Vol. 29 Núm. 1 (2016): Revista ION
Artículos

Tecnologías de recuperación de nutrientes para los sistemas de digestión anaeróbica: revisión

Maycoll Stiven Romero Güiza
University of Barcelona
Joan Mata Alvarez
University of Barcelona
Josep María Chimeros Rivera
University of Barcelona
Sergi Astals Garcia
Advanced Water Management Centre

Publicado 2016-07-15

Palabras clave

  • Digestión Anaeróbica,
  • Recuperación de Nutrientes,
  • Estruvita,
  • Ficoremediación,
  • Fertilizante Orgánico

Cómo citar

Romero Güiza, M. S., Mata Alvarez, J., Chimeros Rivera, J. M., & Astals Garcia, S. (2016). Tecnologías de recuperación de nutrientes para los sistemas de digestión anaeróbica: revisión. Revista ION, 29(1), 7–26. https://doi.org/10.18273/revion.v29n1-2016001

Resumen

La digestión anaeróbica es una tecnología mundialmente aplicada para el tratamiento de residuos orgánicos, principalmente debido a su capacidad de producir metano como fuente de energía renovable. Sin embargo, existe un creciente interés en la recuperación de nutrientes (N y P), el cual desde el punto de vista ambiental y económico ha sido identificado como un factor clave en las plantas de tratamiento vía digestión anaeróbica. El presente manuscrito presenta una visión global de los recientes avances en las tecnologías de recuperación de nutrientes aplicables a sistemas de digestión anaeróbica. La revisión está enfocada en la recuperación de N y P mediante el uso del digestado como fertilizante, la precipitación de estruvita y sistemas biológicos como la ficoremediación (ej. cultivos de algas) y organismos acumuladores de polifosfatos.



Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Lettinga G. My anaerobic sustainability story. First edit. Netherlands: LeAf; 2014.

[2] Cecchi F, Traverso PG, Mata-Alvarez J, Clancy J, Zaror C. State of the art of R&D in the anaerobic digestion process of municipal solid waste in Europe. Biomass. 1988;16:257–84.

[3] Mata-Alvarez J, Dosta J, Romero-Güiza MS, Fonoll X, Peces M, Astals S. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew Sustain Energy Rev. 2014;36:412–27.

[4] Vandevivere P, De Baere L, Verstraete W. Types of anaerobic digester for solid wastes. In: Biomethanization of the organic fraction of municipal solid wastes. Mata-Alvarez J, editor. Gran Bretaña: IWA Publishing; 2003. p. 111–40.

[5] Peces M, Astals S, Mata-Alvarez J. Response of a sewage sludge mesophilic anaerobic digester to short and long-term thermophilic temperature fluctuations. Chem Eng J. 2013;233:109–16.

[6] De Baere L, Mattheeuws B. State of the art of anaerobic digestion in Europe. Int. Water Assoc. 12th World Congr. Anaerob. Dig. 31 Oct – 4 Nov. 2010, Guadalajara , Mex., vol. 32, 2010, p. 1–7.

[7] Flotats X, Bonmatí A, Fernández B, Magrí A. Manure treatment technologies: On-farm versus centralized strategies. NE Spain as case study. Bioresour. Technol. 2009;100:5519–26.

[8] Hengeveld EJ, van Gemert WJT, Bekkering J, Broekhuis a. a. When does decentralized production of biogas and centralized upgrading and injection into the natural gas grid make sense? Biomass Bioenergy. 2014;67:363–71.

[9] Edwards J, Othman M, Burn S. A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia. Renew Sustain Energy Rev. 2015;52:815–28.

[10] Del Valle-Zermeño R, Romero-Güiza MS, Chimenos JM, Formosa J, Mata-Alvarez J, Astals S. Biogas upgrading using MSWI bottom ash: An integrated municipal solid waste management. Renew Energy. 2015;80:184–9.

[11] Astals S, Romero-Güiza MS, Mata-Alvarez J. Municipal solid waste - Energy recovery from the organic fraction based on anaerobic digestion. In: Ferraira G, editor. Altern. Energies, vol. 34. 1st ed. Zaragoza: Springer; 2013, p.1–26.

