Vol. 36 Núm. 2 (2023): Revista ION
Artículos

Tendencias en tecnologías convergentes en la industria 4.0: una revisión de literatura

Paula Andrea Rodríguez-Correa
Institución Universitaria Escolme
Camilo Andrés Echeverri-Gutiérrez
AM&C COLOMBIA SAS
Alejandro Valencia-Arias
AM&C - Colombia
Leidy Catalina Acosta-Agudelo
AM&C COLOMBIA SAS
Mauricio Echeverri-Gutiérrez
AM&C COLOMBIA SAS

Publicado 2023-06-30

Palabras clave

  • Tecnologías convergentes,
  • industria 4.0,
  • gestión organizacional,
  • digitalización,
  • automatización

Cómo citar

Rodríguez-Correa, P. A., Echeverri-Gutiérrez, C. A., Valencia-Arias, A., Acosta-Agudelo, L. C., & Echeverri-Gutiérrez, M. (2023). Tendencias en tecnologías convergentes en la industria 4.0: una revisión de literatura. Revista ION, 36(2), 83–100. https://doi.org/10.18273/revion.v36n2-2023006

Resumen

De cara a los desafíos que ha traído consigo la industria 4.0 para las organizaciones, las tecnologías convergentes han cobrado gran importancia para responder a algunas de las necesidades de la actualidad. Por tanto, este estudio se propone como objetivo central identificar las tendencias temáticas en estudios de tecnologías convergentes en la Industria 4.0. Con base en esto se incluyen cuatro preguntas de investigación. Se realiza un análisis bibliométrico a partir de la declaración PRISMA. Se seleccionan las bases de datos Scopus y Web of Sciences y finalmente, se seleccionan 137 documentos para realizar el análisis. Los resultados permiten identificar los principales actores investigativos, es decir, los principales referentes en términos de autores, revistas y países que generan mayor impacto en el tema. También se analiza el comportamiento evolutivo de las temáticas de investigación en función de las palabras claves más recurrentes por año. Se identifican clústeres temáticos y los temas más frecuentes y vigentes en la literatura a partir del software VOSviewer. De esta manera, se propone una agenda investigativa en la que se marcan las futuras líneas de investigación y las preguntas que se deben responder con base en los vacíos académicos identificados. Los hallazgos permiten identificar un mayor interés por los temas relacionados con la inteligencia artificial, el cuidado de la salud y las farmacéuticas y la automatización en las ciencias de la salud.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Dressler M, Paunovic I. Converging and diverging business model innovation in regional intersectoral cooperation–exploring wine industry 4.0. European Journal of Innovation Management. 2021;24(5):1625-52. https://doi.org/10.1108/EJIM-04-2020-0142
  2. Issayeva GK, Zhussipova EY, Kuralbayeva AS, Beisenova MU, Maulenkulova GE, Zhakipbekova DS. Convergent technologies in science and innovations in Kazakhstan. Business and Society Review. 2020;125(4):411-24. https://doi.org/10.1111/basr.12215
  3. Nussipova G, Nordin F, Sörhammar D. Value formation with immersive technologies: an activity perspective. Journal of Business & Industrial Marketing. 2020;35(3):483-94. https://doi.org/10.1108/JBIM-12-2018-0407
  4. Frank AG, Mendes GHS, Ayala NF, Ghezzi A. Servitization and Industry 4.0 convergence in the digital transformation of product firms: A business model innovation perspective. Technological Forecasting and Social Change. 2019;141:341-351. https://doi.org/10.1016/j.techfore.2019.01.014
  5. Hassoun A, Aït-Kaddour A, Abu-Mahfouz AM, Rathod NB, Bader F, Barba FJ et al. The fourth industrial revolution in the food industry—Part I: Industry 4.0 technologies. Critical Reviews in Food Science and Nutrition. 2022. https://doi.org/10.1080/10408398.2022.2034735
  6. Kumar S, Verma P, Patel P, Rajesh JI. Perceptions of Indian managers on the impact of convergent technologies on work and resultant organisational performance in service industry. International Journal of Emerging Markets. 2022;17(2):550-73. https://doi.org/10.1108/IJOEM-06-2020-0658
  7. Morán Reyes AA. Las tecnologías convergentes (nanotecnología, biotecnología y las ciencias cognitivas) y su relación con la bibliotecología. E-Ciencias de la Información. 2019;9(2):121-40. http://dx.doi.org/10.15517/eci.v9i2.35897
  8. Pereira AC, Romero F. A review of the meanings and the implications of the Industry 4.0 concept. Procedia Manufacturing 2017;13:1206-14. https://doi.org/10.1016/j.promfg.2017.09.032
  9. Szász L, Demeter K, Rácz B-G, Losonci D. Industry 4.0: a review and analysis of contingency and performance effects. Journal of Manufacturing Technology Management. 2021;32(3):667-94. https://doi.org/10.1108/JMTM-10-2019-0371
