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Abstract 

 

Voltage sags have a high impact on the proper equipment operation and the electric power end-user processes 

continuity. Economic losses are a growing problem for the electric utilities, regulators and electric energy final 

customers and therefore, the formulation of new mathematical methods for voltage sags diagnosis are needed. In this 

sense, the state estimation methods seek the determination of the frequency or the number of voltage sags that an end-

user would experience. In this research area, optimization problems based on techniques such as singular value 

decomposition, voltage profile curve fitting and voltage sag source location have been formulated. The results of these 

approaches may be inaccurate when the pre-fault currents, non-zero fault impedances and unbalanced conditions are 

considered. We will evidence that the results from singular value decomposition method are inaccurate considering 

these real fault conditions. Also, a new mathematical formulation of the voltage sag state estimation problem based on 

ℓ1-norm minimization is proposed in this work. The proposed method is applied and validated to the IEEE 33-node 

test distribution network. Voltage sags caused for network faults are only considered. The results validate a remarkable 

improvement in comparison with the singular value decomposition method and show an innovative tool for voltage 

sags state estimation in radial electric power distribution systems. 

 

Keywords: power quality; voltage sags; state estimation; ℓ1-norm; distribution networks. 

 

Resumen 

 

Los hundimientos de tensión tienen un alto impacto sobre la correcta operación de equipos y en la continuidad de los 

procesos en el usuario final de energía eléctrica. Las pérdidas económicas son un problema en crecimiento para las 

empresas operadoras, para los mismos reguladores y por supuesto para los consumidores finales del servicio de energía 

eléctrica; es así como se hace necesario la formulación de nuevos métodos matemáticos para el diagnóstico de los 

hundimientos de tensión. En este sentido, los métodos de estimación de estado buscan determinar la frecuencia o el 

número de hundimientos de tensión que experimenta un usuario final. En esta área de investigación se han formulado 
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problemas de optimización basados en técnicas como la descomposición en valores singulares, el ajuste de perfiles de 

tensión y la localización de las fuentes generadoras de los hundimientos de tensión. Los resultados obtenidos usando  

estas técnicas son imprecisas cuando se consideran las corrientes pre-falla, las fallas con impedancia diferente de cero 

y los desbalances. Es así como en este artículo se evidenciará que, al considerar estas condiciones reales de las fallas, 

se obtienen resultados imprecisos para el caso del método de descomposición en valores singulares. A su vez, en este 

trabajo se propone una nueva formulación matemática del problema de estimación de estado de hundimientos de 

tensión usando la minimización de la norma-ℓ1. Esta propuesta matemática es aplicada y validada en la red de 

distribución de prueba de 33 nodos del IEEE.  Únicamente los hundimientos de tensión causados por fallos en la red 

de distribución serán considerados. Los resultados obtenidos validan una notable mejora en comparación con el método 

de descomposición en valores singulares y resaltan una innovadora herramienta para la estimación de estado de los 

hundimientos de tensión en redes radiales de distribución. 

 

Palabras clave: calidad de potencia; hundimientos de tensión; estimación de estado; norma-ℓ1; redes eléctricas de 

distribución. 

 
1. Introduction 

 

Voltage sags are one of the most frequent power quality 

disturbances. The economic losses may oscillate between 

the US$ 5.000 to US$ 2.500.000 per each voltage sag 

experienced [1], [2]. These losses are evidenced in the 

equipment bad-operation and the processes interruption 

in the end-user. Voltage sags are caused often by short 

circuits and several studies have been focused to analyze 

the voltage sag phenomena taking into account this cause 

[3]–[5]. In turn, voltage sag monitoring programs are still 

very limited and only a few busbars are monitored in the 

current distribution networks. A partial monitoring 

system can provide information to the estimation 

methods to determine voltage sag indices at unmetered 

busbars. For this, further studies are required in this 

research area. 

