Vol. 36 Núm. 3 (2023): Revista ION
Artículos

Películas de mandioca reforzada con nanocelulosa y adición de aceite de burití (Mauritia Flexuosa L.)

Luzilene Sousa Rosas
Instituto Federal do Maranhão - IFMA
Jose Francisco Lopes Filho
Universidade Estadual Paulista - UNESP
Jose Weliton Aguiar Dutra
Universidade Federal da Paraíba - UFPB
Alvaro Itauna Schalcher Pereira
Instituto Federal do Maranhão

Publicado 2023-11-30

Palabras clave

  • Películas biodegradables,
  • Biopolímeros,
  • Nanocelulosa,
  • Aceite de Buriti

Cómo citar

Rosas, L. S., Lopes Filho, J. F. ., Dutra, J. W. A., & Pereira, A. I. S. (2023). Películas de mandioca reforzada con nanocelulosa y adición de aceite de burití (Mauritia Flexuosa L.). Revista ION, 36(3), 53–62. https://doi.org/10.18273/revion.v36n3-2023005

Resumen

Películas biodegradables obtenidas a partir de biopolímeros se consideran una alternativa para el desarrollo de envases biodegradables, reemplazando al plástico producido a partir del petróleo. El almidón es considerado uno de los biopolímeros con mayor potencial para la producción de películas biodegradables, sin embargo, sus propiedades son inferiores a los plásticos convencionales. El objetivo de este trabajo fue desarrollar películas de almidón de yuca biodegradables reforzadas con nanocelulosa e incorporadas con aceite de burití como agente bioactivo. Las películas fueron preparadas con 3 %p de almidón (3 g/100 g de agua destilada), glicerol (30 %), nanocelulosa (0,3 y 0,6 %) y aceite de buriti (1 e 2 %), relativo al almidón. masa. La adición de nanocelulosa y aceite de burití en la matriz de almidón de yuca promovió un aumento del espesor y la opacidad, con una disminución de la solubilidad de las películas procesadas en comparación con el control. La adición de nanocelulosa y aceite de burití también promovió una reducción en los valores de PVA, aumentados a la barrera de vapor de agua. Los resultados sugieren que el desarrollo de películas biodegradables para la conservación de alimentos es un campo prometedor con un fuerte atractivo ambiental, que puede ayudar a conservar los alimentos, pero este estudio aún no es concluyente, requiere más investigación.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Brasília, D. C. Desperdício: Custo para todos – Alimentos apodrecem enquanto milhões de pessoas passam fome (site). Instituto de Pesquisa Econômica Aplicada (IPEA). Disponível: www.ipea.gov.br, acesso em 05 de julho 2023.
  2. Food and nutrition paper (FAO). Carbohydrates in human nutrition. Rome, Itália; 1998.
  3. Mecking S. Nature or Petrochemistry: Biologically Degradable Materials. Angewandte Chemie, International Edition. 2004;43(9):1078-1085. doi.org/10.1002/anie.200301655
  4. Chen CH, Kuo WS, Lai LS. Rheological and physical characterization of film-forming solutions and edible films from tapioca tarch/decolorized hsiantsao leaf gum. Food Hydrocolloids. 2009;23:2132–2014. doi.org/10.1016/j.foodhyd.2009.05.015
  5. Fakhouri FM, Costa D, Yamashita F, Martelli SM, Jesus RC, Alganer K, et al. Comparative study of processing methods for starch/gelatin films. Carbohydrate Polymers. 2013;95(2):681-689. doi.org/10.1016/j.carbpol.2013.03.027
  6. Davanço T, Tanada-Palmu P, Grosso C. Filmes compostos de gelatina, triacetina, ácido esteárico ou capróico: efeito do pH e da adição de surfactantes sobre a funcionalidade dos filmes. Ciência e Tecnologia de Alimentos. 2007;27(2):408-416. doi.org/10.1590/S0101-20612007000200034
  7. Wang G, Thompson MR, Liu Q. Controlling the moisture absorption capacity in a fiberreinforced thermoplastic starch using sodium trimetaphosphate. Industrial Crops and Products. 2012;36(1):299 -303. doi.org/10.1016/j.indcrop.2011.10.015
  8. Chaudry Q, Castle L. Food applications of nanotechnologies: An overview of opportunities and challenges for developing countries. Trends in Food Science and Technology. 2011;22(11):595-603. doi.org/10.1016/j.tifs.2011.01.001
  9. Hubbe MA, Rojas OJ, Lucia LA, Sain M. Cellulosic Nanocomposites: A Review. Bioresources. 2008;3:929-980.
  10. Bondeson D, Oksman K. Polylactic Acid/Cellulose Whisker Nanocomposites Modified by Polyvinyl Alcohol. Composites Part A: Applied Science and Manufacturing. 2007;38:2486-2492. doi.org/10.1016/j.compositesa.2007.08.001
  11. Almeida CB. Características estruturais e funcionais de Biofilmes produzidos com zeína e óleos vegetais Comestíveis (Tese de Doutorado), São Jose do Rio Preto, Brasil: Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, 2010.
