Vol. 12 Núm. 34 (2013): Revista GTI
Artículos de Investigación Científica e Innovación

DECISIONES FUNDAMENTALES PARA ESTUDIAR EL PROCESO DE ALISTAMIENTO DE PEDIDOS: REVISIÓN DE LITERATURA

CARLOS EDUARDO DÍAZ BOHÓRQUEZ
Universidad Industrial de Santander
Biografía
JULIÁN ANDRÉS CADENA HERNÁNDEZ
Universidad Industrial de Santander
Biografía

Publicado 2014-02-26

Cómo citar

DÍAZ BOHÓRQUEZ, C. E., & CADENA HERNÁNDEZ, J. A. (2014). DECISIONES FUNDAMENTALES PARA ESTUDIAR EL PROCESO DE ALISTAMIENTO DE PEDIDOS: REVISIÓN DE LITERATURA. Revista GTI, 12(34), 17–28. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistagti/article/view/3842

Resumen

RESUMEN ANALÍTICO

El alistamiento de pedidos es un proceso cuyo desempeño con altos estándares de efciencia puede ser una ventaja competitiva para las organizaciones. Se compone de actividades operativas que inciden en aspectos como los costos logísticos y las cargas de trabajo. Pero en su operar cotidiano, subyacen desafíos estratégicos de las organizaciones, como responder a los niveles de servicio demandados por los clientes, afrontar cambios en el mercado y características de los pedidos, o lograr mayor calidad en las entregas. Por su importancia operativa y estratégica, es un proceso que debe ser examinado, pero mejorar su efciencia no es una tarea sencilla. Las políticas de almacenamiento, de conformación de lotes y de ruteo, son las tres decisiones más estudiadas para disminuir los tiempos de alistamiento. Debido a que están bajo el control de las organizaciones, redefnir estas políticas tiene un alto grado de fexibilidad respecto otros factores que inciden en el proceso (por ejemplo, cambios en el layout del almacén) y no demanda altas inversiones en capital de trabajo. Estas políticas y otros aspectos de interés mencionados en la literatura que tiene como objetivo el estudio del alistamiento de pedidos se explican en este artículo. Además, se destaca brevemente, el distanciamiento entre la academia y la práctica al estudiar el proceso de alistamiento de pedidos, pues es importante destacar que el aprendizaje que dio como resultado esta revisión de literatura ha sido insumo para continuar con un trabajo de investigación que se está desarrollando para mejorar el desempeño logístico de una empresa colombiana del sector textil.


PALABRAS CLAVES: Alistamiento de pedidos, Almacén, Conformación de lotes, Políticas de ruteo, Políticas de almacenamiento.

 

FUNDAMENTAL DECISIONS TO STUDY PICKING PROCESS: LITERATURE REVIEW


ANALYTICAL SUMMARY

Picking process performance with high effciency levels can be an organizations competitive advantage. It is composed by operative activities that infuence issues like logistics costs or workload. But in process daily operation, underlie strategic challenges of organizations, such as attending level services demanded for customers, deal with market changes and orders characteristics, or deliveries quality. For its operational and strategic importance, is a process that must be examined, but improving its effciency is not a simple task. Storage, batching and routing policies are the three most studied decisions to reduce the picking process time. Because they are under control of organizations, redefne these policies have a high degree of fexibility respect to other factors that infuence the process (for example, changes in the warehouse layout) and does not require high investments in working capital. These policies and other interests facts mentioned in the literature about picking process are explained in this article. Furthermore, briefy highlights the gap between academia and practice to study the picking process, so it is important to note that the resulting learning from this literature review has been input to continue a research project that is being developed for improve logistics performance of a Colombian organization from textile sector.

KEYWORDS: Picking process, Warehouse, Batching, Routing, Storage.

