Vol. 34 Núm. 1 (2021): Revista ION
Artículos

Actividad antimicrobiana del extracto hidroalcohólico de Calendula officinalis L.

Rodrigo Rodríguez Cepeda
Universidad Pedagógica Nacional
Nelsy Yanet Alvarez Suarez
Kolbe Internacional SAS

Publicado 2021-05-26

Palabras clave

  • Aditivos naturales,
  • Alimentos,
  • Antimicrobianos,
  • Conservación

Cómo citar

Rodríguez Cepeda, R., & Alvarez Suarez, N. Y. (2021). Actividad antimicrobiana del extracto hidroalcohólico de Calendula officinalis L. Revista ION, 34(1), 97–110. https://doi.org/10.18273/revion.v34n1-2021008

Resumen

La búsqueda de productos naturales, con determinadas funciones como aditivos alimentarios, son de gran interés investigativo por su proyección industrial. Por esta razón, el presente documento muestra los resultados de un estudio exploratorio sobre la actividad antibacteriana de un extracto hidroalcohólico de Calendula officinalis L., el cual se caracterizó mediante análisis fitoquímico, espectroscopía Infrarroja-Attenuated Total Reflection (IR-ATR), y cromatografía de gases acoplada a masas (CG-MS). El poder antimicrobiano se determinó sobre Pseudomona aeruginosa, Staphyloccocus aureus, y Candida albicans. Finalmente, se realizó una aplicación sobre fresa (Fragaria chiloensis L.), con el fin de observar el efecto sobre la vida útil del fruto, esto en las condiciones ambientales de temperatura 20 °C y humedad relativa 70%. Los resultados muestran que el extracto hidroalcohólico es una mezcla de diversos compuestos químicos, con buenas propiedades como biocompuestos activos. Finalmente se evidencia la presencia de taninos, carotenoides y compuestos fenólicos, entre otros, los cuales, de acuerdo con el estudio de actividad antimicrobiana, mejoraron la vida útil de la F. chiloensis.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Vladislav O. Antioxidante and antimicrobial propierties of oregano extract. Foods and Raw Material. 2020 8(1):84-90.

[2] Dominguez E. Efecto de la aplicación del extracto hidroalcohólico de flores de caléndula (Calendula officinalis) en la estabilización del color y vida útil en pulpa de frutas(Tesis Maestría) . Bogotá, Colombia, Universidad Nacional de Colombia. Bogotá: Universidad Nacional de Colombia; 2012.

[3] Alenisan M, Alqattan H, Tolbah L, Shori A. Antioxidante properties of dairy products fortified with natural additives. Journal of the Association of Arab Universities for Basic and Applied Sciences. 2017: 101-106.

[4] Barreira J, Ferreira I, Oliveira B, Pereira J. Antioxidant activities of the extracts from chestnut flower leaf, skins and fruit. Food chemistry. 2008; 107(3): 1106-1113.

[5] Valdés A, Ramos M, Beltrán A, Jiménez A, Garriós M. State of the art of antimicrobial edible coatings for food pakaging applications. Coating. 2017; 7(56): 2-23.

[6] Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). CODEX ALIMENTARIUS. Washington, USA; 1995

[7] Castro H, Parada F. Evaluación del efecto protector contra la oxidación lipídica de fracciones obtenidas a partir del pericarpio de tomáte de arbol (Solanum betaceum sendtn). Revista Colombiana de Químic. 2017, 46(2):17-23.

[8] Paim M, Maciel M, Weschenfelder S, Bergmann G, Avancini C. Anti-Echerichia coli effect of Hibiscus Sabdariffa L. in a meat model. Food Dcience and Technology. 2017;37(4): 647-650.

[9] Águila B, Menéndez R, González C, Fernández D. Extracto acuoso de Calendula officinalis, estudio preliminar de sus propiedades. Revista Cubana de Plantas Medicinale. 2000; 5(1): 30- 31.

[10] Shirinidhi S, Soumya B, Rukmini J, Chethana Kala B, Shiv K. Efficacy of calendula officinalis extract (Marigold flower) as antimicrobial agent against oral microbes: An invitro study in comparision with chlorexidine digloconate.
Journal of Clinical and Diagnostic Researc. 2017; 11(10): 5-10.

[11] Meyer G, Sarmiento O, Ramirez R, Guevara O. Estimación del contenido de fenoles totales en aceite esencial de caléndula (Calendula officinalis L.) Obtenido mediante OAHD. Revista ION. 2018; 31(1): 7-12.

[12] Amira E, Ghada S, Abeer A, Heba E. Prevention of bacterial biofilm formation on soft contact lenses using natural compounds. Journal of Ophthalmic Inflamation and Infection. 2017; 7(11): 1-7.

[13] Cámara de Commercio de Bogotá. Manual de fresa. Bogotá, Colombia; 2015.

[14] Valgas C, Simone M, Elza F, Smänia J. Screening methods to determine antibacterial activity of natural products.
Brazilian Journal of Microbiology. 2007; 38(2): 369-380.

[15] Varela M, Maekawa L, Oliveira L, Cardoso A, Shygei E, Carvalho C. In vitro antimicrobial activity of auxiliary chemical substances and natural extracts on Candida albicans and Enterococcus fecalis in root canals. Journal of
Applied Oral Science. 2013; 21(2): 118-123.

[16] Acosta L, Rodríguez C, Sánchez E. Instructivo técnico de Calendula officinalis L. Revista Cubana de Plantas Medicinales. 2001; 1: 23-27.

[17] Sánchez G, Castro C, Álvarez G, Flores J, Barriga M. Compuestos fenólicos y actividad antioxidante de los extractos de la hoja de chirimoya (Annona cherimola Mill). Revista Colombiana de Química. 2019; 48(2): 21-26.