  12. Rosso VV, Mercadante AZ. Identification and quantification of carotenoids, by HPLCPDA-MS/MS, from Amazonian fruits. Journal of Agricultural and Food Chemistry. 2007;55(13):5062-5072. doi.org/10.1021/jf0705421
  13. Almeida SP, Proença CEB, Sano SM, Ribeiro JF. Cerrado: espécies vegetais úteis. Planaltina, Brasil: EMBRAPA-CPAC, 1998.
  14. Durães JA, Drummond AL, Pimentel TAPF, Murta MM, Bicalho FS, Moreira SGC, Sales MJ. Absorption and photoluminescence of Buriti oil/polystyrene and Buriti oil/poly(methyl methacrylate) blends. European Polymer Journal. 2006;42:3324.
  15. Batista JS, Olinda RG, Medeiros VB, Rodrigues CMF, Oliveira AF, Paiva ES, et al. Atividade antibacteriana e cicatrizante do óleo de Buriti Mauritia flexuosa L. Ciência Rural. 2012;42(1):136-141. doi.org/10.1590/S0103-84782012000100022
  16. Melo KS, Figueirêdo RMF, Queiroz AJM. Comportamento reológico da polpa do buriti com leite. Revista Biologia e Ciências da Terra. 2008;8(2):197-206.
  17. Perez-Gago MB, Krochta JM. Water vapor permeability of whey protein emulsion films as affected by pH. Journal of Food Science. 1999;64(4):695-698.
  18. Hsu BL, Weng YM, Liao YH, Chen W. Structural investigation of edible zein films/coating and determining their thickness by FT-Raman. Journal of Agricultural and Food Chemistry. 2005;53(13):5089-5095. doi.org/10.1021/jf0501490
  19. Gontard N. Films et enrobages comestibles: Estude et amélioration des propriétés filmogènes du gluten (Doctoral Thesis). Montpellier, França: Université des Sciences et Techniques du Languedoc; 1991.
  20. Cao N, Fu Y, He J. Preparation and physical properties of soy protein isolate and gelatin composite films. Journal Food Hydrocoll. 2007;21(7):1153-1162. doi.org/10.1016/j.foodhyd.2006.09.001
  21. Gounga ME, Xu SY, Wang Z. Whey protein isolate-based edible films as affected by protein concentration, glycerol ratio and pullulan addition in film formation. Journal Food Engineering. 2007;83(4):521-530. doi.org/10.1016/j.jfoodeng.2007.04.008
  22. ASTM. American Society for Testing Materials (ASTM E 96-05), Philadelphia, PA, 2005.
  23. Mali S, Grossmann MVE, Yamashita F. Filmes de amido: produção , propriedades e potencial de utilização Starch films : production, properties and potential of utilization. Semina Ciências Agrárias. 2010;31:137-156.
  24. Machado BAS, Reis JHO, Da Silva JB, Cruz LS, Nunes IL, Pereira FV, et al. Obtenção de nanocelulose da fibra de coco verde e incorporação em filmes biodegradáveis de amido plastificados com glicerol. Química Nova. 2014;37(8):1275-1282. doi.org/10.5935/0100-4042.20140220
  25. Pereira FV, Paula EL, Mesquita JP, Lucas AA, Mano V. Bionanocompósitos preparados por incorporação de nanocristais de celulose em polímeros biodegradáveis por meio de evaporação de solvente, automontagem ou eletrofiação. Química Nova. 2014;37(7):1209-1219. doi.org/10.5935/0100-4042.20140141
  26. Kalemba D, Kunicka A. Antibacterial and antifungal properties of essential oils. Current Medicinal Chemistry. 2003;10(10):813-829. doi.org/10.2174/0929867033457719
  27. Jiang S, Liu C, Wang X, Xiong L, Sun Q. Physicochemical properties of starch nanocomposite films enhanced by selfassembled potato starch nanoparticles. Food Science and Technology. 2016;69,251-257.
  28. Müller CMO, Yamashita F, Laurindo JB. Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydrate Polymers. 2008;72(1):82-87. doi.org/10.1016/j.carbpol.2007.07.026
  29. Beck CS, Roman M, Gray DG. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules. 2005;6(2):1048-1054. doi.org/10.1021/bm049300p
  30. The DP, Debeaufort F, Voilley A, Luu D. Food Hydrocolloids. 2009;23:691-699.
  31. Pranoto Y, Salokhe VM, Rakshit SK. Physical and antibacterial properties of alginate-based edible film incorporated with garlic oil. Food Research International. 2005;38(3):267-272. doi.org/10.1016/j.foodres.2004.04.009
  32. Silva JBA, Nascimento T, Costac LAS, Pereira S, Machado BA, Gomes G, et al. Effect of source and interaction with nanocellulose cassava starch, glycerol and the properties of films bionanocomposites. Materials Today: Proceedings. 2015;2(1):200-207. doi.org/10.1016/j.matpr.2015.04.022
  33. Yang L, Paulson AT. Mechanical and water vapour barrier properties of edible gellan films. Food Research International. 2000;33(7):563-570. doi.org/10.1016/S0963-9969(00)00092-2