Descargas

Referencias

  1. Bartholdi, J.J., & Hackman, S.T. (2011). Warehouse & distribution science. Atlanta: Instituto de Tecnología de Georgia. http://www2.isye.gatech. edu/~jjb/wh/book/editions/wh-sci-0.95.pdf.
  2. Bartholdi, J.J., Eisenstein D.D., & Foley R.D. (2001). Performance of bucket brigades when work is stochastic. Operations Research, 49 (5), 710-719.
  3. Bellman, R. (1957). Dynamic Programming. Princeton, NJ: Princeton University Press.
  4. Coyle, J.J., Bardi, E.J., & Langley, C.J. (1996). The Management of Business Logistics: A Supply Chain Perspective. Saint Paul, Estados Unidos: West Publishing.
  5. Chan, F.T., & Chan, H.K. (2004). Improving the productivity of order picking of a manual pick and multi-level rack distribution warehouse through the implementation of class-based storage. Expert Systems with Applications, 38(3), 2686–2700. [6] Chen, M.C., Huang, C.L., Chen, K.Y., & WU, H.P. (2005). Aggregation of orders in distribution centers using data mining. Expert Systems with Applications, 28 (3), 453–460.
  6. Clarke, G., & Wright, W. (1964). Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 12, 568–581.
  7. Daniels, R.L., Rummel J.L., & Schantz R. (1998). A model for warehouse order picking. European Journal of Operational Research, 105, 1-17.
  8. De Koster, R., Roodbergen, K.J., & Van Voorden, R. (1999). Reduction of walking time in the distribution center of De Bijenkorf. New Trends in Distribution Logistics, 215–234.
  9. De Koster, R., Le-Duc, T., & Roodbergen, K.J. (2007). Design and control of warehouse order picking: A literature review. European Journal of Operational Research, 182(2), 481–501.
  10. De koster, R., Le-Duc, T., & Zaerpour, N. (2011). Determining the number of zones in a pick-andsort order picking system. International Journal of production Research, 50(3), 1-15.
  11. De Koster, R., Van Der Poort, E., & Wolters, M. (1998). Efficient Order Batching Methods in Warehouses. International Journal of Production Research, 37 (7), 1479-1504.
  12. Dekker, R., De Koster, M., Roodbergen, K., & Van Kalleveen, H. (2004). Improving Order-Picking Process Response Time at Ankor´s Warehouse. Interfaces, 34, 303-313.
  13. Drury, J. Towards more efficient order picking, en IMM Monographs 1, Institute of Material Management, Cranfield, UK.
  14. ELA/AT Kearney, 2004. Excellence in Logistics 2004. ELA, Brussels.
  15. Elsayed, E.A., & Unal, O.I. (1989). Order batching algorithms and travel-time estimation for automated storage/retrieval systems. International Journal of Production Research, 27, 1097–1114.
  16. Frazelle, E. (2001). Supply Chain Strategy: The Logistics of supply chain management. Estados Unidos: McGraw-Hill.
  17. Gademann, N., & Van De Velde, S. (2005). Order batching to minimize total travel time in a parallelaisle warehouse. IIE Transactions, 37(1), 63–75.
  18. Ghiani, G., Laporte, G., & Musmanno, R. (2004). Introduction to Logistics Systems and Planning Control. Chichester, Inglaterra: Wiley.
  19. Gibson, D.R., & Sharp, G.P. (1992). Order batching procedures. European Journal of Operational Research, 58 (1), 57–67.
  20. Goetschalckx, M., & Ashayeri, J. (1989). Classification and design of order picking systems. Logistics World, Junio, 99–106. [22] Gu, J.X., Goetschalckx, M., & Mcginnis F.F. (2007). Research on warehouse operation: A comprehensive review. European Journal of Operational Research, 177(1), 1–21.
  21. Hall, R.W. (1993). Distance approximation for routing manual pickers in a warehouse. IIE Transactions, 25, 77–87.
  22. Hausman, W. H., Schwarz, L. B., & Graves, S. C. (1976). Optimal storage assignment in automatic warehousing systems. Management Science, 22(6), 629–638.
  23. Henn, S., & Wäscher, G. (2012). Tabu search heuristics for the order batching problem in manual order picking systems. International Journal of Production Research, 222, 484-494.
  24. Heragu, S.S., Du, L., Mantel, R.J., & Schuur, P. C. (2005). Mathematical model for warehouse design and product allocation. International Journal of Production Research, 43(2), 327–338.
  25. Ho, Y., Su, T., & Shi, Z. (2008). Order-batching methods for an order-picking warehouse with two cross aisles. Computers & Industrial Engineering, 55(2), 321-347.
