Vol. 35 Núm. 2 (2022): Revista ION
Artículos

Una mirada fisicoquímica a la solubilidad del propano en N-formil morfolina y sulfolano

Brandon Smith Martínez Costa
Universidad de Pamplona

Publicado 2022-12-02

Palabras clave

  • Propano,
  • Solubilidad,
  • Solvente Orgánico,
  • Parámetros Krichevsky-Ilinskaya,
  • Peng-Robinson PR,
  • Constante de Henry
  • ...Más
    Menos

Cómo citar

Martínez Costa, B. S. (2022). Una mirada fisicoquímica a la solubilidad del propano en N-formil morfolina y sulfolano. Revista ION, 35(2), 7–18. https://doi.org/10.18273/revion.v35n2-2022001

Resumen

A nivel mundial el gas propano o gas licuado de petróleo (GLP) ha sido ampliamente utilizado con diversos fines, tales como gas refrigerante, combustible, calefacción; entre otros. El propano es un hidrocarburo perteneciente a la familia de las parafinas, el cual se considera soluble en algunas sustancias orgánicas. El propósito de esta reflexión es abarcar un estudio interpretativo y crítico sobre la solubilidad del propano en dos solventes orgánicos: N-formil morfolina (NFM) y sulfolano a 298.15, 313.15 y 343.15 K, teniendo en cuenta las condiciones de presión en trabajos ya culminados. Este trabajo, comprende una perspectiva fisicoquímica hacia el análisis de la presión y la temperatura como principales factores cuantitativos en los sistemas binarios propano (2) + NFM (1) y propano (2) + sulfolano (1); destacando un análisis crítico y global acerca de los parámetros de la ecuación de Krichevsky-Ilinskaya (KI).  Finalmente, y bajo las condiciones establecidas, se discuten los efectos de la ecuación de estado de Peng-Robinson (PR EOS), tales como el parámetro de interacción binaria (BIP), la función alfa y algunas modificaciones de estos mismos.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Abbasov ZY, Fataliyev VM, Hamidov NN. The solubility of gas components and its importance in gas-condensate reservoir development. Pet. Sci. Technol. 2017;35(3):249-56. doi.org/10.1080/10916466.2016.1251459
  2. Granryd E. Hydricarbons as refrigetants-an overview. Int. J. Refrig. 2001;24(1),15-24. doi.org/10.1016/s0140-7007(00)00065-7
  3. Fleury D, Hayduk W. Solubility of propane in isomers of hexane and other non-polar solvents. Can. J. Chem. Eng. 1975;53(2):195-9. doi.org/10.1002/cjce.5450530207
  4. Mirgorod YA. Solubility of Ethane, Propane, and Butane in Aqueous Solutions of Sodium Dodecyl Sulfate. Russ. J. Gen. Chem. 2005;75(1):31-3. doi.org/10.1007/s11176-005-0167-4
  5. Jou F, Mather AE, Schmidt KA. Solubility of propane in N ‐formyl morpholine. Can. J. Chem. Eng. 2020;98(4):998-1002. doi.org/10.1002/cjce.23695
  6. Schmidt KA, Jou FY, Mather AE. Solubility of Propane in Sulpholane at Elevated Pressures. Can. J. Chem. Eng. 2008;84(2):256-9. doi.org/10.1002/cjce.5450840213
  7. Hayduk W, Wong CF. Solubility of propylene gas in octane and various polar solvents. Can. J. Chem. Eng. 1990;68(4):653-60. doi.org/10.1002/cjce.5450680417
  8. Mattson B. Microscale Gas Chemistry. Edu quím. 2005;16(4):514-528. doi.org/10.22201/fq.18708404e.2005.4.66089
  9. Miyano Y, Fukuchi K. Henry's constants of propane, propene, trans-2-butene and 1,3-butadiene in methanol at 255–320K. Fluid Phase. Equilib. 2004;226:183-7. doi.org/10.1016/j.fluid.2004.09.010
  10. Domańska U, Moollan WC, Letcher TM. Solubility of Sulfolane in Selected Organic Solvents. J. Chem. Eng. Data. 1996;41(2):261-5. doi.org/10.1021/je950236w
  11. Sciamanna SF, Lynn S. Solubility of hydrogen sulfide, sulfur dioxide, carbon dioxide, propane, and n-butane in poly (glycol ethers). Ind. Eng. Chem. Res. 1988;27(3):492-9. doi.org/10.1021/ie00075a020
  12. Henni A, Lal D, Mather AE. The solubility of ethane in n-methylpyrrolidinone. Can. J. Chem. Eng. 1996;74(3):423-5. doi.org/10.1002/cjce.5450740315
  13. Jou FY, Deshmukh RD, Otto FD, Mather AE. Solubility of H2S, CO2 and CH4 in N-formyl morpholine. Journal of the Chemical Society, Faraday Transactions 1: J. Chem. Soc. 1989;85(9):2675-82. doi.org/10.1039/f19898502675
