Vol. 15 No. 43 (2016): Revista GTI
Articles

A reference model for detection of industrial pollution events based on a sensors network

Julián Miguel Acevedo-Moreno
Pontificia Universidad Javeriana
Bio
Edgar Enrique Ruiz-García
Pontificia Universidad Javeriana
Bio
Ricardo Hjalmar González-García
Universidad Sergio Arboleda
Bio
Mariela Josefina Curiel-Huerfano
Pontificia Universidad Javeriana
Bio

Published 2017-10-06

Keywords

  • Wireless sensor networks,
  • Smartphones,
  • Monitoring,
  • Data mining,
  • Industrial pollution

How to Cite

Acevedo-Moreno, J. M., Ruiz-García, E. E., González-García, R. H., & Curiel-Huerfano, M. J. (2017). A reference model for detection of industrial pollution events based on a sensors network. Revista GTI, 15(43), 19–35. Retrieved from https://revistas.uis.edu.co/index.php/revistagti/article/view/6799

Abstract

Industrial pollution is significantly affecting the sustainability of the planet. A data collection process allows us to review the contamination levels, and take actions in a timely manner. Nowadays wireless sensor networks support the collection of large amounts of environmental data. If these data are properly processed, they can be used in the detection of pollution sources, and in the design of preventive -or corrective- strategies to deal with it. However, this requires to effectively manage large
amount of data obtained from heterogeneous devices, including not only data from traditional sensors or motes of wireless sensor networks, but also from sensors within Smartphones. In order to handle this heterogeneity, we design a reference model that serves as a guide to combine the technologies of storage, processing and presentation of the data. This model can then be instantiated with specific hardware and software components that meet the needs of companies or government agencies interested in dealing with environmental pollution. In this article, the proposed reference model is presented, in conjunction with a prototype that can be used to solve problems of noise pollution in an automotive company located in Bogota.

Downloads

Download data is not yet available.

References

[1] Lasso, J. C. (2014). La contaminación del aire, el mayor problema ambiental de salud pública en el mundo. Recuperado de: http://www.radionacional.co/noticia/la-contaminaci-n-delaire-el-mayor-problema-ambiental-de-salud-pblica-en-el-mundo.

[2] García, S. (2015). Contaminación Industrial. Recuperado de: http://www.elfinanciero.com.mx/opinion/contaminacion-industrial.html

[3] Secretaría Distrital del Ambiente (s.f.). Red de Monitoreo de Calidad del Aire de Bogotá – RMCAB. Recuperado de: http://ambientebogota.gov.co/red-de-calidad-del-aire

[4] Burke, J. A., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, M. B. (2006). Participatory sensing. World Sensor Web Workshop.

[5] Lee, C. H., Birch, D., Wu, C., Silva, D., Tsinalis, O., Li, Y., Yan, S., Ghanem, M., Guo, Y. (2013). Building a generic platform for big sensor data application, in Big Data. In Proc. of the IEEE International Conference on Big Data, 94–102. TABLA 2: Comparación de Trabajos Relacionados Características/trabajos Godoy y otros

[6] Levis, P., Culler, D. (2002). Maté: A tiny virtual machine for sensor networks. ACM Sigplan Notices, 37(10), 85-95.

[7] Barr, R., Bicket, J. C., Dantas, D. S., Du, B., Kim, T. W., Zhou, B., Sirer, E. G. (2002). On the need for system-level support for ad hoc and sensor networks. ACM SIGOPS Operating Systems Review, 36(2), 1-5.

[8] Hall, S. P., Anderson, E. (2009). Operating systems for mobile computing. Journal of Computing Sciences in Colleges, 25(2), 64-71.

[9] Srisathapornphat, C., Jaikaeo, C., Shen, CC. (2000). Sensor information networking architecture. Proceedings of the International Workshops on Parallel Processing.

[10] Yu, X., Niyogi, K., Mehrotra, S., Venkatasubramanian, N. (2003). Adaptive middleware for distributed sensor environments. IEEE distributed systems online 5.

[11] Eclipse Mosquitto (2014). An Open Source MQTT v3.1/v3.1.1 Broker iot.eclipse.org. Recuperado de: http://mosquitto.org/

[12] Saffirio, M. (2010). Modelos de Referencia. Recuperado de: https://msaffirio.com/2010/11/01/modelos-de-referenciareference-models/

[13] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. Communications magazine, 40(8), 102-114.

[14] Kahn, JM., Katz, RH., Piste, KSJ. (1999). Next century challenges: mobile networking for smart dust. Proc. of the 5th annual ACM/IEEE international conference on Mobile computing and networking (Mobicom 99), Washington, USA, 271–278.

[15] Culler, D., Estrin, D., Srivastava, M. (2004). Guest editors’ introduction: Overview of sensor networks. Computer, (8), 41-49.

[16] Lazarescu, M. T. (2013). Design of a WSN platform for long-term environmental monitoring for IoT applications. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, 3(1), 45–54.

[17] Ferdoush, S., Li, X. (2014). Wireless sensor network system design using Raspberry Pi and Arduino for environmental monitoring applications. Procedia Computer Science, vol. 34, 103-110.

[18] Arias, D. MR., Muñoz Rodríguez, F., Cely Callejas, J. D. (2012). “Design of a sensor network implemented in a monitored via web prototype.” Proc. of the IEEE Colombian
Communications Conference (COLCOM 2012).

