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Abstract 

 

The definition of a traction-separation relationship is a fundamental issue in cohesive zone models because it describes 

the nonlinear fracture process. Cohesive interactions are generally a function of displacement jump (or separation). If 

the displacement jump is greater than a characteristic length (n), complete failure occurs. In this study, the softening 

condition behavior of a cohesive interface between two identical materials was assessed for different stiffness values 

of solid and cohesive. The cohesive interface was modeled with a traction-separation linear relationship and for the 

solids continuum elastic constitutive models were used. The softening condition was obtained by analytical and finite 

element method. The whole system behavior was modeled using ABAQUS 6.14 to obtain stress-displacement 

relationship. The analytical solution and computational results were compared. The computational results matched the 

analytical solutions and the simulations allowed to obtain a response in the cases where the analytical solution has 

singularities “backslash effect”.  

 

Keywords: Abaqus; cohesive element; cohesive zone model; finite element simulation; traction separation law.  

 

Resumen 

 

La definición de la relación tracción-separación es una cuestión fundamental en los modelos de zona cohesiva porque 

describe procesos de fractura no lineal. Las interacciones cohesivas son generalmente una función del desplazamiento 

(o separación). Si el cambio en el desplazamiento es mayor que una longitud característica (n), ocurre una falla 

completa. En este estudio la condición de ablandamiento de la interfaz cohesiva entre dos materiales idénticos fue 

evaluada para diferentes valores de rigidez del sólido y del cohesivo. La interfaz cohesiva fue modelada con la relación 

lineal de tracción-separación y para los sólidos se utilizaron modelos constitutivos continuos elásticos. El 

comportamiento de todo el sistema fue modelado usando ABAQUS 6.14 para obtener la relación esfuerzo-

deformación. La solución analítica y los resultados computacionales fueron comparados. Los resultados 

computacionales concordaron con la solución analítica y las simulaciones permitieron obtener una respuesta en los 

casos donde la solución analítica tiene singularidades "backslash effect".  

 

Palabras clave: modelo de zona cohesiva; ley tracción separación; elemento cohesivo; simulación por elemento finito; 

Abaqus. 
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1. Introducción 

 

Cohesive zone models have been used to treat fracture 

nonlinear problems since it provides a more realistic 

feature of the failure process [1]. The cohesive zone is a 

surface in a bulk material where displacement 

discontinuities occur. Thus, continuum is enhanced with 

discontinuities in the form of displacement jumps.  These 

displacement jumps require a constitutive description 

called traction -separations relationship (cohesive laws) 

to describe cohesive interactions. In general, traction-

separation relationships can be classified into potential-

based models and non-potential-based models. Potential-

based models use the concept of cohesive energy 

potential, for example, Needleman and Tvergaard [2], 

[3]. For non-potential-based models, several constitutive 

relationships of the cohesive zone model with various 

shapes have been developed, e.g., linear softening [4], 

trapezoidal shape [5], bilinear softening [6], cubic 

polynomial, and exponential, as shown in Fig.1. All these 

models, irrespective of the choice of the elementary 

functions, are constructed qualitatively as follows: 

tractions increase, reach a maximum, and then approach 

zero with increasing separation. This scenario is in 

harmony with our intuitive understanding of the rupture 

process. It is analogous to atomic interactions [7]–[9].  

 

Needleman introduced the cohesive zone models 

(CZMs) in computational practice. Since then CZMs are 

used increasingly in finite element simulations of crack 

tip plasticity and creep; crazing in polymers; adhesively 

bonded joints; interface cracks in bimaterials; 

delamination in composites and multilayers; fast crack 

propagation in polymers, and so on [7], [9]. 

 

One of essential aspects in the CMZ is the choice of a 

traction–separation relation also called traction-

separation law. Because most of these relationships 

exhibit limitations, especially under mixed-mode 

conditions, the relationship should be selected with great 

caution. Many researchers using CZMs consider that the 

separation work and the cohesive strength are two main 

parameters characterizing of the separation process. But, 

if the cohesive element stiffness is less than the stiffness 

of the surrounding elements, the global response can be 

affected when the failure process is computed by 

computational techniques and the back-slash effect is 

produced during the softening condition. On the other 

hand, when the analytical solution is considered to solve 

this situation, it is no possible obtain a response for cases 

in which the cohesive element stiffness is equal to 

surrounding elements stiffness. For this reason, we 

investigated the softening condition behavior of a 

cohesive interface between two identical materials for 

different stiffness values of solid and cohesive elements 

by analytical and computational methods. 

