Vol. 14 No. 38 (2015): Revista GTI
Articles

METHODOLOGY FOR MODELLING THE CONSTRUCTION PROCESS 5D WITH TECHNOLOGIES BUILDING INFORMATION MODELING

HERNÁN PORRAS DÍAZ
Universidad Industrial de Santander
Bio
OMAR GIOVANNY SÁNCHEZ RIVERA
Universidad Industrial de Santander
Bio
JOSÉ ALBERTO GALVIS GUERRA
Universidad Industrial de Santander
Bio

Published 2014-11-04

How to Cite

PORRAS DÍAZ, H., SÁNCHEZ RIVERA, O. G., & GALVIS GUERRA, J. A. (2014). METHODOLOGY FOR MODELLING THE CONSTRUCTION PROCESS 5D WITH TECHNOLOGIES BUILDING INFORMATION MODELING. Revista GTI, 14(38), 59–73. Retrieved from https://revistas.uis.edu.co/index.php/revistagti/article/view/4869

Abstract


Planning a program of work for the construction of a building project, it is a complex work, that due 
to the large amount of building components, and labor required for the execution of the activities 
of the work team and the large volume of information on a construction project, among others. A 
model of the construction process facilitates the development of a program of work. In this paper 
a methodology for the development of a model of the construction process is proposed, taking 
into account fve variables (dimension in the x-dimension in the y-dimension in the z axis, time 
and cost). For the modeling technologies "building information modeling" (BIM), and the case 
study is the reinforced concrete structure of a bus station located in the city of Bucaramanga, 
Colombia used. The advantages of developing a 5D BIM model, as discussed, manage construction 
information, interference detection and inconsistencies, planning activities and resources for project 
implementation, monitoring of the construction process and reduce losses in the process construction.


KEYWORDS: Building information modeling, BIM, BIM 5D, Construction process, 5D construction 
process modeling, Management of the construction process, Construction management.

Downloads

Download data is not yet available.