  10. Zhong R, Xu X, Klotz E, Newmanc ST. Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering. 2017;3(5):616-30. https://doi.org/10.1016/J.ENG.2017.05.015
  11. Gorman ME. Collaborating on Convergent Technologies: Education and Practice. Annals of the New York Academy of Sciences. 2006;1013(1):25-37. https://doi.org/10.1196/annals.1305.003
  12. Amaro Rosales M, Robles Belmont E. Medir la innovación en el contexto de las tecnologías emergentes y convergentes: algunas reflexiones metodológicas. PAAKAT: revista de tecnología y sociedad. 2020;10(18):e415. https://doi.org/10.32870/pk.a10n18.415
  13. Caviggioli F, Colombelli A, De Marco A, Scellato G, Ughetto E. Co-evolution patterns of university patenting and technological specialization in European regions. J Technol Transf. 2023;48:216-39. https://doi.org/10.1007/s10961-021-09910-0
  14. Morales JE. Utilidad y aplicaciones de las tecnologías convergentes. Revista Ciencia Multidisciplinaria CUNORI. 2020;4(1):43–53. https://doi.org/10.36314/cunori.v4i1.108
  15. Cebrián M, López S. Economic Growth, Technology Transfer and Convergence in Spain, 1960–73. En: Technology and Human Capital in Historical Perspective. Ljungberg J, Smits JP, Editores. Palgrave Macmillan; 2005. p. 120-44. https://doi.org/10.1057/9780230523814_6
  16. Canton J. NBIC Convergent Technologies and the Innovation Economy: Challenges and Opportunities for the 21st Century. En: Managing nano-bio-info-cogno innovations. Bainbridge WS, Roco MC, Editores. Springer; 2006. p. 33-45. https://doi.org/10.1007/1-4020-4107-1_4
  17. Sepasgozar SME, Khan AA, Smith K, Romero JG, Shen X, Shirowzhan S, et al. BIM and Digital Twin for Developing Convergence Technologies as Future of Digital Construction. Buildings. 2023;13(2):441. https://doi.org/10.3390/buildings13020441
  18. Roco MC, Bainbridge WS. Converging Technologies for Improving Human Performance. Springer Science & Business Media; 2003.
  19. Michal C. The structural role of convergent technologies in the modern economy. Экономика и управление инновациями. 2019;3(10):24-31.
  20. Lee SM, Lim S. Living Innovation: From Value Creation to the Greater Good. Reino Unido: Emerald Publishing: Bingley; 2018.
  21. Lee SM, Trimi S. Convergence innovation in the digital age and in the COVID-19 pandemic crisis. Journal of Business Research. 2021;123:14-22. https://doi.org/10.1016/j.jbusres.2020.09.041
  22. Budanov V, Aseeva I, Zvonova E. Industry 4.0.: socio-economic junctures. Economic Annals-XXI. 2017;168(11-12):33-37. https://doi.org/10.21003/ea.V168-07
  23. Kagermann H. Change Through Digitization—Value Creation in the Age of Industry 4.0. En: Management of Permanent Change. Albach H, Meffert H, Pinkwart A, Reichwald R, Editores. Wiesbaden: Springer Gabler; 2015. https://doi.org/10.1007/978-3-658-05014-6_2
  24. Quispe Mamani U, Sucari Sucari YV. Tecnologías convergentes en la Industria 4.0 (I4.0). Waynarroque - Revista de ciencias sociales aplicadas. 2022;2(4):63-74. https://doi.org/10.47190/rcsaw.v2i4.40
  25. Ghobakhloo M. Industry 4.0, digitization, and opportunities for sustainability. Journal of Cleaner Production. 2020;252:119869. https://doi.org/10.1016/j.jclepro.2019.119869
  26. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009;6:e1000097. https://doi.org/10.1371/journal.pmed.1000097
  27. Selçuk AA. A Guide for Systematic Reviews: PRISMA. Turk Arch Otorhinolaryngol. 2019;57(1):57-58. https://doi.org/10.5152%2Ftao.2019.4058
  28. Mohamed R, Ghazali M, Samsudin MA. A Systematic Review on Mathematical Language Learning Using PRISMA in Scopus Database. EURASIA J Math Sci Tech Ed. 2020;16(8):em1868. https://doi.org/10.29333/ejmste/8300
  29. Kamble SS, Gunasekaran A, Gawankar SA. Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection. 2018;117:408-25. https://doi.org/10.1016/j.psep.2018.05.009
  30. Ostmeier E, Strobel M. Building skills in the context of digital transformation: How industry digital maturity drives proactive skill development. Journal of Business Research. 2022;139:718-30. https://doi.org/10.1016/j.jbusres.2021.09.020
  31. Hadjielias E, Dada O(L), Cruz AD, Zekas S, Christofi M, Sakka G. How do digital innovation teams function? Understanding the team cognition-process nexus within the context of digital transformation. Journal of Business Research. 2021;122:373-86. https://doi.org/10.1016/j.jbusres.2020.08.045
  32. van Doorn J, Mende M, Noble SM, Hulland J, Ostrom AL, Grewal D, et al. Domo Arigato Mr. Roboto: Emergence of Automated Social Presence in Organizational Frontlines and Customers’ Service Experiences. Journal of Service Research. 2017:20(1);43–58. https://doi.org/10.1177/1094670516679272