 

Voltage Sag Estimation (VSE) is defined as the task on 

estimating the voltage sags number at unmetered busbars 

by using the collected data  at a limited number of meters 

installed in the network [5],[6]. Two approaches were 

found:  the methods that realize stochastic prediction and 

the methods based on the conventional state estimation, 

where measurements and simulation are used 

simultaneously. 

 

A probabilistic method to obtain the most probable 

voltage sag index at unmetered busbars given a 

measurements set is presented in [8]. Voltage sag 

measurements are assessed into of disturbance database 

using a Bayesian filter. Other works also use statistical 

modelling to analyze the fault networks [9], [10]. The 

results of these methods are sensitive to the high 

variability of fault statistical data, so the voltage sag 

number may be inaccurate.   

 

VSE problem can also be formulated as an undetermined 

linear system based on the fault position concept [11].  

Singular Value Decomposition (SVD) technique allows 

to estimate the number of voltage sags in unmetered 

busbars. SVD method is based on the least-squares and 

gets a solution with minimum (Euclidean) norm. Thus, 

this method tends to obtain a state vector with many 

nonzero values. On the other hand, ℓ1-norm 

minimization method solves an undetermined linear 

problem while the optimal vector is sparse [12]. Many 

applications of ℓ1-norm minimization in power systems 

are coming due to its emerging potentiality [13], [14]. 

 

This work presents a new approach to solve the voltage 

sag state estimation problem based on ℓ1-norm 

minimization methods. The main contribution is a new 

mathematical formulation of the VSE problem and the 

assessment of two of the most popular solvers of ℓ1-norm 

minimization problem.  

 

This research is organized as follows. Section 2 provides 

a description of the SVD method and the new 

mathematical formulation using ℓ1-norm minimization is 

explained in detail. Section 3 presents the simulation 

results of the SVD and proposed method for the 33-node 

test distribution system. Finally, conclusions are 

presented in section 4. 

 

2. VSE mathematical modeling 

 

Several mathematical and stochastic approaches have 

been formulated to solve the voltage sag estimation 

problem [9], [11], [15]. Stochastic methods are subject to 

high inaccuracies due to the network fault uncertainties 

and it is not possible to assess the optimality and 

convergence criteria in the results obtained. Due to this 

and to take advantage of the emerging technologies for 

the power system monitoring, this work is focused on the 

mathematical formulation that uses the voltage 

measurements in electric power distribution systems. 

 

2.1. VSE using Singular Value Decomposition  

 

State estimation in power systems is defined as the task 

of estimating the voltages and currents on the electric 
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network. The state estimation formulation is based on a 

measurement vector (b), a measurement matrix (A), a 

state vector (x) and a measurement error vector (e). 

Equation (1) shows the mathematical representation 

when the measurement error is neglected. This 

formulation is frequently used in the voltage sag state 

estimation. 

[

𝑏1
𝑏2
⋮
𝑏𝑚

] = [

𝑎11 𝑎12 … … 𝑎1𝑛
⋮ ⋮ … … ⋮
⋮ ⋮ … … ⋮
𝑎𝑚1 𝑎𝑚2 … … 𝑎𝑚𝑛

] ×

[
 
 
 
 
𝑥1
𝑥2
⋮
⋮
𝑥𝑛]
 
 
 
 

 (1) 

 

In [11], the mathematical formulation in (1) is 

development to voltage sag estimation.  This formulation 

is explained below.    

  

2.1.1. Measurement matrix (A) 

 

Amt×n is a binary matrix built by a short circuit study in 

the n fault positions on the network. The short circuit 

study is performed using the fault mathematical 

formulation or a software as NEPLAN, DIGSILENT 

Power Factory, PSCAD, ATP-EMTP, among others. 

Residual voltages in mt measurement points are recorded 

and compared with k thresholds. Two submatrices are 

derived here: 𝐀𝐦 relates the residual voltages from m 

busbars metered with the n fault positions.  𝐀𝐧𝐦 relates 

the residual voltages from nm unmetered busbars with the 

n fault positions. The rules applied to derive these 

matrices are shown in table 1.  