[12] Mehta CM, Khunjar WO, Nguyen V, Tait S, Batstone DJ. Technologies to Recover Nutrients from Waste Streams: A Critical Review. Crit Rev Environ Sci Technol. 2014:00–00.

[13] Alburquerque JA, de la Fuente C, Bernal MP. Chemical properties of anaerobic digestates affecting C and N dynamics in amended soils. Agric Ecosyst Environ. 2012;160:15–22.

[14] Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P. The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 2009;100:5478–84.

[15] Batstone DJ, Virdis B. The role of anaerobic digestion in the emerging energy economy. Curr Opin Biotechnol. 2014;27:142–9.

[16] Moscatelli G. Animal manure: Biogas and treatment in Italy. Fira Agrar. St. Miquel, 2015.[17] Gestore dei Servizi Energitici. Rapporto Statistico - Energia da fonti rinnovabili. Roma, Italy: 2015.

[18] Astals S, Nolla-Ardèvol V, Mata-Alvarez J. Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: biogas and digestate. Bioresour Technol 2012;110:63–70.

[19] Rodionov A, Nii-Annang S, Bens O, Trimborn M, Schillem S, Schneider BU, et al. Impacts of Soil Additives on Crop Yield and C-Sequestration in Post Mine Substrates of Lusatia, Germany. Pedosphere. 2012;22:343–50.

[20] Al Seadi T, Lukehurst C. Quality management of digestate from biogas plants used as fertiliser. IEA Bioenergy 2012:4–36.

[21] Demirel B, Göl NP, Onay TT. Evaluation of heavy metal content in digestate from batch anaerobic co-digestion of sunflower hulls and poultry manure. J Mater Cycles Waste Manag. 2012;15:242–6.

[22] Krogstad T, Sogn TA, Asdal Å, Sæbø A. Influence of chemically and biologically stabilized sewage sludge on plant-available phosphorous in soil. Ecol Eng. 2005;25:51–60.

[23] Carlsson M, Lagerkvist A, Morgan-Sagastume F. The effects of substrate pre-treatment on anaerobic digestion systems: a review. Waste Manag. 2012;32:1634–50.

[24] Salminen E, Rintala J. Anaerobic digestion of organic solid poultry slaughterhouse waste – a review. Bioresour. Technol. 2002;83:13–26.

[25] Mata-Alvarez J, Dosta J, Macé S, Astals S. Codigestion of solid wastes: a review of its uses and perspectives including modeling. Crit Rev Biotechnol. 2011;31:99–111.

[26] Alburquerque JA, de la Fuente C, Ferrer-Costa A, Carrasco L, Cegarra J, Abad M, et al. Assessment of the fertiliser potential of digestates from farm and agroindustrial residues. Biomass Bioenergy. 2012;40:181–9.

[27] Restrepo AP, Medina E, Pérez-Espinosa A, Agulló E, Bustamante MA, Mininni C, et al. Substitution of Peat in Horticultural Seedlings: Suitability of Digestate-Derived Compost from Cattle Manure and Maize Silage Codigestion. Commun Soil Sci Plant Anal 2013;44:668–77.

[28] Abdullahi YA, Akunna JC, White NA, Hallett PD, Wheatley R. Investigating the effects of anaerobic and aerobic post-treatment on quality and stability of organic fraction of municipal solid waste as soil amendment. Bioresour. Technol. 2008;99:8631–6.

[29] Abubaker J, Cederlund H, Arthurson V, Pell M. Bacterial community structure and microbial activity in different soils amended with biogas residues and cattle slurry. Appl Soil Ecol. 2013;72:171–80.

[30] Zirkler D, Peters A, Kaupenjohann M. Elemental composition of biogas residues: Variability and alteration during anaerobic digestion. Biomass Bioenergy. 2014;67:89–98.

[31] Walsh JJ, Jones DL, Edwards-Jones G, Williams a. P. Replacing inorganic fertilizer with anaerobic digestate may maintain agricultural productivity at less environmental cost. J Plant Nutr Soil Sci. 2012;175:840–5.