  33. Banks VA, Stanton NA, Harvey C. Sub-systems on the road to vehicle automation: Hands and feet free but not ‘mind’ free driving. Safety Science. 2014;62:505-14. https://doi.org/10.1016/j.ssci.2013.10.014
  34. Radanliev P, De Roure D, Page K, Nurse JRC, Montalvo RM, Santos O, et al. Cyber risk at the edge: current and future trends on cyber risk analytics and artificial intelligence in the industrial internet of things and industry 4.0 supply chains. Cybersecur. 2020;3:13. https://doi.org/10.1186/s42400-020-00052-8
  35. Fard MJ, Ameri S, Chinnam RB, Ellis RD. Soft Boundary Approach for Unsupervised Gesture Segmentation in Robotic-Assisted Surgery. IEEE Robotics and Automation Letters. 2017;2(1):171-78. https://doi.org/10.1109/LRA.2016.2585303
  36. El-hawary ME. The Smart Grid—State-of-the-art and Future Trends. Electric Power Components and Systems. 2014;42(3-4):239-50. https://doi.org/10.1080/15325008.2013.868558
  37. Hauggaard-Nielsen H, Lund S, Aare AK, Watson CA, Bedoussac L, Aubertot JN, et al. Translating the multi-actor approach to research into practice using a workshop approach focusing on species mixtures. Front. Agr. Sci. Eng. 2021;8(3):460–73. https://doi.org/10.15302/J-FASE-2021416
  38. Zimmermann S, Tiemerding T, Fatikow S. Automated Robotic Manipulation of Individual Colloidal Particles Using Vision-Based Control. IEEE/ASME Transactions on Mechatronics. 2015;20(5):2031-2038. https://doi.org/10.1109/TMECH.2014.2361271
  39. Okamoto T. Robotization of Orchid Protocorm Transplanting in Tissue Culture. Japan Agricultural Research Quarterly. 1996;30(4):213-220.
  40. Cardona AM, Roth Z, Han C. High-throughput automation design considerations for biotechnology processes involving RNA purification protocols using multi-centrifuge bioseparation steps. Robotics and Computer-Integrated Manufacturing. 2012;28(3):285–93. https://doi.org/10.1016/J.RCIM.2011.10.006
  41. Miseikis J, Caroni P, Duchamp P, Gasser A, Marko R, Miseikiene N, et al. Lio-A Personal Robot Assistant for Human-Robot Interaction and Care Applications. IEEE Robotics and Automation Letters. 2020;5(4):5339–46. https://doi.org/10.1109/LRA.2020.3007462
  42. Li Y, Fei GZ. Network embeddedness, digital transformation, and enterprise performance—The moderating effect of top managerial cognition. Front. Psychol. 2023;14: 1098974. https://doi.org/10.3389/FPSYG.2023.1098974
  43. Ibrahim W, Beiu V. Using Bayesian networks to accurately calculate the reliability of complementary metal oxide semiconductor gates. IEEE Transactions on Reliability. 2011;60(3):538–49. https://doi.org/10.1109/TR.2011.2161032
  44. Fischbach A, Strohschein J, Bunte A, Stork J, Faeskorn-Woyke H, Moriz N, et al. CAAI—a cognitive architecture to introduce artificial intelligence in cyber-physical production systems. Int J Adv Manuf Technol. 2020;111:609–26. https://doi.org/10.1007/s00170-020-06094-z
  45. Jiao J(R), Zhou F, Gebraeel NZ, Duffy V. Towards augmenting cyber-physical-human collaborative cognition for human-automation interaction in complex manufacturing and operational environments. International Journal of Production Research. 2020;58(16):5089-5111. https://doi.org/10.1080/00207543.2020.1722324
  46. Parisi L. Critical Computation: Digital Automata and General Artificial Thinking. Theory, Culture & Society. 2019;36(2):89–121. https://doi.org/10.1177/0263276418818889
  47. Abbass HA. Social Integration of Artificial Intelligence: Functions, Automation Allocation Logic and Human-Autonomy Trust. Cogn Comput. 2019;11:159–71. https://doi.org/10.1007/s12559-018-9619-0
  48. ElMaraghy H, ElMaraghy W. Adaptive Cognitive Manufacturing System (ACMS) – a new paradigm. International Journal of Production Research. 2022;60(24):7436-49. https://doi.org/10.1080/00207543.2022.2078248
  49. Kumar S, Mallipeddi RR. Impact of cybersecurity on operations and supply chain management: Emerging trends and future research directions. Production and Operations Management. 2022;31(12):4488-4500. https://doi.org/10.1111/poms.13859
  50. Inshakova AO., Baltutite IV, Epifanov AE, Abesalashvili MZ. Biotechnology as a Type of Converged Technologies in Industry 4.0 and a Source of Increased Danger in Civil Law of the Russian Federation. En: Modern Global Economic System: Evolutional Development vs. Revolutionary Leap. ISC 2019. Popkova EG, Sergi BS, Editores. Cham: Springer; 2021. p. 1558-67. https://doi.org/10.1007/978-3-030-69415-9_172