 

These matrices may also be built for each fault type for a 

better performance of the voltage sag estimation method. 

 
Table 1. Values of the 𝐀𝐦 and 𝐀𝐧𝐦 matrices.  

Matrix Rule 

𝒂𝒎𝒊𝒋  

{
  
 

  
 
𝟏

𝟎

 

If residual voltage at busbar mi is below 

thrk when a short circuit occurs in the 

fault position nj 

Otherwise 

𝒂𝒏𝒎𝒊𝒋  

{
  
 

  
 
𝟏

𝟎

 

If residual voltage at busbar nmi is above 

thrk when a short circuit occurs in the 

fault position nj 

Otherwise 

Source: Own elaboration.  

 

2.1.2. Measurement vector (b) 

 

bm×1 is formed by voltage sag measurements obtained 

from m real meters installed on the network. Real residual 

voltages recorded are used to build b. Each element of b 

corresponds to an integer number obtained by counting 

the voltage sags number.  

 

2.1.3. Optimization problem and voltage sag 

estimation 

 

Optimization problem shown in (2) is solved using Am 

and b, without any constraints.  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ||𝐀𝐦 · 𝐱 − 𝐛||2
2  (2) 

The optimal solution x* is obtained using the 

deterministic approach of SVD, as shown in (3) 

 

𝐱∗ = 𝐕 · 𝐖−𝟏 · 𝐔′ · 𝐛 (3) 

where U, W and V are the matrices obtained from the 

decomposition of Am using SVD. If a set of thresholds 

thrk, for k=1,2,...,T, is defined, then an augmented 

problem can be formulated as shown in (4). 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ‖‖

[
 
 
 
𝐀𝐦

𝑡ℎ𝑟1

𝐀𝐦
𝑡ℎ𝑟2

⋮
𝐀𝐦

𝑡ℎ𝑟𝑇]
 
 
 

· 𝐱 − [

𝐛𝑡ℎ𝑟1

𝐛𝑡ℎ𝑟2

⋮
𝐛𝑡ℎ𝑟𝑇

]‖‖

2

2

  (4) 

 

Solving the equation (4), the optimal solution x* is finally 

used in (5) to calculate the voltage sags number 𝐛𝐧𝐦
𝑡ℎ𝑟𝑘 

at unmetered busbars.  

 

[
 
 
 
 𝐛𝐧𝐦

𝑡ℎ𝑟1

𝐛𝐧𝐦
𝑡ℎ𝑟2

⋮

𝐛𝐧𝐦
𝑡ℎ𝑟𝑇]

 
 
 
 

=

[
 
 
 
 𝐀𝐧𝐦

𝑡ℎ𝑟1

𝐀𝐧𝐦
𝑡ℎ𝑟2

⋮

𝐀𝐧𝐦
𝑡ℎ𝑟𝑇]

 
 
 
 

· 𝐱∗ (5) 

 

2.2. Proposed Method: VSE using 𝓵1-norm 

minimization 

  

Now, several issues in the VSE problem may be 

discussed: 

 The physical interpretation of x* allows to conclude 

that for a set of voltage sags registered, all fault 

positions (values of the state vector x) cannot have 

failed. In real power systems, several busbars and 

lines have a higher fault probability that others. Thus, 

the SVD method tends to obtain a state vector with 

many non-zero values and this does not meet the 

actual distribution of the network faults in power 

systems. Therefore, the state vector should be sparse 

with few non-zero values. 

 The optimal vector x* is obtained only considering 

the Am matrix. Equation (1) is an under-determined 

linear system and we found the first error source to 

estimate the actual number of network faults occurred 

here. If x* is not a good estimation, then the results of 
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(5) can be more inaccurate. Thus, we raise that a 

sparse optimal vector x* minimizes the error on  

voltage sag estimation in (5), this due to the sparse 

nature in the measurement matrix construction. 

