Vol. 14 No. 39 (2015): Revista GTI
Articles

APLICACIÓN DE UN ALGORITMO BASADO EN PROPAGACIÓN DE ESPERANZAS PARA DETECCIÓN DE SÍMBOLOS EN SISTEMAS L-MIMO

GUEFRY L. AGREDO MÉNDEZ
Universidad del Cauca, "UNICAUCA"
PABLO EMILIO JOJOA GOMEZ
Universidad del Cauca, "UNICAUCA"
VINCENÇ ALMENAR TERRÉ
Universidad Politécnica de Valencia UPV

Published 2016-08-08

How to Cite

AGREDO MÉNDEZ, G. L., JOJOA GOMEZ, P. E., & ALMENAR TERRÉ, V. (2016). APLICACIÓN DE UN ALGORITMO BASADO EN PROPAGACIÓN DE ESPERANZAS PARA DETECCIÓN DE SÍMBOLOS EN SISTEMAS L-MIMO. Revista GTI, 14(39), 75–85. Retrieved from https://revistas.uis.edu.co/index.php/revistagti/article/view/5666

Abstract

Uno de los retos en el diseño de esquemas de detección para sistemas MIMO con un gran número
de antenas en sistemas de comunicaciones inalámbricas, conocido como L-MIMO (Large MIMO), es
lograr algoritmos de detección eficientes de baja complejidad para hacer viable su implementación
real. Este artículo presenta los resultados logrados con un esquema basado en el algoritmo de
propagación de esperanzas, comparándolo por medio de simulación con detectores lineales de
referencia que se tienen en la literatura, demostrando que a partir de configuraciones 8x8 se logra
una mejor relación desempeño-complejidad, consiguiendo disminuir notoriamente el tiempo de
ejecución en evaluaciones que se hacen hasta L-MIMO 64x64.


PALABRAS CLAVES: L-MIMO, Propagación de Esperanzas, Detección, Baja Complejidad,
Comunicaciones Inalámbricas.

Downloads

Download data is not yet available.

