Evaluación de la digestión y co-digestión anaerobia de residuos de comida y de poda en bioreactores a escala laboratorio

  • Juan Camilo Solarte Toro Universidad Nacional de Colombia - Manizales
  • Juan Pablo Mariscal Moreno Universidad Nacional de Colombia - Manizales
  • Beatriz Helena Aristizábal Zuluaga Universidad Nacional de Colombia - Manizales
Palabras clave: biogás, co-digestión, digestión anaerobia, residuos de comida, residuos de poda

Resumen

El deterioro ambiental provocado por el alto consumo de combustibles fósiles y la inadecuada disposición de residuos sólidos, ha incentivado su conversión en productos energéticos de alto valor agregado a partir de diferentes procesos biotecnológicos con el fin de compensar parte de la demanda energética. En este trabajo se evalúa la eficiencia, el rendimiento y la productividad del proceso de digestión y co-digestión anaerobia de residuos de comida y poda para valorar su viabilidad como sustratos en la generación de biogás. El seguimiento y evaluación del proceso de digestión mesófila se realizó usando biorreactores por lotes con un volumen activo de 3L, una Relación Inóculo a Sustrato (RIS) de 0,25 (sólidos totales) y una relación residuos de comida a poda de 1,6 (sólidos totales) en el ensayo de co-digestión. En los ensayos realizados se obtuvieron eficiencias de producción de biogás del 38% y 49% con respecto al potencial teórico (determinado a partir de la ecuación de Buswell) para los residuos de poda y comida respectivamente en mono-digestión, y un 66% para la mezcla poda-comida. El modelo de Gompertz de crecimiento de biomasa fue utilizado para simular la generación de biogás en cada proceso. Estos resultados y el seguimiento del pH durante la digestión, permiten concluir que la mezcla de residuos de comida con residuos de poda mejora los rendimientos de producción de biogás y la estabilidad del sistema en términos de pH, siendo una alternativa para la generación de bioenergía a partir de residuos de cotidiana generación en las ciudades colombianas


Palabras clave: biogás, co-digestión, digestión anaerobia, residuos de comida, residuos de poda

Descargas

Descargar los datos que aún no están disponibles

Citas

[1] Superintendencia de Servicios Públicos Domiciliarios. Disposición Final de Residuos Sólidos - Informe Nacional. 2015.

[2] Departamento Nacional de Planeación. Rellenos sanitarios de 321 municipios colapsarán en cinco años, advierte el DNP. 2016. Disponible en: https://www.dnp.gov.co/Paginas/-Rellenos-sanitarios-de-321-municipios-colapsar%C3%A1n-en-cinco-a%C3%B1os,-advierte-el-DNP--.aspx. Fecha de consulta: Julio 2016.

[3] Liu G, Zhang R, El-Mashad H, Dong R. Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresour Technol.; 2009;100(21):5103–8.

[4] IDEAM, PNUD, MADS, DNP, Cancillería. Inventario nacional y departamental de gases efecto invernadero – Colombia. Tercera comunicación nacional de cambio climático. Bogotá D.C, 2016.

[5] Chynoweth D, Owens J, Legrand R. Renewable methane from anaerobic digestion of biomass. Renew Energy. 2001;22(1):1–8.

[6] Palomino M, Ortegón M, Rojas T, Martínez J, Valderrama J, Barragán R, et al. Evaluación del potencial acidogénico para producción de AGV de melaza de la industria azucarera como valorización de este subproducto. Rev. ION. 2016;29(1):71-80.

[7] Sreela-or C, Plangklang P, Imai T, Reungsang A. Co-digestion of food waste and sludge for hydrogen production by anaerobic mixed cultures: Statistical key factors optimization. Int. J. Hydrogen Energy. 2011;36(21):14227-37.

[8] Romero-Güiza M, Mata-Alvarez J, Chimenos J, Astals S. Nutrient recovery technologies for anaerobic digestion systems : An overview. rev.ion. 2016;29(1):7-26.

