑎𝑙𝑢𝑒𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 − 𝑉𝑎𝑙𝑢𝑒𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑎𝑙

𝑉𝑎𝑙𝑢𝑒𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙
× 100 (22) 

 

 

3.3. Comparative serial and parallel strategies 

 

For inverse problems, the multi-parametric optimization 

is the common strategy when it is required to estimate a 

high quantity of parameters. Thus, the parameters 

estimation is made in simultaneous (or parallel), 

decreasing the processing time, and affecting some other 

parameters. However, the precision is one of the most 
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important characteristics to be considered, i.e., it is a 

decisive variable between the serial strategy (above 

analyzed) and the multi-parametric (parallel strategy). 

Table 7 shows a comparison between serial and parallel 

strategies for each parameter. Both, EFO and HTS 

working in serial strategy reached estimations with 

relative errors smaller than 5.50% (5.47% with HTS for 

𝑘𝑓) for the majority of parameters. For three over eight 

parameters (𝛼𝑐, 𝛽, and 𝜌𝑚), the parallel strategy with 

EFO, produces errors between 5.50% and 11.5%. 

Contrarily, HTS with the same parallel strategy gives 

relative errors in the interval of 1.00% and 28.0%. The 

smallest errors were obtained for 𝜌𝑓, 𝜈, and 𝑐𝑝 

independently of the chosen strategy or algorithm. 

Statistical analysis exhibits that standard deviations are 

bigger in the parallel than in the serial strategy. In other 

words, the reliability of a solution increases by using the 

serial strategy. 

Table 7. Relative errors (𝜖𝑟%) for serial and parallel strategies 

for the estimation of 𝛼𝑐, 𝛽 at 50 dB of SNR. 

 
 Strategy 

Serial Parallel 

EFO HTS EFO HTS 

𝜶𝒄 4.58 4.89 5.66 27.9 

𝜷 3.41 3.97 8.65 2.14 

Source. Own creation. 

 

3.4. Comparative with other Non-traditional 

Algorithms 

 

For comparative purposes, similar reference patterns are 

used to evaluate selected methods with well-known non-

traditional optimization algorithms (i.e., Unified Particle 

Swarm Optimization (UPSO), Simulated Annealing 

(SA) and Spiral Optimization (SO)). This comparison is 

fundamental to detect particular features of each 

algorithm. The experimental analysis showed that EFO 

gave the best results, HTS followed it for each 𝐺𝑑 value. 

Figure 6 show a comparison of relative errors of the 

entropy generation rate estimation at 50 dB. Therefore, 

EFO and HTS had best relative errors, their processing 

times are lower than others. 

 

3.5. Comparative with the Traditional Algorithm 

 

The Figure 7 presents a comparative analysis between 

proposed and the traditional method, which was used to 

estimate the unknown parameters. Results obtained from 

Levenberg-Marquardt method were taken as a reference 

to evaluate EFO and HTS results.  

 

 
Figure 6. Relative errors comparative with non-traditional 

algorithms against reference value of �̇�𝑔𝑒𝑛 for each 𝐺𝑑 value at 

50 dB of SNR. Source. Own creation. 

 

Experiences show that LM obtains better estimations 

over studied methods, but differences between them are 

inferior to 3.50% (e.g., for 𝛽 parameter using HTS). 

However, selected algorithms were at least three times 

faster than LM. The estimation precision is similar for the 

three compared algorithms. EFO and HTS utilized a 

number of iterations inferior to LM; and consequently, 

the number evaluations associated with the objective 

function is also inferior. 

 
Figure 7. Comparison of relative errors of �̇�𝑔𝑒𝑛 estimation 

between EFO, HTS and LM at 50 db of SNR for each 

parameter. Source. Own creation. 

 

4. CONCLUSIONS 

 

This paper presented a comparative numerical study 

using two modern optimization algorithms, i.e., 

Electromagnetic Field Optimization (EFO) and Heat 

Transfer Search (HTS), to tackle Inverse Heat Transfer 

Problems (IHTPs). As an illustrative example, the 
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parameter estimation of a rectangular microchannel heat 

sink was analyzed, and the results were compared with 

the traditional Levenberg-Marquardt (LM) method. 

Additionally, two estimation strategies were studied: 

serial and parallel. Obtained data showed competitive 

results against traditional methods. Both methodologies 

(EFO and HTS) achieved estimations with errors lower 

than 5%, and they converged at least three times faster 

than LM.  It was found that EFO is seven times faster 

than HTS. Furthermore, several differences among the 

two estimation strategies were noticed, i.e., parallel 

strategy was almost three times faster and had greater 

errors (between 0.10% and 5.5%) than the serial one. 

Specifically, the parallel strategy implemented with EFO 

showed smaller errors than using HTS. Moreover, the 

methodologies implemented in this work were compared 

with commonly used optimization algorithms, such as 

Simulated Annealing (SA), Unified Particle Swarm 

Optimization (UPSO) and Spiral Optimization (SO). 

This comparative study gave us negligible differences 

between their relative errors, but EFO and HTS spent at 

least half of time than the required by SA, UPSO and SO. 
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