 

In this research work, interfaces along two elastic similar 

solids were studied by using linear form of CZMs and 

modeled by element finite approach includes in 

ABAQUS (section 2). The analytical solution was 

performed considering two blocks bridged by a cohesive 

zone of zero thickness due to this assembly allows to 

verify easily the solution (section 3).  In section 4 we 

concluded, based on the obtained results that simulations 

allow to obtain a response in the cases where analytical 

solutions have singularities called “back slash effect”.  

 

The aim of this study is to establish how the numerical 

modeling using the finite element method can be used to 

represent the different cases in which the stiffness 

modulus of the bulk material can vary and obtain 

adequate representations of the phenomena. These results 

will be useful in future work modeling composite 

materials and obtain their mechanical response by using 

computer simulations. 

 

2. Cohesive zone model (CMZ) 

 

The idea for the cohesive model is based on the 

consideration that infinite stresses at the crack tip are not 

realistic, the first models to overcome this drawback were 

porposed by Dugdale [10] and Barenblatt [11]. For 

practical applications the model became more interesting 

when numerical methods, mostly the finite element 

method, were applicable to nonlinear problems, in 1990 

Needleman [12] used the model of crack propagation to 

analyze ductile materials, since then it is a common 

practice to analyze with this model the growth of cracks 

in this type of materials. 

 

Displacement of the tip position of a crack assumes 

bonds stretching orthogonal to the crack surfaces until 

they break According to CZM, the fracture process is 

lumped into the crack line and is characterized by a 

cohesive law that relates tractions and displacement 

jumps across cohesive surfaces, the whole body volume 

remains elastic while the nonlinearity is embedded in the 

cohesive law which dictates the interfacial conditions 

along the crack line (Fig. 1). Therefore, the continuum 

should be characterized by two constitutive laws; a linear 

stress-strain relation for the bulk material and a cohesive 

surface relation (cohesive law) that allows crack 

spontaneous initiation and growth [13]. 

 

Cohesive zone model adds a zone of vanishing thickness 

ahead of the crack tip with the intention of describing 

more realistically the fracture process without the use of 

stress singularity. The cohesive zone is idealized as two 
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cohesive surfaces, which are held together by a cohesive 

traction (see Figure 1). The cohesive crack propagation 

may consist of four stages: elastic, initiation, softening 

and complete failure [1], [14]. 

 

Since the CZMs are a phenomenological model, there is 

not a rule evidence cohesive law shape most suitable 

according to failure process. Therefore, the cohesive 

relationship is assumed independent of a specific 

material and many authors use the traction separation 

relationship created by themselves. 

 

The magnitude of the parameters in CZMs vary widely, 

ranging from MPa to GPa for traction, J to kJ for energy, 

and nanometers to micrometers for separation distance 

[15]. 

 

The intrinsic traction-separation relationships used by 

ABAQUS, is briefly explained below. 

 
Figure 1. Schematics of the cohesive zone model. 

Source: authors. 

 
2.1. Traction-Separation relationship in ABAQUS 

 

Since the cohesive model is a phenomenological model 

there is no evidence which form to take for T (δ). So it 

has to be assumed independent from the material as a 

model quality [16]. In the literature it can be found 

several approaches (Figure 3). ABAQUS considers the 

traction-separation relationship as the variation of 

fracture toughness as a function of a mode-mixity ratio. 

This model was originally developed by Camanho et al. 

[4]. To describe the mixed-mode condition across the 

interface, an effective separation (Δ̅) is defined in 

equation (1). 

 

Δ̅ = √Δ𝑛
2 + Δ𝑡

2 (1) 

Where Δ𝑛 and Δ𝑡 are the normal and tangential 

separations, respectively. 