 The square error minimization in (2) is still an 

optimization goal that should be used.  

 

According to the above, a new hypothesis may be 

inferred, stating that a sparse vector represents better the 

network fault nature and thus the voltage sags estimation 

may be more accurate. 

 

The mathematical formulation of the VSE, as a sparse 

problem, is the main contribution of this paper. This 

formulation allows us to exploit the problem structure 

using ℓ1-norm minimization algorithms.  

2.2.1. Optimization problem and voltage sag 

estimation 

 

The proposed optimization problem is presented in (6). It 

is often known as ℓ1-regularized least-squares problem 

and allows the achievement of  the two main goals of this 

work hypothesis: a sparse vector while the square error is 

minimized [12]. This approach is widely applied in 

compressive sensing that is an emerging research area 

with many applications in the last years. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜆 · ‖𝐱‖1 + ||𝐀𝐦 · 𝐱 − 𝐛||2
2 (6) 

An optimal state vector 𝐱𝑠𝑝𝑎𝑟𝑠𝑒
∗  is obtained and the 

number of voltage sags at nm unmetered busbars (𝐛𝐧𝐦), 

like to SVD, is calculated using equation (7).  

 
𝐛𝐧𝐦 = 𝐀𝐧𝐦 · 𝐱𝑠𝑝𝑎𝑟𝑠𝑒

∗  (7) 

 

Figure 1. Illustrative three-phase distribution system. Source: Own elaboration. 

 

Only a voltage sag detection threshold equal to 0.9 pu 

was considered in the case study presented in section 3. 

 

2.2.2. Illustrative distribution system 

 

A small distribution system is shown in Figure 1. There 

are six load nodes, three voltage meters installed and the 

fifteen points indicate the fault positions defined in the 

system. Am and Anm are built using a detection threshold 

equal to 0.9 p.u  and are shown in Tables 2-3.   

 

In this case study, a set of 40 faults is simulated during a 

year. Residual voltages are taken from the meters 

installed and the measurement vector b is obtained. 

Finally, equation (8) is solved and the optimal value x* 

is used in (7) to calculate the voltage sags number at 

unmetered busbars. 

 

 

 

 

Table 2.  Am for the distribution system in Figure 1.  

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 

M1 

(x1) 
1 1 1 0 0 0 0 1 1 0 0 

M2 

(x5) 
1 1 1 1 1 1 0 1 1 0 0 

M3 

(x9) 

1 1 1 0 0 0 0 1 1 1 0 

Source: Own elaboration.  

 

Table 3.  Anm for the distribution system in Figure 1. 

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 

(x2) 1 1 1 1 0 0 0 1 1 0 0 

(x3) 1 1 1 1 1 0 0 1 1 0 0 

(x4) 1 1 1 1 1 0 0 1 1 0 0 

(x6) 1 1 1 1 1 1 1 1 1 0 0 

(x7) 1 1 1 1 1 1 1 1 1 0 0 

(x8) 1 1 1 0 0 0 0 1 1 1 0 

(x10) 1 1 1 0 0 0 0 1 1 1 1 

(x11) 1 1 1 0 0 0 0 1 1 1 1 

Source: Own elaboration.  
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜆 · ‖𝐱‖1 + ‖𝐀𝐦 · 𝐱 − [
25
35
12
]‖

2

2

 (8) 

  

2.2.3. ℓ1-norm minimization algorithms 

 

Two of the most robust and popular solvers of ℓ1-

regularized least-squares problem are presented below.  

 

Gradient Projection  for Sparse  Reconstruction 

(GPSR) [16] 

 

GPSR is based on gradient projection algorithms to solve 

a bound-constrained quadratic programming problem. 