References

  1. Wang, W. Weng, S. Wang, S. Chen, C. (2014). Integrating building information models construction process simulations for project scheduling support. Automation in Construction, 37, 68 – 80.
  2. Chen, C. (2011). Applying BIM and simulation to schedule construction projects. Tesis de Trabajo de Grado de Maestría, NationalChiaoTungUniversity, Hsinchu, Taiwan.
  3. Koo, B. Fisher, M. (2000). Feasibility study of 4D CAD in comercial construction. Journal Engineering Construction Management, 126, 251 – 260.
  4. Mahalingam, A. Kashyap, R. Mahajan, C. (2010). An evaluation of the applicability of 4D CAD on construction projects, Automation in Construction, 19, 148 – 159.
  5. Fisher, M. Haymaker, J. Kathleen, L. (2003). Benefits of 3D and 4D models for facibility managers and AEC service providers. Swets&Zeitlinger.
  6. Mikulakova, E. König, M. Tauscher, E. Beucke, K. (2010). Knowledge based schedule generation and evaluation. Advanced Engineering Informatics, 24, 389 – 401.
  7. Zhang, J. Hu, Z. (2011). BIM and 4D based integrated solution of analysis and management for conflicts and structural safety problems during construction: 1. Principles and methodologies. Automation in Construction, 20, 155 – 166.
  8. Mallasi, Z. (2006). Dynamic quantification and analysis of the construction workspace congestion utilising 4D visualization. Automation in Construction, 13, 640 – 655.
  9. Wang, H. Zhang, J. Chau, K. Anson, M. (2004). 4D dynamic management for construction planning and resource utilization. Automation in Construction, 13, 575 – 589.
  10. Gu, N. London, K. (2010). Understanding and facilitating BIM adoption in the AEC industry. Automation in Construction, 19, 988 – 999.
  11. [Cerovsek, T. (2012). Process reuse in product development with 5D models: concepts, similarity measures and querying techniques. Communications in computer and information science, 248, 243 – 262.
  12. Lucko, G. Said, H. Bouferguene, A. (2014). Construction spatial modeling and scheduling with three dimensional singularity functions. Automation in Construction, 43, 132 – 143.
  13. Porras, H. Sánchez, O. Galvis, J. (2014). Filosofía Lean Construction para la gestión de proyectos de construcción: una revisión actual. Revista Avances Investigación en Ingeniería, 11-1, 10-32.
  14. Mejía, G. Hernández, T. (2007). Seguimiento de la productividad en obra: técnicas de medición de rendimientos de mano de obra, Revista UIS ingenierías, 6 (2), 45 – 59.
  15. Mercado, E. (1998). Productividad, base de la competitividad. (Ed.). LIMUSA S.A, (p 400). México.
  16. Li, H. Arditi, D. Wang, Z. (2013). Factors that affect transaction costs in construction projects. Journal of Construction Engineering and Management – ASCE, 139, 60 – 68.
  17. Polanco, L. (2009). Análisis de rendimientos de mano de obra para actividades de construcción. Tesis de trabajo de grado publicado, Universidad Pontificia Bolivariana, Bucaramanga, Colombia.
  18. Lee, T. (2008). Sheduling, estimating, and BIM: a profitable combination. International Transactions – ASCE. [19] Sánchez, J. (1997). Manual de programación y control de programas de obra. (Ed.). Universidad Nacional de Colombia, (p 6). Medellín, Colombia.
  19. Aram, S. Eastman, C. Sacks, R. (2013). Requirements for BIM platforms in the concrete reinforcement supply chain. Automation in Construction, 35, 1 – 17.
  20. Ding, L. Zhou, Y. Akinci, B. (2014). Building Information Modeling (BIM) application framework: The process of expanding from 3D to computable nD. Automation in Construction, 20.
  21. Jiao, Y. Wang, Y. Zhang, S. Li, Y. Yang, B. Yuan L. (2013). A cloud approach to unified lifecycle data management in architecture, engineering, construction and facilities management: Integrating BIMs and SNS. Advanced Engineering Informatics, 27, 173 – 188.
  22. Shen, W. Hao, Q. Mak, H. Neelamkavil, J. Xie, H. Dickinson, J. Thomas, R. Pardasani, A. Xue, H. (2010). Systems integration and collaboration in architecture, engineering, construction, and facilities management: A review. Advanced Engineering Informatics, 24, 196 – 207.
  23. Qing, L. Tao, G. Ping, W. (2014). Study on Building Lifecycle Information Management Platform Based on BIM. Research Journal of Applied Sciences, Engineering and Technology, 7, 1-8.
  24. Renaud, V. Chiristophe, N. Chiristophe, C. (2008). IFC and building lifecycle management. Automation in Construction, 19, 70 – 78.
  25. Redmond, A. Alan, H. Alshawi, M. West, R. (2012). Exploring how information exchanges can be enhanced through cloud BIM. Automation in Construction, 24, 175 – 183.
  26. Eastman, C. Teicholz, P. Sacks, R. Liston, K. (2011). BIM handbook: a guide to building information modeling for owners, managers, designers, engineers and constructors. (Ed.). John Wiley & Sons Inc. Publishing Company. New Jersey, United States.
  27. Park, J. Kim, C. Kim, B. Kim, H. (2011). 3D/4D CAD applicability form life-cycle facility management. Journal computing of civil engineering, 25, 129 – 138.
  28. Volk, R. Stengel, J. Schultmann, F. (2014). Building information modeling (BIM) for existing buildings – literature review and future needs. Automation in Construction, 38, 109 – 127.