[32] Kirchmann H, Witter E. Composition of fresh, aerobic and anaerobic farm animal dungs. Bioresour. Technol. 1992;40:137–42.

[33] Möller K, Stinner W, Deuker A, Leithold G. Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems. Nutr Cycl Agroecosystems. 2008;82:209–32.

[34] Selling R, Hakansson T, Björnsson L. Two-stage anaerobic digestion anables heavy metal removal. Water Sci Technol. 2008;57:553–8.

[35] Alburquerque JA, de la Fuente C, Campoy M, Carrasco L, Nájera I, Baixauli C, et al. Agricultural use of digestate for horticultural crop production and improvement of soil properties. Eur J Agron. 2012;43:119–28.

[36] Tambone F, Genevini P, D’Imporzano G, Adani F. Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Bioresour. Technol. 2009;100:3140–2.

[37] Teglia C, Tremier A, Martel JL. Characterization of solid digestates: Part 2, assessment of the quality and suitability for composting of six digested products. Waste and Biomass Valorization. 2011;2:113–26.

[38] Vintiloiu A, Lemmer A, Oechsner H, Jungbluth T. Mineral substances and macronutrients in the anaerobic conversion of biomass: An impact evaluation. Eng Life Sci. 2012;12:287–94.

[39] Sheets JP, Ge X, Park SY, Li Y. Effect of outdoor conditions on Nannochloropsis salina cultivation in artificial seawater using nutrients from anaerobic digestion effluent. Bioresour. Technol. 2014;152:154–61.

[40] Delzeit R, Kellner U. The impact of plant size and location on profitability of biogas plants in Germany under consideration of processing digestates. Biomass Bioenergy. 2013;52:43–53.

[41] Tampio E, Ervasti S, Rintala J. Characteristics and agronomic usability of digestates from laboratory digesters treating food waste and autoclaved food waste. J Clean Prod. 2015;94:86–92.

[42] Rigby H, Smith SR. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils. Waste Manag. 2013;33:2641–52.

[43] Vázquez-Rowe I, Golkowska K, Lebuf V, Vaneeckhaute C, Michels E, Meers E, et al. Environmental assessment of digestate treatment technologies using LCA methodology. Waste Manag. 2015;43:442–59.

[44] Gerardo ML, Aljohani NHMM, Oatley-Radcliffe DL, Lovitt RW. Moving towards sustainable resources: Recovery and fractionation of nutrients from dairy manure digestate using membranes. Water Res. 2015;80:80–9.

[45] Wang T, Shao L, Li T, Lü F, He P. Digestion and dewatering characteristics of waste activated sludge treated by an anaerobic biofilm system. Bioresour. Technol. 2014;153:131–6.

[46] Mudragada R, Kundral S, Coro E, Moncholi ME, Laha S, Tansel B. Phosphorous removal during sludge dewatering to prevent struvite formation in sludge digesters by full scale evaluation. J Water Process Eng. 2014;2:37–42.

[47] Tambone F, Terruzzi L, Scaglia B, Adani F. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties. Waste Manag. 2015;35:55–61.

[48] Romero-Güiza MS, Peces M, Astals S, Benavent J, Valls J, Mata-Alvarez J. Implementation of a prototypal optical sorter as core of the new pre-treatment configuration of a mechanical–biological treatment plant treating OFMSW through anaerobic digestion. Appl Energy. 2014;135:63–70.

[49] Estevez MM, Sapci Z, Linjordet R, Schnürer A, Morken J. Semi-continuous anaerobic co-digestion of cow manure and steam-exploded Salix with recirculation of liquid digestate. J Environ Manage. 2014;136:9–15.

[50] Nges IA, Wang B, Cui Z, Liu J. Digestate liquor recycle in minimal nutrients-supplemented anaerobic digestion of wheat straw. Biochem Eng J. 2015;94:106–14.

[51] Gong H, Yan Z, Liang KQ, Jin ZY, Wang KJ. Concentrating process of liquid digestate by disk tube-reverse osmosis system. Desalination. 2013;326:30–6.