  26. Hsieh, L., & Huang, Y. (2011). New batch construction heuristics to optimize the performance of order picking systems. International Journal of Production Economics, 131(2), 618–630.
  27. Hwang, H., Baek, W., & Lees, M. (1988). Clustering algorithms for order picking in an automated storage and retrieval system. International Journal of Production Research, 26(2), 189-201. [30] Hzu, C., Chen K., & Chen, M. (2005). Batching orders by minimizing travel distance with genetic algorithms. Computers in Industry, 56(2), 169-178.
  28. Jane, C.C., & Laih, Y.W. (2005). A clustering algorithm for item assignment in a synchronized zone order picking system. European Journal of Operational Research, 166(2), 489–496.
  29. Jewkes, E., Lee, C., & Vickson, R. (2004). Product location, allocation and server home base location for an order picking line with multiple servers. Computers and Operations Research, 31(4), 623– 636.
  30. Lambert, D.M., Stock, J.R. & Ellram, L.M. (1998). Fundamentals of Logistics Management. Estados Unidos: Irwin/McGraw-Hill.
  31. Le-Duc, T., & De Koster, R. (2007). Travel time estimation and order batching in a 2-block warehouse. European Journal of Operational Research, 176(1), 374-388.
  32. Lin, C.H., & Lu, I.Y. (1999). The procedure of determining the order picking strategies in distribution center. International Journal of Production Economics, 60-61, 301-307.
  33. Pan, J.C., Shih, P., & Wu, M. (2012). Storage assignment problem with travel distance and blocking considerations for a picker-to-part order picking system. Computers & Industrial Engineering, 62(2), 527–535.
  34. Parikh, P.J., & Meller, R.D. (2008). Selecting between batch and zone order picking strategies in a distribution center. Transportation Research, 44(5), 696–719.
  35. Petersen, C.G. (1999). The impact of routing and storage policies on warehouse efficiency. International Journal of Operations & Production Management, 19 (10), 1053–1064.
  36. Petersen, C.G., & Aase, G. (2004). A comparison of picking, storage, and routing policies in manual order picking. International Journal of Production Economics, 92(1), 11–19.
  37. Petersen, C.G. (1997). An evaluation of order picking routing policies. International Journal of Operations & Production Management, 17 (11), 1098–1111.
  38. Ratliff, H.D., & Rosenthal, A.S. (1983). Order picking in a rectangular warehouse: A solvable case of the traveling salesman problem. Operations Research, 31 (3), 507–521.
  39. Roodbergen, K.J., & De Koster, R. (2001). Routing methods for warehouses with multiple cross aisles. International Journal of Production Research, 39 (9), 1865–1883.
  40. Rosenwein, M.B. (1996). A comparison of heuristics for the problem of batching orders for warehouse selection. International Journal of Production Research, 34(3), 657-664.
  41. Tan, L.C., & Chew, E. (1997). Order picking systems: Batching and storage assignment strategies. Computers & Industrial Engineering, 33(3-4), 817-820.
  42. Taha, H.A. (2004). Investigación de Operaciones. México: Pearson.
  43. Theys, C., Bräysy, O., Dullaert, W., & Raa, B. (2010). Using a TSP Heuristic for routing order pickers in warehouses. European Journal of Operational Research, 200(3), 755–763.
  44. Tsai, C., Liou, J.J.M., & Huang, T. (2008). Using a multiple-GA method to solve the batch picking problem: considering travel distance and order due time. International Journal of Production Research 46 (22), 6533–6555.
  45. Van Nieuwenhuyse, I., & De Koster, R. (2009). Evaluating order throughput time in 2-block warehouses with time window batching. International Journal Production Economics, 121(2), 654-664.
  46. Vaughan, T.S., & Petersen, C.G. (1999). The effect of warehouse cross aisle on order picking efficiency. International Journal of Production Research, 37 (4), 881–897.
  47. Won, J., & Olafsson, S. (2005). Join order batching and order picking in warehouse operations. International Journal of Production Research, 43(7), 1427-1442.
  48. Yu, M., & De Koster, R. (2009). The impact of order batching and picking area zoning on order picking system performance. European Journal of Operational Research, 198(2), 480–490.