Evaluación de la madurez del banano usando aprendizaje de máquinas basado en reconocimiento de imágenes – Revisión
Publicado 2025-08-22
Palabras clave
- color,
- inteligencia artificial,
- aprendizaje automático,
- visión computacional,
- red neuronal artificial
Cómo citar
Derechos de autor 2025 Revista UIS Ingenierías

Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Resumen
En este trabajo se realiza una revisión sistemática de la literatura sobre las diferentes técnicas de aprendizaje de máquinas utilizadas para la evaluación de la madurez de las frutas, específicamente del banano (Musa spp.), mediante el reconocimiento de imágenes. Los resultados muestran que existen diversas técnicas de aprendizaje de máquinas, como máquinas de soporte vectorial, redes neuronales artificiales, y árboles de decisiones, entre otras. Se encontró que estas técnicas son capaces de analizar imágenes digitales de las frutas, extraer características y patrones relevantes, y realizar la clasificación y regresión para la determinación de la madurez de las mismas. Se concluye que las técnicas de aprendizaje de máquinas basadas en reconocimiento de imágenes, son una herramienta efectiva no invasiva, rápida y precisa. Su implementación en la cadena agroindustrial del banano permitiría optimizar la cosecha, clasificación y distribución del fruto, mejorando la eficiencia del proceso productivo, reduciendo pérdidas postcosecha y garantizando una mayor calidad y uniformidad del producto para su comercialización, especialmente en mercados de exportación.
Descargas
Citas
- [1] V. Voora, S. Bermudez, J. J. Farrell, C. Larrea, and E. Luna, Banana prices and sustainability. Winnipeg, Canada: International Institute for Sustainability Development, Mar. 2023. [Online]. Available: https://www.iisd.org/system/files/2023-03/2023-global-market-report-banana.pdf
- [2] A. Crawford and S. Kueffner, “Disease is ravaging the $25 billion banana industry,” Bloomberg, May 22, 2020. [Online]. Available: https://www.bloomberg.com/news/features/2020-05-22/the-25-billion-banana-industry-is-being-ravaged-by-disease
- [3] Mordor Intelligence, Banana market growth, trends, COVID19 impact and forecast 2023–2028. 2022. [Online]. Available: https://www.mordorintelligence.com/industry-reports/banana-market
- [4] K. J. Angima, N. Kaur, S. Savita, and P. K. Pati, “Biotechnological interventions in banana: Current knowledge and future prospects,” Heliyon, vol. 8, no. 11, p. e11636, 2022. doi: 10.1016/j.heliyon.2022.e11636.
- [5] T. J. P. Cubillos, B. Soltész, and L. Vasa, “Bananas, coffee and palm oil: The trade of agricultural commodities in the framework of the EU-Colombia free trade agreement,” PLoS ONE, vol. 16, no. 8, p. e0256242, 2021. doi: 10.1371/journal.pone.0256242.
- [6] W. Vásquez-Castillo, M. Racines-Oliva, P. Moncayo, and M. Seraquive, “Calidad del fruto y pérdidas poscosecha de banano orgánico (Musa acuminata) en el Ecuador,” Enfoque UTE, vol. 10, no. 4, pp. 57–66, 2019. doi: 10.29019/enfoque.v10n4.545.
- [7] S. Pareek, “Ripening physiology: An overview,” in Postharvest Ripening Physiology of Crops, S. Pareek, Ed. CRC Press, 2016, pp. 1–48. [Online]. Available: https://books.google.com.co/books?id=VpymCwAAQBAJ
- [8] J. Wieme et al., “Application of hyperspectral imaging systems and artificial intelligence for quality assessment of fruit, vegetables and mushrooms: A review,” Biosystems Engineering, vol. 222, pp. 156–176, 2022. doi: 10.1016/j.biosystemseng.2022.07.013.