According to the authors, this approach provides faster 

solutions compared with interior-point techniques. The 

model used is presented in (9).  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜆 · ‖𝐱‖1 +
1

2
||𝐀𝐱 − 𝐛||2

2 
(9) 

CVX solver [17], [18] 

 

CVX is a robust modeling system to solve disciplined 

convex programs (DCPs). For the optimization problem 

shown in (6), CVX exploits the problem structure of a 

problem that can be reformulated as a convex quadratic 

program with bound constraints. SDPT3 is an algorithm 

based on the primal-dual interior-point method that uses 

the path-following paradigm.  Equation (10) presents the 

model that CVX solves.  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜆 · ‖𝐱‖1 + ||𝐀 · 𝐱 − 𝐛||2
2 (10) 

 

3. Simulation and discuss 

 

The 33-node test distribution system, 12.66 kV, is used 

to validate the proposed VSE method using ℓ1-norm 

minimization algorithms. In other studies of techniques 

for optimal placement of PMUs are validated using this 

test system [19]. Also, this electrical system is used in 

reconfiguration studies, but we will only use its 

reconfiguration base case shown in figure 2. 

 

The case of study in this paper consists to realize a large 

number of network faults on the 33-node test distribution 

system and to apply the VSE proposed to estimate the 

number of voltage sags at unmetered busbars. 

 

 The simulation process is summarized below. 

 Stage 1: Zero impedance faults are made in all fault 

positions using ATP-EMTP package. 128 fault 

positions are defined in our test system, applying a 

segmentation of 25 percent in each line. All network 

fault types are considered: line-to-ground (LG); line-

to-line (LL); line-to-line-to-ground (LLG) and three-

line (LLL).  Three Monte Carlo simulations are 

performed to validate the proposed VSE method. 

 Stage 2: A monitoring system is defined. Nine meters 

are located according to the methodology presented 

in [20]. Measurement matrices (𝐀𝐦 and 𝐀𝐧𝐦) are 

built, one for each fault type. 

 

 

Figure 2. 33-node test distribution system. Source: Own 

elaboration.  

 

The information obtained from the simulation process is 

equivalent to that provided by the monitoring systems in 

the real distribution systems. The next step is to apply the 

VSE proposed. The stages are: 

 Stage 1: Measurement vector (b) is built from Monte 

Carlo simulation. A threshold equal to 0.9 pu is 

considered for ℓ1-norm methods. Four thresholds, 

0.9, 0.7, 0.5 and 0.3 pu, are used in SVD method. 

 Stage 2: The optimization problems shown in (2), (8) 

and (9) are solved. Number of voltage sags at nm 

unmetered busbars (𝐛𝐧𝐦) is obtained using (7). 

 

3.1. Validation sceneries obtained from Monte Carlo 

simulations 

 

Table 4 shows the statistical data used in Monte Carlo 

scenarios  (MC1, MC2 and MC3) [21].  Fault impedances 

(Zf) are calculated from a normal distribution. 

 

3.2. Regularization parameter tuning 

 

Optimization problems into of the ℓ1-minimization 

solvers are dependent on λ (lambda) parameter, which 

should be analyzed initially. 
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Table 4.  Statistical data used in Monte Carlo simulations. 

MC Faults  Zf Fault type Total 

1 
Busbars 

0.08 

faults/ 

year 

 

Lines 

3.7  

faults/ 

year 

µ= 5 Ω 

σ= 2 Ω 
 

LG= 80% 

LLG= 10% 

LL= 5% 

LLL= 5% 

 

Randomly 

locations 

1 year: 

123 

faults 

2 
µ= 0.5 Ω 

σ= 0.3 Ω 

1 year: 

123 

faults 

3 
µ= 5 Ω 

σ= 2 Ω 

20 years 

2374 

faults 

 

Source: Own elaboration.  

 

A subset of network faults is taken from the validation 

scenarios and the objective function value is assessed for 

all fault types. Figure 3 shows the regularization 

parameter effect on the objective function. 