 

The available traction-separation model in ABAQUS 

assumes initially linear elastic behavior followed by the 

initiation and evolution of damage (see Figure 2). The 

elastic behavior is written in terms of an elastic 

constitutive matrix that relates the nominal stresses to the 

nominal strains across the interface, according to 

constitutive relationship describes below: 

 

𝑻 = [

𝑇𝑛

𝑇𝑠

𝑇𝑡

] = [

𝐶𝑛𝑛 𝐶𝑛𝑠 𝐶𝑛𝑡

𝐶𝑠𝑛 𝐶𝑠𝑠 𝐶𝑠𝑡

𝐶𝑡𝑛 𝐶𝑡𝑠 𝐶𝑡𝑡

] [

𝜀𝑛

𝜀𝑠

𝜀𝑡

] = 𝑪 ∙ 𝜺 (2) 

 

Where T is nominal traction stress vector, C is the 

elasticity matrix and  is the strain vector defined by 𝜀𝑖 =
𝛿𝑖

𝑇0
, denoting by T0 the original thickness of the cohesive 

element. 

 
Figure 2. Traction-separation law in ABAQUS v6.14.1. 

Source: authors. 

 

2.1.1. Damage initiation 

 

Damage initiation refers to the beginning of degradation 

of the response of a material point. When the separations 

reach the effective critical separation, the state of 

separation corresponds to the onset of damage and/or 

crack initiation. ABAQUS has several failure criteria. A 

maximum nominal stress criterion is employed to 

determine the onset of damage, which the damage is 

assumed to initiate when the maximum nominal stress 

ratio (as defined in the expression below) reaches a value 

equal to one. This criterion is represented by ecuation (3). 

 

𝑚𝑎𝑥 {
〈𝑇𝑛〉

𝑇𝑛
0

,
𝑇𝑠

𝑇𝑠
0

,
𝑇𝑡

𝑇𝑡
0} = 1 (3) 
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Where 〈 〉 is the Macauley bracket, 𝑇𝑛
0, 𝑇𝑠

0, and 𝑇𝑡
0 

represent the peak values of the nominal stress when the 

deformation is either purely normal to the interface or 

purely in the first or the second shear direction, 

𝑇𝑛 , 𝑇𝑠, and 𝑇𝑡  which represent the normal and the two 

shear tractions, respectively. 

 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure 3. Effective traction-separation relationships: (a) linear softening, (b) trapezoidal, (c) smoothed trapezoidal, 

(d) bilinear softening, (e) cubic polynomial, and (f) exponential. Source: authors. 

 

When the effective separation is smaller than an effective 

critical separation (𝛿𝑐̅), the normal and tangential 

tractions are proportional to the normal and tangential 

separations, which are given as:  
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𝑇𝑛 = 𝐾𝑝∆𝑛, 𝑇𝑡 = 𝐾𝑝∆𝑡 (4) 

 

where Kp is a penalty stiffness. 

 

2.1.2. Damage evolution 

 

Damage evolution law describes the rate at which the 

material stiffness is degraded once the corresponding 

initiation criterion is reached. ABAQUS uses a scalar 

damage variable D to represent the overall damage at the 

contact point. This variable takes 0 and 1 values (if the 

cohesive element is broken, D = 1 on the contrary, D = 

0). 

 

When the effective separation is greater than the effective 

critical separation (𝛿𝑐̅) and smaller than the effective 

complete failure separation (𝛿𝑓̅) i.e. 𝛿𝑐̅ < Δ̅ < 𝛿𝑓̅, the state 

of separation corresponds to the softening condition [7]. 

Then, the normal and tangential cohesive tractions are 

defined by equation (5). 

 

𝑇𝑛 = (1 − 𝐷)𝐾𝑝∆𝑛 

𝑇𝑡 = (1 − 𝐷)𝐾𝑝∆𝑡 
(5) 

 

The definition of damage evolution in ABAQUS is 

specified by two components. The first component 

involves specifying either the effective complete failure 

separation (𝛿𝑓̅) or energy fracture (GC). The second 

component to the definition of damage evolution is the 

specification of the nature of the evolution of the damage 

variable, D, between initiation of damage and final 

failure (softening condition). Three types of damage 

evolution are available in ABAQUS: linear, exponential 

or tabular. A linear model is employed to describe the 

softening condition according to the equation (6). 