- [9] M. Meenu et al., “A concise review on food quality assessment using digital image processing,” Trends in Food Science & Technology, vol. 118, pp. 106–124, 2021. doi: 10.1016/j.tifs.2021.09.014.
- [10] P. Sahu, A. P. Singh, A. Chug, and D. Singh, “A Systematic Literature Review of Machine Learning Techniques Deployed in Agriculture: A Case Study of Banana Crop,” IEEE Access, vol. 10, pp. 87333–87360, 2022. doi: 10.1109/ACCESS.2022.3199926.
- [11] J. Nie, Y. Wang, Y. Li, and X. Chao, “Artificial intelligence and digital twins in sustainable agriculture and forestry: A survey,” Turkish Journal of Agriculture and Forestry, vol. 46, no. 5, Art. no. 5, 2022. doi: 10.55730/1300-011X.3033. [Online]. Available: https://journals.tubitak.gov.tr/agriculture/vol46/iss5/5
- [12] W. Min, L. Liu, Y. Liu, M. Luo, and S. Jiang, “A survey on food image recognition,” Chinese Journal of Computers (Jisuanji Xuebao), vol. 45, no. 3, pp. 542–566, 2022. doi: 10.11897/SP.J.1016.2022.00542.
- [13] A. Bhargava and A. Bansal, “Automatic detection and grading of multiple fruits by machine learning,” Food Analytical Methods, vol. 13, pp. 751–761, 2020. doi: 10.1007/s12161-019-01690-6.
- [14] L. Wei, Y. Luo, L. Xu, Q. Zhang, Q. Cai, and M. Shen, “Deep convolutional neural network for rice density prescription map at ripening stage using unmanned aerial vehicle-based remotely sensed images,” Remote Sensing, vol. 14, no. 1, p. 46, 2022. doi: 10.3390/rs14010046.
- [15] X. Wei, L. Wu, D. Ge, M. Yao, and Y. Bai, “Prediction of the maturity of greenhouse grapes based on imaging technology,” Plant Phenomics, 2022. doi: 10.34133/2022/9753427.
- [16] S. Gaikwad and S. Tidke, “Multi-spectral imaging for fruits and vegetables,” International Journal of Advanced Computer Science and Applications, vol. 13, pp. 743–760, 2022.
- [17] P. S. Minz, C. Singh, and I. K. Sawhney, “Machine vision technology in food processing industry: Principles and applications—A review,” in Engineering Interventions in Agricultural Processing, CRC Press, 2017, pp. 3–31. [Online]. Available: https://www-taylorfrancis-com.ezproxy.unal.edu.co/chapters/edit/10.1201/9781315207377-1/
- [18] M. Weston, S. Geng, and R. Chandrawati, “Food sensors: Challenges and opportunities,” Advanced Materials Technologies, vol. 6, no. 5, p. 2001242, 2021. doi: 10.1002/admt.202001242.
- [19] V. Singh, N. Sharma, and S. Singh, “A review of imaging techniques for plant disease detection,” Artificial Intelligence in Agriculture, vol. 4, pp. 229–242, 2020. doi: 10.1016/j.aiia.2020.10.002.
- [20] M. Momeny, A. Jahanbakhshi, A. A. Neshat, R. Hadipour-Rokni, Y. D. Zhang, and Y. Ampatzidis, “Detection of citrus black spot disease and ripeness level in orange fruit using learning-to-augment incorporated deep networks,” Ecological Informatics, vol. 71, p. 101829, 2022. doi: 10.1016/j.ecoinf.2022.101829.
- [21] L. O. González-Salcedo, A. Palomino-Tovar, and A. Martínez-Arias, “Future contribution of artificial vision in methodologies for the development of applications that allow for identifying optimal harvest times of medicinal cannabis inflorescences in Colombia,” in Trends and Advancements of Image Processing and Its Applications, P. Johri, M. J. Diván, R. Khanam, M. Marciszack, and A. Will, Eds. Cham: Springer, 2022. doi: 10.1007/978-3-030-75945-2_10.