[18] Ortiz L, Chaves G. Composición fitoquímica del extracto de raíz de Ichthyothere terminalis de dos regiones geográficas de Colombia. Revista Colombiana de Química. 2017; 46(3):11-16.

[19] Lima B, Oliveira R, Santos E, Bittencourt M, Santos O. Phytochemical characterization and bioactivity of ethanolic extracts on eggs of citrus blackfly. Ciência Rural. 2017; 47(11):1-6.

[20] Aparicio R, Velasco J, Paredes R, Rojas L. Caracterización química y actividad antibacteriana del aceite esencial de Manguifera indica L. de tres regiones de Venezuela. Revista Colombiana de Química. 2019; 48(3): 13-18.

[21] Instituto Colombiano de Normas Técnicas. Antisépticos y desinfectantes químicos actividad bactericida básica. Método de prueba y requisitos (fase 1). Bogotá, Colombia: ICONTEC; 2003.

[22] Casierra F, Peña J, Vargas A. Propiedades fisicoquímicasde fresa (Fragaria sp) cultivadas bajo filtros fotoselectivos. Revista Facultad de Agronomía Medellín. 2011; 64(2): 6221-6228.

[23] Vicente O, Bascaiu M. Flavonoids antioxidand compounds for plant defence and for a healthy human diet. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2018; 46(1): 14-21.

[24] Han L, Yao S, Cao S, Mo G, Li J, Cao Y, et. al. Triterpenoid saponins from Anemone faccida suppress tumor cell proliferation by regulating MAPK, PDI/PDLI, and STAT3 signaling pathways and altering cancer metabolism. Onco Targets and Therapy. 2019; 12: 10917-10930.

[25] Hussain G, Huang J, Rasul A, Anwar H, Imran A, Maqbool J, et.al. Putative roles of plantderived tannins in neurodegenerative and neuropsychiatry disorders and update review. Molecules. 2019; 24(12): 2-16.

[26] Kochan E, Szymanska G, Grzegorczy I, Szymczyk P, Sienkiewicz M. Ginsenoside and phenolic compounds in hydromethanolic extracts of American ginseng cell cultures and their antioxidant properties. Acta Societatis
Botanicorum Poloniae. 2019; 88(4): 1-11.

[27] Payili N, Yennam S, Rekula S, Naidu C, Bodde Y, Ghosh B. Design synthesis and evaluation of anticancer properties of novel quinone bearing Charbamyl β-Lactam hybrids. Journal of Heterocyclic Chemistry. 2018; 55(6): 1358-1365.

[28] Espada L, Ferrer A, Batista Y, Bandera A, Almeida Y. Separación y clasificación de los alcaloides presentes en las hojas y flores de la especie Sipilantes urens Jacq. Revista Cubana de Química. 2016; 28(1): 409-430.

[29] Heredia L. Programa guia de actividades para la enseñanza de conceptos asociados a la inhibición enzimática a través del docking molecular en ambientes de aprendizaje blenden learning (Tesis). Bogotá, Colombia: Universidad Pedagógica Nacional; 2019.

[30] Calderón G. Manual para la interpretación de espectros infrarrojos. Bogotá: Universidad Nacional de Colombia; 1985.

[31] Pretsch E, Clerc T, Seibl J, Simon W, Castells J, Camps F. Tablas para la elucidación estructural de compuestos orgánicos por métodos espectroscópicos. 2 ed. Madrid: Editorial Alhambra; 1985.

[32] Silverstein R, Webster F, Kiemle D, & Bryce D. Spectrometric identification of organic compounds. 8 ed. New Jersey: Wiley; 2014.

[33] National center for Biotechnology Information. PubChem (sitio en internet). NCBI. Disponible en: https://pubchem.ncbi.nlm.nih.gov/ . Acceso el 29 de Septiembre 2019.

[34] Mozafari A, Vafaee Y, Shahyad M. Phytochemical composition and invitro antioxidant potential of Cynodon dactylon leaf and rhizome extracts as affected by dryiong methods and temperatures. Journal of Food
Science and Technology. 2018; 55(6): 2020-2029.

[35] Ledl F, Schnell W, Severin T. Nachweis von 2,3-Dhydro-3,5-dihydroxy-6-methyl-4Hpyran- 4-on in lebensmitteln. Zeitschrift für Lebensmittel-Untersuchung und Forschung. 1976; 160(4): 367-370.

[36] Čechovská L, Cejpek K, Konečný M. On the role of 2,3-dihydro-3,5-dihydroxy-6-methyl-(4H)-pyran-4-ona in antioxidant capacity of purenes. Europan Food Research and Technology. 2011; 233(3): 367-376.

[37] Morales M, Domínguez M, González G, Bello H. Actividad antimicrobiana de aceite esencial de eucalyptus globulus, proveniente de la región del BIo-Bio Chile, sobre Klebsiella pneumonieae productoras de BLEE. XIII
Congreso Argentino de Microbiología. 2013 sep 23-26; Buenos Aires, Argentina

[38] Stephen J, Harbeck R, McCarter Y, Ortez J, Rankin I, Sautter R, et.al. Manual de pruebas de susceptibilidad antimicrobiana. Seattle: University of Washington; 2005.

[39] Bazán E, Sánchez E, Córdoba E, Hernández F, Manzano P, López R. Hallazgo de Candida albicans en manos de manejadoras de alimentos. Revista Mexicana de Patología Clínica. 2001; 48(1): 37-41.

[40] Fungicide Resistance Action Committee. Clasificación de fungicidas y bactericidas según el modo de acción. Basilea, Suiza: FRAC; 2019.