 

Lambda values lower to 10-3 are suitable to achieve the 

highest accuracy in VSE problem. We take λ=4×10-5 in 

the results presented at the next section. 

 

3.3. Results and discussion 

 

Figure 4 shows the voltage sags number that was 

incorrectly estimated. The real values of the number of 

voltage sags are obtained from the simulation process in 

ATP-EMTP. All 23 unmetered busbars are analyzed for 

the MC1 and MC2 validation scenarios. Also, all fault 

types are considered in these results. 

 

Figure 4a shows a typical scenario for one year, where 

the SVD method presents the lower performance.  This is 

due to its poor performance when network faults with 

fault impedance are presented. It is generally found that 

CVX and GPSR solvers present the same accuracy.  

 

Figure 4b aims to show a better performance in SVD 

method when the network faults have Zf lower values. 

Voltage sags number incorrectly estimated is similar in 

almost all busbars and thus ratifies the hypothesis 

presented initially. The voltage sags are even better 

estimated at 8 and 18 busbars using SVD. 
 

Finally, a big set of network faults is assessed. Figure 5 

shows the overall performance of the proposed method, 

where the best global efficiencies are obtained with the 

ℓ1-norm methods. It´s clear that this last scenario is not 

sparse due to all fault positions are faulted. Despite this, 

the ℓ1-norm methods still present the best results. The 

main property of ℓ1-norm methods is its immunity to high 

fault impedances, which is the most real conditions in 

power systems. 

 
Figure 3. λ parameter versus objective function. Source: Own elaboration. 
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a)                                  b) 

Figure 4. Voltage sags number incorrectly estimated. a) MC1; b) MC2 Source: Own elaboration. 

 
Figure 5. Global efficiencies of the VSE methods. Source: Own elaboration.  

 
Figure 6. Sparsity property of the optimal vector x* in MC1. Source: Own elaboration.  

 

 

These results indicate that the VSE proposed has a good 

performance under the real conditions of the fault in the 

radial electric power distribution systems. This fact is 

decisive for a real implementation.  

 

Figure 6 presents the sparsity of the optimal vector x*. 

Line-to-ground faults are only considered because are the 

most numerous in the validation sceneries. For this, the 

ℓ0-norm is calculated and it’s compared to the real fault 

location vector. The MC1 case is only presented because 

the sparsity is almost null in the other cases. Despite the 

voltage sags estimation has a good performance, a new 

mathematical formulation could be proposed where the 

sparse property will be exploited even more.  
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These additional results also validate the fact that the 

problem modelling based on ℓ1-norm method is coherent 

with the physical features of the fault networks. 

To conclude, several additional issues are discussed for 

future research: 

 Measurement errors were not considered. However, 

the square error term in (6) allows to consider this 

issue. The sensitivity to measurement error can be 

tested in future works. 

 The number of fault positions is a criterion to analyze. 

Typical distances used in fault location programs in 

distribution systems may be taken into consideration. 

 Meters placement is an important issue because it 

defines the measurement matrix properties [22]. A 

rigorous study should determine the impact of these 

properties on the ℓ1-norm algorithm’s performance. 

 

4. Conclusions  

 

Mathematical formulations to voltage sag estimation are 

very few yet. This work demonstrated that the SVD 

method presents inaccurate estimations in real fault 

sceneries with high fault impedances. This paper also 

proposed a new method for estimating the voltage sags 

number using a formulation based on the ℓ1-norm 

minimization algorithms. Case of studies have shown 

that ℓ1-norm methods present the best performance. All 

fault types and a wide range of fault impedances were 

considered. The main finding to highlight is the low 

impact of these variables on the algorithm’s accuracy. 

About computing time and accuracy, the CVX solver 

worked better in all cases. Finally, the authors highlight 

new research goals to meet and are already working on 

new and best mathematical formulations for voltage sags 

estimation using the compressive sensing theory. 
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