- [22] R. Roopalakshmi, “Chemical ripening and contaminations detection using neural networks-based image features and spectrometric signatures,” Machine Graphics and Vision, vol. 30, no. 1/4, pp. 23–43, 2021. doi: 10.22630/MGV.2021.30.1.2.
- [23] W. Castro, J. Oblitas, M. De-La-Torre, C. Cotrina, K. Bazán, and H. Avila-George, “Classification of cape gooseberry fruit according to its level of ripeness using machine learning techniques and different color spaces,” IEEE Access, vol. 7, pp. 27389–27400, 2019. doi: 10.1109/ACCESS.2019.2898223.
- [24] L. F. S. Pereira, S. Barbon Jr, N. A. Valous, and D. F. Barbin, “Predicting the ripening of papaya fruit with digital imaging and random forests,” Computers and Electronics in Agriculture, vol. 145, pp. 76–82, 2018. doi: 10.1016/j.compag.2017.12.029.
- [25] K. Leon, D. Mery, F. Pedreschi, and J. León, “Color measurement in Lab* units from RGB digital images,” Food Research International, vol. 39, no. 10, pp. 1084–1091, 2006. doi: 10.1016/j.foodres.2006.03.006.
- [26] E. A. Parrish and A. K. Goksel, “Pictorial pattern recognition applied to fruit harvesting,” Transactions of the ASAE, vol. 20, no. 5, pp. 822–827, 1977. doi: 10.13031/2013.35657.
- [27] N. El-Bendary, E. El Hariri, A. E. Hassanien, and A. Badr, “Using machine learning techniques for evaluating tomato ripeness,” Expert Systems with Applications, vol. 42, no. 4, pp. 1892–1905, 2015. doi: 10.1016/j.eswa.2014.09.057.
- [28] A. Sanaeifar, A. Bakhshipour, and M. de la Guardia, “Prediction of banana quality indices from color features using support vector regression,” Talanta, vol. 148, pp. 54–61, 2016. doi: 10.1016/j.talanta.2015.10.073.
- [29] A. Bhargava and A. Bansal, “Fruits and vegetables quality evaluation using computer vision: A review,” Journal of King Saud University - Computer and Information Sciences, vol. 33, no. 3, pp. 243–257, 2021. doi: 10.1016/j.jksuci.2018.06.002.
- [30] J. K. Basak, B. G. K. Madhavi, B. Paudel, N. E. Kim, and H. T. Kim, “Prediction of total soluble solids and pH of strawberry fruits using RGB, HSV and HSL colour spaces and machine learning models,” Foods, vol. 11, no. 14, p. 2086, 2022. doi: 10.3390/foods11142086.
- [31] S. Sabzi, M. Nadimi, Y. Abbaspour-Gilandeh, and J. Paliwal, “Non-destructive estimation of physicochemical properties and detection of ripeness level of apples using machine vision,” Int. J. Fruit Sci., vol. 22, no. 1, pp. 628–645, 2022. doi: 10.1080/15538362.2022.2092580.
- [32] C. J. W. Barbosa, H. J. C. Barbosa, and M. Rodríguez V., “Revisión y análisis documental para estado del arte: una propuesta metodológica desde el contexto de la sistematización de experiencias educativa,” Investigación Bibliotecológica, vol. 27, no. 61, pp. 83–105, 2013.
- [33] S. Ganguli, P. T. Selvan, M. M. Nayak, S. Chaudhury, R. U. Espina, and I. Ofori, “Deep learning based dual channel banana grading system using convolution neural network,” J. Food Qual., vol. 2022, 2022. doi: 10.1155/2022/6050284.
- [34] Y. Israeli and E. Lahav, “Banana,” in Encyclopedia of Applied Plant Sciences, 2nd ed., B. Thomas, B. G. Murray, and D. J. Murphy, Eds. Academic Press, 2017, pp. 363–381. doi: 10.1016/B978-0-12-394807-6.00072-1.