[9] Zhang R, El-Mashad H, Hartman K, Wang F, Liu G, Choate C, et al. Characterization of food waste as feedstock for anaerobic digestion. Bioresour Technol. 2007;98(4):929–35.

[10] Lou X, Nair J, Ho G. Potential for energy generation from anaerobic digestion of food waste in Australia. Waste Manag Res. 2013;31(3):283–94.

[11] Unidad de Planeación Minero Energética, Instituto de Hidrología Meteorología y Estudios Ambientales, Colciencias, Universidad Industrial de Santander. Atlas del Potencial Energético de la Biomasa Residual en Colombia. 2011.

[12] Beigl P, Lebersorger S, Salhofer S. Modelling municipal solid waste generation : A review. Waste Manag. 2008;28:200-14.

[13] Alcaldia de Manizales. Plan de gestión integral de residuos sólidos de Manizales PGIRS 2015 – 2027. 2015.

[14] UAESP. Caracterización de los residuos sólidos residenciales en la ciudad de Bogotá D.C 2011. 2011.

[15] Alcaldía Municipal de Quibdó. Actualización y ajustes del plan de gestión integral de residuos sólidos del municipio de Quibdó - Chocó. 2015 - 2026. 2015.

[16] Alcaldia de Santiago de Cali. Evaluación y actualización del plan de gestión integral de residuos sólidos de Santiago De Cali. 2015.

[17] Secretaria de Medio Ambiente. Municipio de Medellín. Actualización del Plan de Gestión Integral de Residuos Sólidos (PGIRS) del municipio De Medellín dando cumplimiento a la Resolución 0754 del 25 de Noviembre del 2014. 2015.

[18] Alcaldía de Barranquilla. Plan de Gestión Integral de Residuos Sólidos – PGIRS. 2016 - 2027. 2015.

[19] Aristizábal B, Vanegas E, Mariscal J, Camargo-Valero M. Digestión anaerobia de residuos de poda como alternativa para disminuir emisiones de gases de efecto invernadero en rellenos sanitarios. Revista Energética. 2015;(46):29–36.

[20] Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos J, Guwy J, et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol. 2009;59(5):927–34.

[21] Raposo F, De la Rubia M, Fernández-Cegrí V, Borja R. Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renew Sustain Energy Rev; 2012;16(1):861–77.

[22] Scaglia B, Confalonieri R, D’Imporzano G, Adani F. Estimating biogas production of biologically treated municipal solid waste. Bioresour Technol; 2010;101(3):945–52.

[23] Raposo F, Banks C, Siegert I, Heaven S, Borja R. Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem. 2006;41(6):1444–50.

[24] Davidsson Å, Gruvberger C, Christensen T, Hansen T, Jansen J. Methane yield in source-sorted organic fraction of municipal solid waste. Waste Manag. 2007;27:406–14.

[25] Esposito G, Frunzo L, Giordano A., Liotta F, Panico A, Pirozzi F. Anaerobic co-digestion of organic wastes. Rev Environ Sci Bio/Technology. 2012;11(4):325–41.

[26] Nizami A, Orozco A, Groom E, Dieterich B, Murphy J. How much gas can we get from grass? Appl. Energy. 2012;92:783-90.

[27] ASTM International. ASTM D5231-92. Método de prueba estándar para la determinación de la composición de procesado de residuos sólidos urbanos. 2008.

[28] Xie S, Frost J, Lawlor P, Wu G, Zhan X. Effects of thermo-chemical pre-treatment of grass silage on methane production by anaerobic digestion. Bioresour Technol. 2011;102(19):8748–55.

[29] American Public Health Association, American Water Works Association, Water Environment Federation. Standard methods for the examination of water and wastewater. 22nd ed. 2012.

[30] ASTM International. ASTM D5373-14. Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke. 2014.

[31] ASTM International. ASTM D4239-14e2. Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion. 2014.

[32] Van Soest P, Robertson J, Lewis B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991;74:3583-97.

[33] Walker M, Zhang Y, Heaven S, Banks C. Potential errors in the quantitative evaluation of biogas production in anaerobic digestion processes. Bioresour Technol; 2009;100(24):6339–46.