[52] Massaccesi L, Sordi A, Micale C, Cucina M, Zadra C, Di Maria F, et al. Chemical characterisation of percolate and digestate during the hybrid solid anaerobic digestion batch process. Process Biochem. 2013;48:1361–7.

[53] Campos E, Almirall M, Mtnez-Almela J, Palatsi J, Flotats X. Feasibility study of the anaerobic digestion of dewatered pig slurry by means of polyacrylamide. Bioresour. Technol. 2008;99:387–95.

[54] Meixner K, Fuchs W, Valkova T, Svardal K, Loderer C, Neureiter M, et al. Effect of precipitating agents on centrifugation and ultrafiltration performance of thin stillage digestate. Sep Purif Technol. 2015;145:154–60.

[55] Møller H. Solid–liquid separation of livestock slurry: efficiency and cost. Bioresour. Technol. 2000;74:223–9.

[56] Lü F, Zhou Q, Wu D, Wang T, Shao L, He P. Dewaterability of anaerobic digestate from food waste: Relationship with extracellular polymeric substances. Chem Eng J. 2015;262:932–8.

[57] Burton CH. The potential contribution of separation technologies to the management of livestock manure. Livest Sci. 2007;112:208–16.

[58] Parera J, Goya A, Bonmatí A, Riau V, Burgos L. Separadores sólido-líquido. Mundo Ganad. 2015;265:36–41.

[59] Vanden Nest T, Ruysschaert G, Vandecasteele B, Cougnon M, Merckx R, Reheul D. P availability and P leaching after reducing the mineral P fertilization and the use of digestate products as new organic fertilizers in a 4-year field trial with high P status. Agric Ecosyst Environ. 2015;202:56–67.

[60] Saveyn H, Eder P. End-of-waste criteria for biodegradable waste subjected to biological treatment (compost & digestate): Technical proposals. 2014.

[61] Pulvirenti A, Ronga D, Zaghi M, Tomasselli AR, Mannella L, Pecchioni N. Pelleting is a successful method to eliminate the presence of Clostridium spp. from the digestate of biogas plants. Biomass Bioenergy. 2015;81:479–82.

[62] Santi G, Proietti S, Moscatello S, Stefanoni W, Battistelli A. Anaerobic digestion of corn silage on a commercial scale: Differential utilization of its chemical constituents and characterization of the solid digestate. Biomass Bioenergy. 2015;83:17–22.

[63] Di Iaconi C, Pagano M, Ramadori R, Lopez A. Nitrogen recovery from a stabilized municipal landfill leachate. Bioresour. Technol. 2010;101:1732–6.

[64] Yenigün O, Demirel B. Ammonia inhibition in anaerobic digestion: A review. Process Biochem. 2013;48:901–11.

[65] Rajagopal R, Massé DI, Singh G. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour. Technol. 2013;143:632–41.

[66] Hadj B, Astals S, Gali A, Mace S, Mata-Alvarez J. Ammonia influence in anaerobic digestion of OFMSW. Water Sci Technol. 2009;59:1153–8.

[67] Velthof GL, Lesschen JP, Webb J, Pietrzak S, Miatkowski Z, Pinto M, et al. The impact of the Nitrates Directive on nitrogen emissions from agriculture in the EU-27 during 2000-2008. Sci Total Environ. 2014;468-469:1225–33.

[68] Lassaletta L, García-Gómez H, Gimeno BS, Rovira JV. Headwater streams: neglected ecosystems in the EU Water Framework Directive. Implications for nitrogen pollution control. Environ Sci Policy. 2010;13:423–33.

[69] Terada A, Zhou S, Hosomi M. Presence and detection of anaerobic ammonium-oxidizing (anammox) bacteria and appraisal of anammox process for high-strength nitrogenous wastewater treatment: A review. Clean Technol Environ Policy. 2011;13:759–81.

[70] Mulder A, Vandegraaf A, Robertson L, Kuenen J. Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. FEMS Microbiol Ecol. 1995;16:177–83.