- [35] S. Marimuthu and S. M. M. Roomi, “Particle swarm optimized fuzzy model for the classification of banana ripeness,” IEEE Sens. J., vol. 17, no. 15, pp. 4903–4915, 2017. doi: 10.1109/JSEN.2017.2715222.
- [36] I. A. Sabilla, C. S. Wahyuni, C. Fatichah, and D. Herumurti, “Determining banana types and ripeness from image using machine learning methods,” in Proc. 2019 Int. Conf. Artif. Intell. Inf. Technol. (ICAIIT), 2019, pp. 407–412. doi: 10.1109/ICAIIT.2019.8834490.
- [37] S. Sibarani, T. Joko, and S. Subandiyah, “Detection and identification of banana-associated phytoplasma using nested-PCR method,” J. Perlindungan Tanaman Indones., vol. 23, pp. 148, 2019. doi: 10.22146/jpti.38320.
- [38] J. Zhuang et al., “Assessment of external properties for identifying banana fruit maturity stages using optical imaging techniques,” Sensors, vol. 19, no. 13, p. 2910, 2019. doi: 10.3390/s19132910.
- [39] A. Hassoun et al., “Food quality 4.0: From traditional approaches to digitalized automated analysis,” J. Food Eng., 2022, Art. no. 111216. doi: 10.1016/j.jfoodeng.2022.111216.
- [40] J. Barragán-Iglesias, L. L. Méndez-Lagunas, and J. Rodríguez-Ramírez, “Ripeness indexes and physicochemical changes of papaya (Carica papaya L. cv. Maradol) during ripening on-tree,” Sci. Hortic., vol. 236, pp. 272–278, 2018. doi: 10.1016/j.scienta.2017.12.012.
- [41] B. Lie, J. Lecourt, and G. Bishop, “Advances in non-destructive early assessment of fruit ripeness towards defining optimal time of harvest and yield prediction—A review,” Plants, vol. 7, no. 1, p. 3, 2018. doi: 10.3390/plants7010003.
- [42] A. Gastélum-Barrios, R. A. Bórquez-López, E. Rico-García, M. Toledano-Ayala, and G. M. Soto-Zarazúa, “Tomato quality evaluation with image processing: A review,” Afr. J. Agric. Res., vol. 6, no. 14, pp. 3333–3339, 2011. doi: 10.5897/AJAR11.108.
- [43] P. Pathmanaban, B. K. Gnanavel, and S. S. Anandan, “Recent application of imaging techniques for fruit quality assessment,” Trends Food Sci. Technol., vol. 94, pp. 32–42, 2019. doi: 10.1016/j.tifs.2019.10.004.
- [44] S. Altaf, S. Ahmad, M. Zaindin, and M. W. Soomro, “Xbee-based WSN architecture for monitoring of banana ripening process using knowledge-level artificial intelligent technique,” Sensors, vol. 20, no. 14, p. 4033, 2020. doi: 10.3390/s20144033.
- [45] L. Y. Chen, C. C. Wu, T. I. Chou, S. W. Chiu, and K. T. Tang, “Development of a dual MOS electronic nose/camera system for improving fruit ripeness classification,” Sensors, vol. 18, no. 10, p. 3256, 2018. doi: 10.3390/s18103256.
- [46] J. Fernández-Novales, I. Barrio, and M. P. Diago, “Non-invasive monitoring of berry ripening using on-the-go hyperspectral imaging in the vineyard,” Agronomy, vol. 11, no. 12, p. 2534, 2021. doi: 10.3390/agronomy11122534.
- [47] M. J. Villaseñor-Aguilar et al., “A maturity estimation of bell pepper (Capsicum annuum L.) by artificial vision system for quality control,” Appl. Sci., vol. 10, no. 15, p. 5097, 2020. doi: 10.3390/app10155097.