[34] Sahito A, Mahar R, Rajput M. Development of Volumetric Methane Measurement Instrument for Laboratory Scale Anaerobic Reactors. Mehran Univ Res J Eng Technol. 2015;34(3):309–16.

[35] Carvalho P, Pereira L, Gonçalves N, Queimada A, Coutinho J. Carbon dioxide solubility in aqueous solutions of NaCl: Measurements and modeling with electrolyte equations of state. Fluid Phase Equilib. 2015;388:100–6.

[36] Chernicharo CA de L. Anaerobic Reactors. London: IWA Publishing; 2007.

[37] Brown D, Li Y. Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresour Technol; 2013;127:275–80.

[38] Curry N, Pillay P. Biogas prediction and design of a food waste to energy system for the urban environment. Renew Energy; 2012;41:200–9.

[39] Li Y, Zhang R, Chen C, Liu G, He Y, Liu X. Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions. Bioresour Technol. 2013;149:406–12.

[40] Lo H, Kurniawan T, Sillanpää M, et al. Modeling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors. Bioresour. Technol. 2010;101(16):6329-35.

[41] Nielfa A, Cano R, Fdz-Polanco M. Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol Reports. 2015;5:14–21.

[42] Prabhudessai V, Ganguly A, Mutnuri S. Biochemical Methane Potential of Agro Wastes. J Energy. 2013;2013:1–7.

[43] Cherosky P. Anaerobic Digestion of Yard Waste and Biogas Purification by Removal of Hydrogen Sulfide. The Ohio State University (Tesis de Maestría). 2012.

[44] Prochnow A, Heiermann M, Drenckhan A, Schelle H. Seasonal Pattern of Biomethanisation of Grass from Landscape Management. Agric Eng Int CIGR J; 2005.

[45] Korres N, O’Kiely J, Benzie A, West J. Bioenergy Production by Anaerobic Digestion: Using Agricultural Biomass and Organic Wastes. United Kingdom: Routledge; 2013.

[46] Cadavid-Rodríguez L, Bolaños-Valencia I. Grass from public green spaces an alternative source of renewable energy in tropical countries. rev.ion. 2016;29(1):109–16.

[47] Massé D, Gilbert Y, Savoie P, et al. Methane yield from switchgrass harvested at different stages of development in Eastern Canada. Bioresour Technol. 2010;101(24):9536–41.

[48] Schmidt A, Borges J, Fonseca W, Monteiro A. Current limitations and the necessary improvements in the anaerobic technology for domestic wastewater treatment. 13th World Congr. Anaerob. Dig. 2013

[49] Jin G, Bierma T, Walker P. Biogas production from switchgrass under experimental conditions simulating US digester operations. J. Environ. Sci. Heal. Part a-Toxic/Hazardous Subst. Environ. Eng. 2012:47(3):470–8.

[50] Frigon J, Mehta P, Guiot S. Impact of mechanical, chemical and enzymatic pre-treatments on the methane yield from the anaerobic digestion of switchgrass. Biomass and Bioenergy. 2012:36;1–11.

[51] Abubakar B, Ismail N. Anaerobic digestion of cow dung for biogas production. J. Eng. Appl. Sci. 2012:7(2);169–72.
Publicado
2017-06-30
Cómo citar
SOLARTE TORO, Juan Camilo; MARISCAL MORENO, Juan Pablo; ARISTIZÁBAL ZULUAGA, Beatriz Helena. Evaluación de la digestión y co-digestión anaerobia de residuos de comida y de poda en bioreactores a escala laboratorio. REVISTA ION, [S.l.], v. 30, n. 1, jun. 2017. ISSN 2145-8480. Disponible en: <http://revistas.uis.edu.co/index.php/revistaion/article/view/6448>. Fecha de acceso: 22 oct. 2017 doi: https://doi.org/10.18273/revion.v30n1-2017008.
Sección
Artículo de Investigación Científica y Tecnológica