[71] Van de Graaf A, Mulder A, Debruijn P, Jetten M, Robertson L, Kuenen J. Anaerobic oxidation of ammonium is a biological mediated process. Appl Env Microbiol. 1995;61:1246–51.

[72] Galí A, Dosta J, van Loosdrecht MCM, Mata- Alvarez J. Two ways to achieve an anammox influent from real reject water treatment at lab-scale: Partial SBR nitrification and SHARON process. Process Biochem. 2007;42:715–20.

[73] Sri Shalini S, Joseph K. Nitrogen management in landfill leachate: Application of SHARON, ANAMMOX and combined SHARON-ANAMMOX process. Waste Manag. 2012;32:2385–400.

[74] Lotti T, Kleerebezem R, Hu Z, Kartal B, Jetten MSM, van Loosdrecht MCM. Simultaneous partial nitritation and anammox at low temperature with granular sludge. Water Res. 2014;66:111–21.

[75] Jin R-C, Ma C, Yu J-J. Performance of an Anammox UASB reactor at high load and low ambient temperature. Chem Eng J. 2013;232:17–25.

[76] Ali M, Okabe S. Anammox-based technologies for nitrogen removal: Advances in process start-up and remaining issues. Chemosphere. 2015;141:144–53.

[77] Abma W, Driessen W, Haarhuis R, van Loosdrecht MCM. Upgrading of sewage treatment plant by sustainable and cost-effective seprate treatment of industrial wastewater. Water Sci Technol. 2010;61:1715–22.

[78] van der Star WRL, Abma WR, Blommers D, Mulder J-W, Tokutomi T, Strous M, et al. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res. 2007;41:4149–63.

[79] Magrí A, Béline F, Dabert P. Feasibility and interest of the anammox process as treatment alternative for anaerobic digester supernatants in manure processing – An overview. J Environ Manage. 2013;131:170–84.

[80] Kartal B, Kuenen J, van Loosdrecht MC. Sewage treatment with Anammox. Science (80- ) 2010;328:702–3.

[81] Ali M, Oshiki M, Rathnayake L, Ishii S, Satoh H, Okabe S. Rapid and successful start-up of anammox process by immobilizing the minimal quantity of biomass in PVA-SA gel beads. Water Res. 2015;79:147–57.

[82] Liu L, Pang C, Wu S, Dong R. Optimization and evaluation of an air-recirculated stripping for ammonia removal from the anaerobic digestate of pig manure. Process Saf Environ. Prot 2015;94:350–7.

[83] Serna-Maza A, Heaven S, Banks CJ. Biogas stripping of ammonia from fresh digestate from a food waste digester. Bioresour. Technol. 2015;190:66–75.

[84] Tao W, Ukwuani AT. Coupling thermal stripping and acid absorption for ammonia recovery from dairy manure: Ammonia volatilization kinetics and effects of temperature, pH and dissolved solids content. Chem Eng J. 2015;280:188–96.

[85] Lee HJ, Oh SJ, Moon SH. Recovery of ammonium sulfate from fermentation waste by electrodialysis. Water Res. 2003;37:1091–9.

[86] Fotidis IA, Karakashev D, Angelidaki I. Bioaugmentation with an acetate-oxidising consortium as a tool to tackle ammonia inhibition of anaerobic digestion. Bioresour. Technol. 2013;146:57–62.

[87] Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 2008;99:4044–64.

[88] Serna-Maza A, Heaven S, Banks CJ. Ammonia removal in food waste anaerobic digestion using a side-stream stripping process. Bioresour. Technol. 2014;152:307–15.

[89] Sun Z-Y, Yamaji S, Cheng Q-S, Yang L, Tang Y-Q, Kida K. Simultaneous decrease in ammonia and hydrogen sulfide inhibition during the thermophilic anaerobic digestion of protein-rich stillage by biogas recirculation and air supply at 60°C. Process Biochem. 2014;49:2214–9.

[90] Wirthensohn T, Waeger F, Jelinek L, Fuchs W. Ammonium removal from anaerobic digester effluent by ion exchange. Water Sci Technol. 2009;60:201–10.