- [48] B. Zhang et al., “Challenges and solutions of optical-based nondestructive quality inspection for robotic fruit and vegetable grading systems: A technical review,” Trends Food Sci. Technol., vol. 81, pp. 213–231, 2018. doi: 10.1016/j.tifs.2018.09.018.
- [49] K. K. Saha and M. Zude-Sasse, “Estimation of chlorophyll content in banana during shelf life using LiDAR laser scanner,” Postharvest Biol. Technol., vol. 192, p. 112011, 2022. doi: 10.1016/j.postharvbio.2022.112011.
- [50] Y. Huang et al., “Online detection of soluble solids content and maturity of tomatoes using Vis/NIR full transmittance spectra,” Chemom. Intell. Lab. Syst., vol. 210, p. 104243, 2021. doi: 10.1016/j.chemolab.2021.104243.
- [51] Y. M. Akbar, R. E. Masithoh, and N. Khuriyati, “Aplikasi Analisis Multivariat Berdasarkan Warna untuk Memprediksi Brix dan pH pada Pisang,” Agritech, vol. 37, no. 1, pp. 109–114, 2017. doi: 10.22146/agritech.17022.
- [52] V. Meshram, K. Patil, V. Meshram, D. Hanchate, and S. D. Ramkteke, “Machine learning in agriculture domain: A state-of-art survey,” Artif. Intell. Life Sci., vol. 1, p. 100010, 2021. doi: 10.1016/j.ailsci.2021.100010.
- [53] R. Gai, N. Chen, and H. Yuan, “A detection algorithm for cherry fruits based on the improved YOLO-v4 model,” Neural Comput. Appl., vol. 35, pp. 101–112, 2021. doi: 10.1007/s00521-021-06029-z.
- [54] E. Almeyda and W. Ipanaqué, “Recent developments of artificial intelligence for banana: Application areas, learning algorithms, and future challenges,” Eng. Agríc., vol. 42, 2022. doi: 10.1590/1809-4430-Eng.Agric.v42nepe20210144/2022.
- [55] Z. Gao et al., “Real-time hyperspectral imaging for the in-field estimation of strawberry ripeness with deep learning,” Artif. Intell. Agric., vol. 4, pp. 31–38, 2020. doi: 10.1016/j.aiia.2020.04.003.
- [56] J. Piñeros Guzmán, “Clasificación de la madurez del aguacate Hass para su cosecha mediante una red ANN,” Tesis, Universidad de los Andes, 2022. [Online]. Available: http://hdl.handle.net/1992/58801
- [57] S. Verdú, J. M. Barat, and R. Grau, “Laser scattering imaging combined with CNNs to model the textural variability in a vegetable food tissue,” J. Food Eng., vol. 336, p. 111199, 2023. doi: 10.1016/j.jfoodeng.2022.111199.
- [58] C. Hu, X. Liu, Z. Pan, and P. Li, “Automatic detection of single ripe tomato on plant combining faster R-CNN and intuitionistic fuzzy set,” IEEE Access, vol. 7, pp. 154683–154696, 2019. doi: 10.1109/ACCESS.2019.2949343.
- [59] H. Galal, S. Elsayed, O. Elsherbiny, A. Allam, and M. Farouk, “Using RGB Imaging, Optimized Three-Band Spectral Indices, and a Decision Tree Model to Assess Orange Fruit Quality,” Agriculture, vol. 12, no. 10, p. 1558, 2022. doi: 10.3390/agriculture12101558.
- [60] S. M. U. B. S. Pair, “A Non Destructive Tomato Grading and Sorting Mechanism Using Binary SVM Pair Based Classifier for Sustainable Agricultural Practices,” J. Green Eng., vol. 10, pp. 3637–3654, 2020. [Online]. Available: http://www.jgenng.com/wp-content/uploads/2020/09/volume10-issue7-24.pdf [Fecha de acceso: 18 de diciembre de 2022].
- [61] A. Abraham, A. Haqiq, A. K. Muda, and N. Gandhi, Innovations in bio-inspired computing and applications. Springer International Publishing, 2022.