 

𝐷 =
𝛿𝑓̅(̅ − 𝛿𝑐̅)

̅(𝛿𝑓̅ − 𝛿𝑐̅)
 (6) 

 

2.1.3. Mixed-mode definition 

 

The mixed mode of deformation fields in the cohesive 

zone quantify the relative proportions of normal and 

shear deformation. ABAQUS uses three measures of 

mixed mode, two are based on energies and the otherone 

is based on tractions. Mixed mode definitions based on 

energies are described by equations (7) and (8). 

 

𝑚1 =
𝐺𝑛

𝐺𝑇

, 𝑚2 =
𝐺𝑠

𝐺𝑇

, 𝑚3 =
𝐺𝑡

𝐺𝑇

 (7) 

𝐺𝑇 = 𝐺𝑛 + 𝐺𝑠 + 𝐺𝑡 (8) 

 

Where Gn, Gs, Gt are the work done by the tractions and 

their conjugate displacements in the normal and shear 

directions. 

 

3. Analytical solution 

 

In this study, a body compromising two symmetric rigid 

parts bridged by a cohesive zone of zero thickness was 

modeled as shown Figure 4. In addition, a linear cohesive 

zone model is used to simulate the interfacial mechanical 

response. For pure opening (Δ𝑡 = 0) the variation of 

normal traction with respect to Δ𝑛 to solids and cohesive 

layer are shown in Figure 5 (a) and (b), respectively, thus, 

the constitutive response of system is shown in Fig. 6. 

Increasing forces P or applying a vertical displacement 

will lead to the nucleation of a crack at center if the 

stiffness solid is less than the cohesive layer stiffness 

(case i) or, at the right and left side if the stiffness solid 

is equal or greater than the cohesive layer stiffness (case 

ii – iii) see Fig. 6. 

 

 
Figure 4. Schema of the model simulated. Source: 

authors. 

 

An elastic linear behavior to the solid is assumed and 

using the traction-separation law mentioned in section 2 

the following equations (9) and (10) were obtained in 

each stage of the damage evolution. 

 

Stage I: 

𝜎 = ∆ (
𝐿

𝐸
+

1

𝐾
)

−1

, 0 < 𝛿 < 𝛿𝑐̅ 
(9) 
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Stage II: 

𝜎 = (∆ − 𝛿𝑐̅) (
𝐿

𝐸
+

1

𝐾′
)

−1

, 𝛿𝑐̅ < 𝛿 < 𝛿𝑓̅ 

(10) 

 

Where K and K’ are the penalty stiffness and stiffness 

degradation to linear traction-separation law of cohesive 

layer, E and L are the Young’s modulus and length of the 

solid and Δ are displacement jumps normal to the 

cohesive zone. 

 

To assess the cohesive traction-separation relationship 

according stiffness variation, the values for Young’s 

modulus of solid are arbitrarily selected as 1, 10, 70 GPa. 

Mode I fracture is selected. In addition, the penalty 

stiffness is 50 MPa/mm, effective critical separation is 10 

µm, and the cohesive strength is 10 MPa. 

 

a) 

 

b) 

Figure 5. Normal tractions (a) Solids (b) Cohesive layer. 

Source: authors. 

 

 
Figure 6. Constitutive response of system. Source: 

authors. 

 

4. Finite element approach 

 

To compare the analytical solution with numeral 

response the finite element method is employed by 

simulations conducted in commercial software 

ABAQUS 6.14.1. This software allows solving problems 

in cases where analytical methods present singularities, 

for example case ii shown in Figure. 

 
Figure 6. Mesh and boundary conditions used in the 

finite element analysis. Source: authors. 

 

The simulated model is shown in Figure 4, on the upper 

edge of the solid a positive displacement Δ𝑢 of the axis y 

is applied until cohesive elements fail. The lower border 

is simulated as fixed. A standard analysis is used for case 

iii whereas to case i and ii, explicit analysis is employed.  