[91] Hu B, Min M, Zhou W, Du Z, Mohr M, Chen P, et al. Enhanced mixotrophic growth of microalga Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal. Bioresour. Technol. 2012;126:71–9.

[92] Subhadra BG. Water management policies for the algal biofuel sector in the Southwestern United States. Appl Energy. 2011;88:3492–8.

[93] Sander K, Murthy S. Life cycle analysis of algae biodiesel. Int J Life Cycle Assess. 2010;15:704–14.

[94] Ji F, Liu Y, Hao R, Li G, Zhou Y, Dong R. Biomass production and nutrients removal by a new microalgae strain Desmodesmus sp. in anaerobic digestion wastewater. Bioresour. Technol. 2014;161:200–7.

[95] Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, et al. Enhanced CO(2) fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol. 2010;28:371–80.

[96] Vasseur C, Bougaran G, Garnier M, Hamelin J, Leboulanger C, Chevanton M Le, et al. Carbon conversion efficiency and population dynamics of a marine algae-bacteria consortium growing on simplified synthetic digestate: First step in a bioprocess coupling algal production and anaerobic digestion. Bioresour. Technol. 2012;119:79–87.

[97] Franchino M, Comino E, Bona F, Riggio VA. Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere. 2013;92:738–44.

[98] Prajapati SK, Kaushik P, Malik A, Vijay VK. Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges. Biotechnol Adv. 2013;31:1408–25.

[99] He J, Chen JP. A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresour. Technol. 2014;160:67–78.

[100]Sheng PX, Ting YP, Chen JP. Biosorption of heavy metal ions (Pb, Cu, and Cd) from aqueous solutions by the Marine Alga Sargassum sp. in single- and multiple-metal systems. Ind Eng Chem Res. 2007;46:2438–44.

[101]Mata-Alvarez J, Mercé S, Llabrés P. Anaerobic digestion of organic solid wastes . An overview of research achievements and perspectives. Bioresour. Technol. 2000;74:3–16.

[102]Meier L, Pérez R, Azócar L, Rivas M, Jeison D. Photosynthetic CO2 uptake by microalgae: An attractive tool for biogas upgrading. Biomass Bioenergy. 2015;73:102–9.

[103]Serejo ML, Posadas E, Boncz MA, Blanco S, García-Encina P, Muñoz R. Influence of Biogas Flow Rate on Biomass Composition During the Optimization of Biogas Upgrading in Microalgal-Bacterial Processes. Environ Sci Technol. 2015:49(5):3228-36.

[104]Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, et al. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour. Technol. 2010;101:2623–8.

[105]Levine RB, Costanza-Robinson MS, Spatafora GA. Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production. Biomass Bioenergy. 2011;35:40–9.

[106]Park J, Jin H-F, Lim B-R, Park K-Y, Lee K. Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresour. Technol. 2010;101:8649–57.

[107]Yan C, Zheng Z. Performance of photoperiod and light intensity on biogas upgrade and biogas effluent nutrient reduction by the microalgae Chlorella sp. Bioresour. Technol. 2013;139:292–9.

[108]Cai T, Ge X, Park SY, Li Y. Comparison of Synechocystis sp. PCC6803 and Nannochloropsis salina for lipid production using artificial seawater and nutrients from anaerobic digestion effluent. Bioresour. Technol. 2013;144:255–60.

[109]Lauterböck B, Ortner M, Haider R, Fuchs W. Counteracting ammonia inhibition in anaerobic digestion by removal with a hollow fiber membrane contactor. Water Res. 2012;46:4861–9.

[110]Lauterböck B, Moder K, Germ T, Fuchs W. Impact of characteristic membrane parameters on the transfer rate of ammonia in membrane contactor application. Sep Purif Technol. 2013;116:327–34.

[111]Kelly PT, He Z. Nutrients removal and recovery in bioelectrochemical systems: A review. Bioresour. Technol. 2014;153:351–60.

[112]Desloover J, Abate Woldeyohannis A, Verstraete W, Boon N, Rabaey K. Electrochemical resource recovery from digestate to prevent ammonia toxicity during anaerobic digestion. Environ Sci Technol. 2012;46:12209–16.