- [62] B. Harel, Y. Parmet, and Y. Edan, “Maturity classification of sweet peppers using image datasets acquired in different times,” Comput. Ind., vol. 121, p. 103274, 2020. doi: 10.1016/j.compind.2020.103274.
- [63] S. Arwatchananukul, R. Saengrayap, S. Chaiwong, and N. Aunsri, “Fast and efficient Cavendish banana grade classification using random forest classifier with synthetic minority oversampling technique,” IAENG Int. J. Comput. Sci., vol. 49, no. 1, 2022.
- [64] M. De La Torre et al., “Multivariate analysis and machine learning for ripeness classification of cape gooseberry fruits,” Processes, vol. 7, no. 12, p. 928, 2019.
- [65] S. Gutiérrez, A. Wendel, and J. Underwood, “Spectral filter design based on in-field hyperspectral imaging and machine learning for mango ripeness estimation,” Comput. Electron. Agric., vol. 164, p. 104890, 2019. doi: 10.1016/j.compag.2019.104890.
- [66] H. Azarmdel, A. Jahanbakhshi, S. S. Mohtasebi, and A. R. Muñoz, “Evaluation of image processing technique as an expert system in mulberry fruit grading based on ripeness level using artificial neural networks (ANNs) and support vector machine (SVM),” Postharvest Biol. Technol., vol. 166, p. 111201, 2020.
- [67] C. A. Jaramillo-Acevedo, W. E. Choque-Valderrama, G. E. Guerrero-Álvarez, and C. A. Meneses-Escobar, “Hass avocado ripeness classification by mobile devices using digital image processing and ANN methods,” Int. J. Food Eng., vol. 16, no. 12, 2020.
- [68] J. F. H. Gómez, J. P. R. Gómez, L. H. T. Sarmiento, J. S. R. Acuña, and R. A. C. Silva, “Determinación de la madurez de mazorcas de Cacao, haciendo uso de redes neuronales convolucionales en un sistema embebido,” Rev. Colomb. Comput., vol. 21, no. 2, pp. 42–55, 2020.
- [69] J. T. F. Rosas et al., “Coffee ripeness monitoring using a UAV-mounted low-cost multispectral camera,” Precis. Agric., vol. 23, no. 1, pp. 300–318, 2022.
- [70] M. A. Tamayo-Monsalve et al., “Coffee maturity classification using convolutional neural networks and transfer learning,” IEEE Access, vol. 10, pp. 42971–42982, 2022.
- [71] J. A. Pérez Narváez and C. Medina Arcia, “Diseño de un sistema que determine el estado de madurez del Mango de Hilacha (Magdalena River), Usando Visión Artificial por Computador,” 2017.
- [72] S. Fan, J. Li, Y. Zhang, X. Tian, Q. Wang, X. He, et al., “Online detection of defective apples using computer vision system combined with deep learning methods,” J. Food Eng., vol. 286, p. 110102, 2020.
- [73] M. Yang, P. Kumar, J. Bhola, and M. Shabaz, “Development of image recognition software based on artificial intelligence algorithm for the efficient sorting of apple fruit,” Int. J. Syst. Assur. Eng. Manag., vol. 13, no. 1, pp. 322–330, 2022.
- [74] S. D. Kumar, S. Esakkirajan, S. Bama, and B. Keerthiveena, “A microcontroller based machine vision approach for tomato grading and sorting using SVM classifier,” Microprocess. Microsyst., vol. 76, p. 103090, 2020.
- [75] K. Berrío Jalíl and J. A. Mojica Medina, “Sistema de Visión Artificial para Determinar el Estado de Recolección del Fruto del Árbol Azadirachta Indica,” 2015.
- [76] S. Sabzi, Y. Abbaspour-Gilandeh, G. García-Mateos, A. Ruiz-Canales, J. M. Molina-Martínez, and J. I. Arribas, “An automatic non-destructive method for the classification of the ripeness stage of red delicious apples in orchards using aerial video,” Agronomy, vol. 9, no. 2, p. 84, 2019.