  14. Peng DY, Robinson DB. A New Two Constant Equation of State. Ind. Eng. Chem. Fundam. 1976;15(1):59-64. doi.org/10.1021/i160057a011
  15. Prausnitz JM, Shair FH. A thermodynamic correlation of gas solubilities. AIChE. J . 1961;7(4):682-7. doi.org/10.1002/aic.690070430
  16. Jain D, Panda AK, Majumdar DK. Eudragit S100 entrapped insulin microspheres for oral delivery. AAPS PharmSciTech. 2005;6(1):E100—E107. doi.org/10.1208/pt060116
  17. Bradford ML, Thodos G. Solubility parameters of hydrocarbons. Can. J. Chem. Eng. 1966;44(6):345-8. doi.org/10.1002/cjce.5450440609
  18. Hildebrand JH. SOLUBILITY. J. Am. Chem. 1916;38(8):1452-73. doi.org/10.1021/ja02265a002
  19. Dariva C, Lovisi H, Mariac LC, Coutinho FM, Oliveira JV, Pinto JC. Propylene Solubility in Toluene and Isododecane. Can. J. Chem. Eng. 2008;81(1):147-52. doi.org/10.1002/cjce.5450810119
  20. Hayduk W, Asatani H, Miyano Y. Solubilities of propene, butane, isobutane and isobutene gases in n-Octane, Chlorobenzene and n-Butanol solvents. Can. J. Chem. Eng. 1988;66(3):466-73. doi.org/10.1002/cjce.5450660318
  21. Chappelow CC, Prausnitz JM. Solubilities of gases in high-boiling hydrocarbon solvents. AIChE. J. 1974;20(6):1097-104. doi.org/10.1002/aic.690200606
  22. Marufuzzaman M, Henni A. Solubility and diffusivity of propane in heavy oil and its SARA fractions. Can. J. Chem. Eng. 2014;92(8):1421-31. doi.org/10.1002/cjce.21977
  23. Myers AK, Myers AL. Prediction of mixed gas solubility at high pressure. Fluid. Phase. Equilib.1988;44(2):125-44. doi.org/10.1016/0378-3812(88)80108-0
  24. Orentlicher M, Prausnitz JM. Thermodynamics of hydrogen solubility in cryogenic solvents at high pressures. Chem. Eng. Sci. 1964;19(10):775-82. doi.org/10.1016/0009-2509(64)85088-0
  25. Patiño E, Aguilar G. Cinética de adsorción de propano y propileno en zeolita 5A-K. Adsorción irreversible inusual de propileno. Superf. Vacío. 2012;25(3),171-4. http://www.scielo.org.mx/scielo.php?pid=S1665-35212012000300005&script=sci_abstract
  26. Della Monica M, Jannelli L, Lamanna U. Physicochemical properties of sulfolane. J. Phys. Chem. 1968;72(3):1068-71. doi.org/10.1021/j100849a050
  27. Li X, Yang D. Determination of Mutual Solubility between CO2 and Water by Using the Peng– Robinson Equation of State with Modified Alpha Function and Binary Interaction Parameter. Ind. Eng. Chem. Res. 2013;52(38):13829-38.doi.org/10.1021/ie401365n
  28. Søreide I, Whitson CH. Peng-Robinson predictions for hydrocarbons, CO2, N2, and H2S with pure water and NaCI brine. Fluid Phase Equilib. 1992;77:217-40. doi.org/10.1016/0378-3812(92)85105-h
  29. Peng Dy, Robinson DB. Thermodynamics of Aqueous Systems with Industrial Applications WASHINGTON, D. C: AMERICAN CHEMICAL SOCIETY; Two- and Three-Phase Equilibrium Calculations for Coal Gasification and Related Processes; 1980. p. 393-414. doi.org/10.1021/bk-1980-0133.ch020
  30. Michel S, Hooper HH, Prausnitz JM. Mutual solubilities of water and hydrocarbons from an equation of state. Need for an unconventional mixing rule. Fluid Phase Equilib. 1989;45(2-3):173-89. doi.org/10.1016/0378-3812(89)80256-0
  31. Li H, Yang D. Modified α function for the Peng−Robinson equation of state to improve the vapor pressure prediction of non-hydrocarbon and hydrocarbon compounds. Energy Fuels. 2011;25(1):215-23. doi.org/10.1021/ef100927z
  32. Jou FY, Otto FD, Mather AE. The solubility of propane in 1,2-ethanediol at elevated pressures. J. Chem. Thermodyn. 1993;25(1):37-40. doi.org/10.1006/jcht.1993.1004
  33. Li X, Yang D, Zhang X, Zhang G, Gao J. Binary interaction parameters of CO2−heavyn- alkanes systems by using Peng–Robinson equation of state with modified alpha function. Fluid. Phase. Equilib. Junio de 2016;417:77-86. doi.org/10.1016/j.fluid.2016.02.016
  34. Jou FY, Schmidt KA, Mather AE. Solubility of Ethane in N-Formyl Morpholine. J. Chem. Eng. Data. 2003;48(2):224-5. doi.org/10.1021/je0255271
  35. Hildebrand JH, Lamoreaux RH. Solubility of Gases in Liquids: Fact and Theory. Ind. Eng. Chem. Fundam. 1974;13(2):110-5. doi.org/10.1021/i160050a004