References

  1. S. Nassir, M. Mustaqim y B. Khawaja, «Antenna array for 5th generation 802.11ac Wi-Fi applications,» de High-capacity Optical Networks and Emerging/Enabling Technologies (HONET), 2014 11th Annual, Charlotte, NC, 2014.
  2. A. Osseiran, «The 5G Mobile and Wireless Communications system,» METIS2020, 2013.
  3. Y. Mehmood, N. Haider, W. Afzal y U. Younas, «Impact of Massive MIMO systems on future M2M communication,» IEEE Malaysia International Conference on Communications (MICC), pp. 534- 537, 2013.
  4. Cisco «Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015–2020,» 2016.
  5. J. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. Soong y J. Zhang, «What Will 5G Be?,» IEEE Journal on Selected Areas in Communications, vol. 32, nº 6, pp. 1065 - 1082, 2014.
  6. T. Marzetta, «Massive MIMO: An Introduction,» Bell Labs Technical Journal, vol. 20, pp. 11 - 22, 2015.
  7. E. G. Larsson, O. Edfors, F. Tufvesson y T. L. Marzetta, «Massive MIMO for Next Generation Wireless Systems,» IEEE Communications Magazine, vol. 52, nº 2, pp. 186 - 195, Febrero 2014.
  8. F. Rusek, D. Persson, B. Kiong, E. G. Larsson, T. L. Marzetta, O. Edfors y F. Tufvesson, «Scaling Up MIMO,» IEEE Signal Processing, vol. 30, nº 1, pp. 40 - 60, Enero 2013.
  9. Y. Mehmood, W. Afzal, F. Ahmad y U. Younas, «Large scaled multi-user MIMO system so called massive MIMO systems for future wireless communication networks,» de 19th International Conference on Automation and Computing (ICAC), London, 2013.
  10. E. Biglieri, R. Calderbank, A. Constantinides y A. Goldsmith, MIMO Wireless Communications, New York: Cambridge University Press, 2007.
  11. E. G. Larsson, «MIMO detection methods: How they work,» IEEE Signal Processing Magazine, vol. 26, nº 3, pp. 91-95, Mayo 2009.
  12. L. Lu, G. Li, A. Swindlehurst, A. Ashikhmin y R. Zhang, «An Overview of Massive MIMO: Benefits and Challenges,» IEEE Journal of Selected Topics in Signal Processing, vol. 8, nº 5, pp. 742 - 758, 2014.
  13. P. Svac, F. Meyer, E. Riegler y F. Hlawatsch, «SoftHeuristic Detectors for Large MIMO Systems SoftHeuristic Detectors for Large MIMO Systems,» IEEE Trans. Signal Processing, vol. 61, nº 18, pp. 4573-4586, Sept. 2013.
  14. T. Datta, N. Ashok, A. Chockalingam y B. Sundar Rajan, «A Novel Monte Carlo Sampling Based Receiver for Large-Scale Uplink Multiuser MIMO Systems,» IEEE Transactions Vehicular Technology, vol. 62, nº 7, pp. 3019-3038, Sept. 2013.
  15. Q. Zhou y X. Ma, «Element-Based Lattice Reduction Algorithms for Large MIMO Detection,» IEEE Journal Selected Areas in Communication, vol. 31, nº 2, pp. 274-286, Febrero 2013.
  16. P. Suthisopapan, K. Kasai, V. Imtawil y A. Meesomboon, «Approaching capacity of large MIMO systems by non-binary LDPC codes and MMSE detection,» de Proceedings International Symposium on Information Theory (ISIT) IEEE, Cambridge, 2012.
  17. M. Cirkic y E. G. Larsson, «SUMIS: A Near-Optimal Soft-Ouput MIMO Detector at Low and Fixed Complexity,» de IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, 2012.
  18. P. Svac, F. Meyer, E. Riegler y F. Hlawatsch, «Lowcomplexity detection for large MIMO systems using partial ML detection and genetic programming,» de Proceedings Signal Processing Advances in Wireless Communications (SPAWC), Cesme, 2012.
  19. Q. Zhou y X. Ma, «An Improved LR-aided K-Best Algorithm for MIMO Detection,» de Proceeding Wireless Communications & Signal Processing (WCSP), Huangshan, 2012.
  20. N. Srinidhi, T. Datta, A. Chockalingam y B. Sundar Rajan, «Layered Tabu Search Algorithm for Large-MIMO Detection and a Lower Bound on ML Performance,» IEEE Transactions on Communications, vol. 59, nº 11, pp. 2955-2963, Noviembre 2011.
  21. A. Kumar, S. Chandrasekaran, A. Chockalingam y B. Sundar Rajan, «Near-Optimal LargeMIMO Detection Using Randomized MCMC and Randomized Search Algorithms,» de Proceedings IEEE International Conference on Communications (ICC), Kyoto, 2011.
  22. T. Datta, N. Srinidhi, A. Chockalingam y B. Sundar Rajan, «A Hybrid RTS-BP Algorithm for Improved Detection of Large-MIMO M-QAM Signals,» de Proceedings IEEE National Conference on Communication, Bangalore, 2011.
  23. P. Li y R. D. Murch, «Multiple Output SelectionLAS Algorithm in Large MIMO Systems,» IEEE Communications Letters, vol. 14, nº 5, pp. 399- 401, Mayo 2010.
  24. T. Datta, N. Srinidhi, A. Chockalingam y B. Sundar Rajan, «Random-Restart Reactive Tabu Search Algorithm for Detection in Large-MIMO Systems,» IEEE Communications Letters, vol. 14, nº 12, pp. 1107-1109, Diciembre 2010.
  25. A. Chockalingam, «Detection, Low-Complexity Algorithms for Large-MIMO,» 4th International Symposium on Communications, Control and Signal Processing (ISCCSP), pp. 1-6, 2010.
  26. J. Céspedes, P. Olmos, M. Sánchez-Fernández y F. Perez-Cruz, «Expectation Propagation Detection for High-Order High-Dimensional MIMO Systems,» IEEE Transactions on Communications, vol. 62, nº 8, pp. 2840-2848, 2014.
  27. C. Hernandez y P. Jojoa, «Detección de Señal en un sistema MIMO empleando algoritmos de Colonias de Hormigas,» Entre Ciencia e Ingenieria, vol. 8, nº 1, pp. 52 - 66, 2010.
  28. Y. S. Cho, J. Kim, W. Y. Yang y C. G. Kang, «Signal Detection for Spatially Multiplexed MIMO Systems,» de MIMO-OFDM Wireless Communications with MATLAB, Singapore, John Wiley & Sons, 2010, pp. 319-328.
  29. J. Yedidia, W. Freeman y Y. Weiss, «Understanding Belief Propagation and Its Generalizations,» de Exploring Artificial Intelligence in the New Millennium, Morgan Kaufmann, 2003, pp. 239-269.
  30. J. Kim, Y. Kim y K. and Kim, «Computationally efficient signal detection method for next generation mobile communications using multiple antennas,» SK Telecommunication Review, vol. 17, nº 1, pp. 183-191, 2007.
  31. G. H. Golub y C. F. V. Loan, Matrix Computations, 3rd, Baltimore: Johns Hopkins University Press, 1996.
  32. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, New Jersey: Prentice-Hall, 1993.
  33. P. W. Wolniansky, G. J. Foschini, G. D. Golden y R. A. Valenzuela, «V-BLAST: An Architecture for Realizing Very High Data Rates Over the Rich-Scattering Wireless Channel,» de ISSSE, Pisa, 1998.
  34. T. Lui y Y. L. Liu, «Modified fast recursive algorithm for efficient MMSE-SIC detection of the V-BLAST system,» IEEE Transactions on Wireless Communications, vol. 7, nº 10, pp. 3713-3717, 2008.
  35. T. P. Minka, A family of algorithms for approximate Bayesian inference, Cambridge: Ph.D. Tesis, Massachusetts Institute of Technology, 2001.
  36. M. Seeger, «Bayesian interference and optimal design for the sparse linear model,» Journal on Machine Learning, vol. 9, pp. 759-813, 2008.
  37. C. M. Bishop, Pattern Recognition and Machine Learning, New York: Springer, 2006.
  38. X. Wang y H. V. Poor, Wireless Communication Systems: Advanced Techniques for Signal Reception, New Jersey: Prentice Hall, 2003.
  39. M. W. Seeger, Expectation Propagation for Exponential Families, Berkeley: Universidad de California, 2005.
  40. The MathWorks, Inc., «Parallel Computing Toolbox,» 2015. [En línea]. Available: http:// es.mathworks.com/products/parallel-computing/.
  41. The MathWorks, Inc., «Spatial Multiplexing Example,» 2015. [En línea]. Available: http:// es.mathworks.com/help/comm/examples/spatialmultiplexing.html.