- [77] M. S. M. Alfatni, S. Khairunniza-Bejo, M. H. B. Marhaban, O. M. B. Saaed, A. Mustapha, and A. R. M. Shariff, “Towards a real-time oil palm fruit maturity system using supervised classifiers based on feature analysis,” Agriculture, vol. 12, no. 9, p. 1461, 2022.
- [78] T. B. Shahi, C. Sitaula, A. Neupane, y W. Guo, "Fruit classification using attention-based MobileNetV2 for industrial applications," PLOS ONE, vol. 17, no. 2, p. e0264586, 2022, doi: 10.1371/journal.pone.0264586.
- [79] N. Ismail y O. A. Malik, "Real-time visual inspection system for grading fruits using computer vision and deep learning techniques," Information Processing in Agriculture, vol. 9, no. 1, pp. 24–37, 2022.
- [80] M. A. J. Al-Sammarraie, Ł. Gierz, K. Przybył, K. Koszela, M. Szychta, J. Brzykcy, y H. M. Baranowska, "Predicting Fruit’s Sweetness Using Artificial Intelligence—Case Study: Orange," Applied Sciences, vol. 12, no. 16, p. 8233, 2022.
- [81] N. Begum y M. K. Hazarika, "Maturity detection of tomatoes using Transfer Learning," Measurement: Food, 2022, Art. no. 100038.
- [82] P. Siricharoen, W. Yomsatieankul, y T. Bunsri, "Recognizing the sweet and sour taste of pineapple fruits using residual networks and green-relative color transformation attached with Mask R-CNN," Postharvest Biology and Technology, vol. 196, p. 112174, 2023.
- [83] S. Adebayo, N. Hashim, K. Abdan, M. Hanafi y K. Mollazade, "Prediction of quality attributes and ripeness classification of bananas using optical properties," Scientia Horticulturae, vol. 212, 2016, doi: 10.1016/j.scienta.2016.09.045.
- [84] N. Hashim, S. E. Adebayo, K. Abdan, and M. Hanafi, “Comparative study of transform-based image texture analysis for the evaluation of banana quality using an optical backscattering system,” Postharvest Biology and Technology, vol. 135, pp. 38–50, 2018. doi: 10.1016/j.postharvbio.2017.08.021.
- [85] Y. Zhang, J. Lian, M. Fan, and Y. Zheng, “Deep indicator for fine-grained classification of banana’s ripening stages,” EURASIP Journal on Image and Video Processing, vol. 2018, no. 1, pp. 1–10, 2018. doi: 10.1186/s13640-018-0284-8.
- [86] F. A. Juanazo Paucar, "Desarrollo de una herramienta informática basada en visión artificial para el reconocimiento del banano para la exportación aplicando procesamiento de imágenes digitales y su simulación en Matlab mediante redes neuronales," Universidad de Guayaquil, 2019. [Online]. Available: https://repositorio.ug.edu.ec/items/d608bf37-6bba-431c-86ee-af2f7a104ca2
- [87] F. Mazen and A. Nashat, "Ripeness Classification of Bananas Using an Artificial Neural Network," Arabian Journal for Science and Engineering, vol. 44, 2019, doi: 10.1007/s13369-018-03695-5.
- [88] T. T. Le and C. Y. Lin, "Deep learning for noninvasive classification of clustered horticultural crops–A case for banana fruit tiers," Postharvest Biology and Technology, vol. 156, p. 110922, 2019.
- [89] N. Zulkifli, N. Hashim, K. Abdan, and M. Hanafi, "Application of laser-induced backscattering imaging for predicting and classifying ripening stages of 'Berangan' bananas," Computers and Electronics in Agriculture, vol. 160, pp. 100-107, 2019, doi: 10.1016/j.compag.2019.02.031.