[19] Pico, P. (2012). Monitoreo del medio ambiente basado en sensores.

[20] Liu, T., Martonosi, M. (2003). Impala: A middleware system for managing autonomic, parallel sensor systems. ACM SIGPLAN Notices, 38(10), 107-118.

[21] Soini, M. N., Van Greunen, J., Rabaey, J. M., Sydanheimo, L. T. (2007). Beyond sensor networks: Zuma middleware. Proc. of the Wireless Communications and Networking
Conference (WCNC 2007), 4318-4323.

[22] Gerson, M. (Febrero 22, 2015). Smartphone Sales Grew Almost 10% Last Quarter. Benziga. Recuperado de: http://www.benzinga.com/analyst-ratings/analyst-color/16/02/6493276/smartphone-sales-grew-almost-10-last-quarter

[23] Lane, N. D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., & Campbell, A. T. (2010). A survey of mobile phone sensing. Communications Magazine, 48(9), 140-150.

[24] De Sanctis, M., Stallo, C., Parracino, S., Ruggieri, M., Prasa, R. (2012). Interoperability solutions between smartphones and wireless sensor networks. In : Proc. in the IEEE
first AESS European conference on satellite telecommunications (ESTEL 2012), 1-6.

[25] Zhang, J., Chen, C., Ma, J., He, N., Ren, Y. (2011). USink: Smartphone-based moible sink for wireless sensor networks. Proc in Consumer Communications and Networking Conference (CCNC2011), 90-95.

[26] Zöller, S., Reinhardt, A., Guckes, H., Schuller, D., Steinmetz, R. (2011). On the integration of wireless sensor networks and smartphones in the logistics domain. Proc. of the 10th GI/ITG KuVS Fachgespräch Drahtlose Sensornetze, 49-52.

[27] González, R., Huerta, M. (2013). Análisis del uso de teléfonos inteligentes como nodos de una red inalámbrica de sensores. Infociencia 7, 35-41.

[28] Products-Libelium (Octubre 1, 2014). Libellium. Recuperado de: http://www.libelium.com/es/products/.

[29] Sensorcon (Octubre 1, 2014). Sensorcon Catalog Our Single Gas Meters and Environmental Sensors. Recuperado de: http://sensorcon.com/products/

[30] Jain, N., Srivastava, V. (2013). Data Mining techniques: A survey paper. IJRET: International Journal of Research in Engineering and Technology, 2(11), 116-119.

[31] Maimon, O., Rokach, L. (2005). Data mining and knowledge discovery handbook 2. Springer, New York.

[32] Da Sense (Septiembre 22, 2016) www.dasense.de. Recuperado de: https://www.tk.informatik.tu-darmstadt.de/de/research/smart-urban-networks/da-sense/

[33] MQTT (diciembre 1, 2014) mqtt.org. Recuperado de: http://mqtt.org/

[34] Shelby, Z., Hartke, K., Bormann, C. (Junio 2014) The constrained application protocol (CoAP) No. RFC 7252. Recuperado de: https://www.rfc-editor.org/rfc/pdfrfc/rfc7252.txt.pdf

[35] Bormann, C., Z., S. (Agosto 2016) BlockWise Transfers in the Constrained Application Protocol (CoAP). RFC 7959, DOI 10.17487/RFC7959. Recuperado de: http://www.rfceditor.org/info/rfc7959

[36] Maisonneuve, N., Stevens, M., Niessen, M. E., Steels, L. (2009) NoiseTube: Measuring and mapping noise pollution with mobile phones. Proc. of the Information Technologies in Environmental Engineering, 215-228.

[37] Ruíz García, E. E. (2012) Integración de Redes Inalámbricas de Sensores IEEE 802.15.4 en Aplicacione USN. Memoria del Trabajo de Grado de Maestria en Computacion y Sistemas, Pontificia Universidad Javeriana, Bogota, Colombia.

[38] MQTT (noviembre 15, 2014) mqtt-client : 0.4.0. Recuperado de: https://www.versioneye.com/java/org.eclipse.paho:mqtt-client/0.4.0

[39] Balam, L. A. Clasificación de temperatura con weka en Java y NetBeans.

[40] Google Circles. Google Maps. Recuperado de: https://developers.google.com/maps/documentation/javascript/examples/circle-simple

[41] Godoy, D. A., Sosa, E. O., Neis, R., Díaz Redondo, R. (2014). Ambientes Inteligentes: middleware de soporte para la captura, almacenamiento y publicación de datos de una red de sensores inalámbricos. Proc. del XX Congreso Argentino de Ciencias de la Computación, Buenos Aires.

[42] Navarro, M., Bhatnagar, D., Liang, Y. (2011) An integrated network and data management system for heterogeneous WSNs. IEEE Eight International Conference on Mobile Ad-Hoc and Sensor Systems, 819-824.

[43] Hasenfratz, D., Saukh, O., Sturzenegger, S., Thiele, L. (2012) Participatory air pollution monitoring using smartphones. Proc. of the 2nd International Workshop on Mobile Sensing, Beijing, China.

[44] Schweizer, I., Bärtl, R., Schulz, A., Probst, F., Mühläuser, M. (2011) NoiseMap-real-time participatory noise maps. Proc. on the 2nd Int’l Workshop on Sensing Applications on Mobile Phones (PhoneSense’11)