The discretized mesh has 512 linear quadrilateral 

elements of type CPS4R to model solids. 160 linear 

quadrilateral elements of type COH2D4 with zero 
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thickness in the direction normal to the interface are used 

to model interface behavior. The mesh and boundary 

conditions used in the simulation are shown in Figure 6. 

 

Cohesive law is defined in ABAQUS specifying the 

damage evolution as: effective displacement 𝛿𝑓 − 𝛿𝑐 =

20 𝜇𝑚, a variable D linear softening type, mode-

independent behaviour and mixed-mode energy 

definition. An elastic constitutive behavior is assumed for 

the bulk. 

 

5. Results and discussion 

 

To evaluate the influence of stiffness on the traction-

separation relationship, the model is analyzed with three 

different stiffness values for the solid. The analytical 

response was obtained using the equations (9) y (10). The 

evolution of von Mises stress as the displacement 

imposed on the upper edge occurs is shown in Figures 8 

- 10.  A comparison between the analytical and 

computational solution is shown in Figures. 11 – 13. 

 

In the simulation shown in Figure 7 the system presents 

instabilities due to the bulk is compliant as compared to 

the rigidity of the cohesive layer, which makes it 

necessary to use explicit analysis to control the 

deformation rate and convergence of system. Figure 8 

shows a behavior similar to that of Figure 9, but the 

analytical response is significantly affected since for 

larger values of the critical separation the system has a 

singularity called the back slash effect. This is shown in 

stress-displacements plots computational through waves. 

Since at this point the system becomes unstable.  

 

 

 

 
 

 

 

Figure 7. History of the von Misses stress in different increments of the model for case i. Source: authors.    

 

 

  

 

Figure 8. History of the von Misses stress in different increments of the model for case ii. Source: authors. 
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Figure 9. History of the von Misses stress in different increments of the model for case iii. Source: authors. 

 

 

Observing the results shown in the figures 11-13 it is 

evident that the static and explicit analysis report the 

same tendency and the differences between the graphs 

are due to the inertial effects of the system for the cases 

in which the bulk is more compliant than the interface. 

Figure 12 shows well agreement between both solutions. 

In this case the bulk is stiffer than the cohesive layer 

hence, the global response is stable and, the 

computational solution is not depending of time 

increment used. Therefore, standard analysis can be used 

in this situation. 

 
Figure 10. Stress - displacement plots analytical vs 

computational case i with E = 1 GPa, max = 10 MPa, K 

= 50 MPa/mm, c = 10 um and f  = 0.6 mm. Source: 

authors. 

 

Summarizing, it is recommended to use lower cohesive 

interface stiffness values than the matrix to avoid 

convergence problems and stability of simulations. In 

cases where the interface is more compliant than the 

matrix or bulk, an explicit type analysis is required using 

very small time increments in order not to affect the 

global system response and thus the peak strength and the 

fracture energy remain unchanged 

 
Figure 11. Stress - displacement plots analytical vs 

computational case ii with E = 10 GPa, max = 10 MPa, 

K = 50 MPa/mm, c = 10 µm and f  = 40 µm. Source: 

authors. 

 

 
Figure 12. Stress - displacement plots analytical vs 

computational case iii with E = 70 GPa, max = 10 MPa, 

K = 50 MPa/mm, c = 10 µm and f  = 40 µm. Source: 

authors. 
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6. Conclusions 

 

Using the finite element method for the growth of cracks 

by CMZ is a reliable and economical tool to predict the 

behavior of these systems. 

 

Since the CZM is a phenomenological model is important 

to select an adequate traction-separation law and carry 

out a robust validation process to guarantee the quality of 

the results. It is recommended to use explicit simulations 

for this type of systems, since these behave better than 

the implicit simulations. 

 

Lower cohesive interface stiffness values than the matrix 

help to avoid convergence problems and give stability to 

the simulations. 

 

Finally, it is observed that for case iii, the simulations 

predict very well the behavior of the system, while for the 

other two cases the dynamic effects have a great impact 

on the stability, for which it is recommended to use 

stiffness values corresponding to the case iii, to obtain 

results with low hysteresis. 
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