- [90] L. Fu et al., "Fast and Accurate Detection of Banana Fruits in Complex Background Orchards," IEEE Access, vol. 8, pp. 196835-196846, 2020, doi: 10.1109/ACCESS.2020.3029215.
- [91] N. Nafi’iyah, R. Wardhani, and E. Prakasa, "Identification of Banana Ripeness using Convolutional Neural Network Approaches," in Proc. 2023 IEEE International Conference on Computer, Communication, and Intelligent Systems, pp. 330-335, 2023, doi: 10.1109/IC3INA60834.2023.10285749.
- [92] J. Ni, L. Gao, L. Deng, and Z. Han, "Monitoring the Change Process of Banana Freshness by GoogLeNet," IEEE Access, vol. 8, pp. 228369-228376, 2020, doi: 10.1109/ACCESS.2020.3045394.
- [93] R. E. Saragih and A. W. Emanuel, "Banana Ripeness Classification Based on Deep Learning using Convolutional Neural Network," in 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT), pp. 85-89, 2021, doi: 10.1109/EIConCIT50028.2021.9431928.
- [94] B.-H. Cho and S. Koseki, "Determination of banana quality indices during the ripening process at different temperatures using smartphone images and an artificial neural network," Scientia Horticulturae, vol. 288, p. 110382, 2021, doi: 10.1016/j.scienta.2021.110382.
- [95] L. Zhu, P. Spachos, E. Pensini, and K. N. Plataniotis, "Deep learning and machine vision for food processing: A survey," Current Research in Food Science, vol. 4, pp. 233-249, 2021, doi: 10.1016/j.crfs.2021.03.009.
- [96] G. Mukherjee, A. Chatterjee, and B. Tudu, "A multi-channel convolutional neural network driven computer vision system towards identification of species and maturity stage of banana fruits: case studies with Martaman and Singapuri banana," International Journal of Computational Intelligence Studies, vol. 11, no. 1, pp. 1-23, 2022, doi: 10.1504/IJCISTUDIES.2022.123343.
- [97] M. A. Z. Abd Samad and A. Nazari, "Banana Fruit Classification using Convolutional Neural Network," Evolution in Electrical and Electronic Engineering, vol. 3, no. 2, pp. 1059–1122, 2022. [Online]. Available: https://publisher.uthm.edu.my/periodicals/index.php/eeee/article/view/8526
- [98] N. Saranya, K. Srinivasan, and S. K. P. Kumar, "Banana ripeness stage identification: a deep learning approach," J Ambient Intell Human Comput, vol. 13, pp. 4033–4039, 2022, doi: 10.1007/s12652-021-03267-w.
- [99] R. S., S. Ganguli, P. Thirumaraiselvan, M. Nayak, S. Chaudhury, R. Espina, and O. Isaac, "Deep Learning Based Dual Channel Banana Grading System Using Convolution Neural Network," Journal of Food Quality, 2022, doi: 10.1155/2022/6050284.
- [100] X. Chu, P. Miao, K. Zhang, H. Wei, H. Fu, H. Liu, H. Jiang, and Z. Ma, "Green Banana Maturity Classification and Quality Evaluation Using Hyperspectral Imaging," Agriculture, vol. 12, no. 4, p. 530, 2022, doi: 10.3390/agriculture12040530.
- [101] W. He, H. He, F. Wang, S. Wang, R. Li, J. Chang, and C. Li, "Rapid and uninvasive characterization of bananas by hyperspectral imaging with extreme gradient boosting (XGBoost)," Analytical Letters, vol. 55, no. 4, pp. 620–633, 2022, doi: 10.1080/00032719.2021.1952214.
- [102] M. Knott, F. Pérez-Cruz, and T. Defraeye, "Facilitated machine learning for image-based fruit quality assessment," Journal of Food Engineering, vol. 345, p. 111401, 2023, doi: 10.1016/j.jfoodeng.2022.111401.