  29. ISO Standard, ISO 29481-1. (2010). Building information modeling – information delivery manual – part 1: Methodology and format, 2010.
  30. Hartmann, T. Gao, J. Fischer, M. (2008). Areas of application for 3D and 4D models on construction projects. Journal Engineering Construction Management, 134, 776 – 785.
  31. Porter, S. Tan, T. Tan, T. Geoff, W. (2014). Breaking into BIM: Performing static and dynamic security analysis with the aid of BIM. Automation in Construction, 40, 84 – 95.
  32. Hendrickson, C. (2000). Project managementforconstruction- fundamental. consultado el 18 de Marzo de 2014 en: http:// pmbook.ce.cmu.edu/09_Construction_Planning. html.
  33. Heesom, D. Mahdjoubi, L. (2004). Trends of 4D CAD applications for construction planning. Construction management and economics, 22, 171-182.
  34. Fischer, M. Liston, K. Schwegler, B.R. (2001). Interactive 4D project management system. The 2nd civil engineering conference in the Asian region, Tokyo, 16- 18 Abril.
  35. McKinney, K. Kim, J. Martin, F. Howard, C. (1996). Interactive 4D - CAD. Computing in civil engineering, (pp. 383-389).New York.
  36. González, A.M. (2012). Propuesta de implementación del sistema LastPlanner con el apoyo de modelación 4D para la obra gruesa de edificaciones. Tesis de trabajo de grado publicado, Universidad de Chile, Santiago de Chile, Chile.
  37. Dang, D. Tarar, M. (2012). Impact of 4D modeling on construction planning process. Tesis de master publicado, Chalmers University of Tecnology, Goteborg, Suiza.
  38. Abourizk, S. Mather, K. (2000). Simplifying simulation modeling through integration with 3D CAD. J. Construction engineering management. 126(6), 475- 483.
  39. Kamat, V.R. Martinez, J.C. (2007). Variable- speed object motion in 3D visualizations of discrete - event construction simulation models, Electron. Journal informatics technological construction. 12, 293–305.
  40. Kang, S.C. Chi, H.L. Miranda, E. (2009). Threedimensional simulation and visualization of craneassisted construction erection processes, Journal computationof civilengineering. 23 (6), 363–371.
  41. Halpin, D.W. Woodhead, R. (1976). Design of Construction and Process Operations, John Wiley & Sons, New York.
  42. Halpin, D.W. Rong, Y.H. (1993). Dynamic interface simulation for construction operations. Automation and robotics in construction, 503-510.
  43. Picchi, F. A. (1993). Sistemas de qualidade uso em empresas de construçao de edificios. Tesis para optar el título de doctor. Sao paulo, Brasil.
  44. Popov, V. Skas, D. Juocevicius, V. Milkalauskas, S. (2008). Application of building information modeling and construction. International symposium on automation and robotics in construction, 25, 616 – 624.
  45. Ahankoob, A. khoshnava, S. Rostami, R. Preece, C. (2012). BIM perspectives on construction caste reduction. Management in construction research association postgrade conference,
  46. Faniran, G. Caban. (1998). Minimizing waste on construction project sites. Engineering, construction and architectural management, 5, 182-188.
  47. Osmani, M. et al. (2006). Architect and contractor attitudes ti waste minimization. Proceedings of the institution of civil engineers waste reduction by design. 159, 65-72.
  48. Ford, S. Aouad, G. Brandon, P. Brown, F. Child, T. Cooper, G. Kirkham, J. Oxman, R. Young, B. (1994). The object oriented modeling of building design concepts. Building and environment, 29 NO. 4, 411-419.
  49. Sacks, R. Koskela, L. Dave, B. Owen, R. (2010). Interaction of Lean and Building Information Modeling in construction. Journal of construction engineering and management, 136 NO. 9, 968 – 980.
  50. Birna, I. (2011). BIM adoption in Iceland and its relation to Lean Construction. Reykjavik University.
  51. Stanley, R. Thurnell, D. (2014). The benefits of, and Barriers to, implementation of 5D BIM for quantity surveying Journal of Construction Economics and Building, 14 (1), 105 – 117.
  52. Breit, M. Vogel, M. Häubi, F. Marki, F. Raps, M. (2008). 4D design and simulation technologies and process design patterns to support. Lean construction methods, 13, 179 – 184.
  53. Park, J. Nagakura, T. (2014). A thousand BIM: A rapid value simulation approach to developing a. International Journal of Architectural Computing, 12, 47 – 60.
  54. Silva, O. (2010). Estimación de los beneficios de realizar una coordinación digital de proyectos con tecnologías BIM. Tesis de pregrado en ingeniería civil, Santiago de Chile, Universidad de Chile, facultad de ingeniería. Departamento de ingeniería civil.121p.
  55. Mohamed, M. Mohamed, H. (2014). Implementing earned value management using bridge information modeling. KSCE Journal of Civil Engineering, 18(05), 1302 – 1313.
  56. Khaled, N. (2010). The effect of Building Information Modeling on the accuracy of estimates. American University in Cairo, 34, 356 – 395.
  57. Suermann, P. (2009). Evaluating the impact of Building Information Modeling (BIM) on construction. PhD thesis. Gainesville, USA. University of Florida. 229 p.