[113]Haddadi S, Elbeshbishy E, Lee H-S. Implication of diffusion and significance of anodic pH in nitrogen-recovering microbial electrochemical cells. Bioresour. Technol. 2013;142:562–9.

[114]Wu X, Modin O. Ammonium recovery from reject water combined with hydrogen production in a bioelectrochemical reactor. Bioresour. Technol. 2013;146:530–6.

[115]Mukhlesur Rahman M, Salleh MAM, Rashid U, Ahsan A, Hossain MM, Ra CS. Production of slow release crystal fertilizer from wastewaters through struvite crystallization- A review. Arab J Chem. 2014:7(1):139-55.

[116]Uysal A, Yilmazel YD, Demirer GN. The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. J Hazard Mater. 2010;181:248–54.

[117]Chimenos JM, Fernández AI, Villalba G, Segarra M, Urruticoechea A, Artaza B, et al. Removal of ammonium and phosphates from wastewater resulting from the process of cochineal extraction using MgO-Containing by-product. Water Res. 2003;37:1601–7.

[118]Marti N, Bouzas A, Seco A, Ferrer J. Struvite precipitation assessment in anaerobic digestion processes. Chem Eng J. 2008;141:67–74.

[119]Bouropoulos NC, Koutsoukos PG. Spontaneous precipitation of struvite from aqueous solutions. J Cryst Growth. 2000;213:381–8.

[120]Doyle JD, Parsons SA, Struvite formation, control and recovery. Water Res. 2002;36:3925–40.

[121]Ohlinger KN, Young TM, Schroeder ED. Predicting struvite formation in digestion. Water Res. 1998;32:3607–14.

[122]Le Corre KS, Valsami-Jones E, Hobbs P, Jefferson B, Parsons SA. Struvite crystallisation and recovery using a stainless steel structure as a seed material. Water Res. 2007;41:2449–56.

[123]Suzuki K, Tanaka Y, Kuroda K, Hanajima D, Fukumoto Y, Yasuda T, et al. Removal and recovery of phosphorous from swine wastewater by demonstration crystallization reactor and struvite accumulation device. Bioresour. Technol. 2007;98:1573–8.

[124]Ali MI, Schneider PA. An approach of estimating struvite growth kinetic incorporating thermodynamic and solution chemistry, kinetic and process description. Chem Eng Sci. 2008;63:3514–25.

[125]Uludag-Demirer S, Demirer GN, Chen S. Ammonia removal from anaerobically digested dairy manure by struvite precipitation. Process Biochem. 2005;40:3667–74.

[126]Giesen A. Crystallisation Process Enables Environmental Friendly Phosphate Removal at Low Costs. Environ Technol. 1999;20:769–75.

[127]Lee SI, Weon SY, Lee CW, Koopman B. Removal of nitrogen and phosphate from wastewater by addition of bittern. Chemosphere. 2003;51:265–71.

[128]Liu B, Giannis A, Zhang J, Chang VW-C, Wang J-Y. Characterization of induced struvite formation from source-separated urine using seawater and brine as magnesium sources. Chemosphere. 2013;93:2738–47.

[129]Gunay A, Karadag D, Tosun I, Ozturk M. Use of magnesit as a magnesium source for ammonium removal from leachate. J Hazard Mater. 2008;156:619–23.

[130]Huang H, Xu C, Zhang W. Removal of nutrients from piggery wastewater using struvite precipitation and pyrogenation technology. Bioresour. Technol. 2011;102:2523–8.

[131]Yu R, Geng J, Ren H, Wang Y, Xu K. Combination of struvite pyrolysate recycling with mixed-base technology for removing ammonium from fertilizer wastewater. Bioresour. Technol. 2012;124:292–8.

[132]Hug A, Udert KM. Struvite precipitation from urine with electrochemical magnesium dosage. Water Res. 2013;47:289–99.

[133]Quintana M, Colmenarejo MF, Barrera J, García G, García E, Bustos A. Use of a byproduct of magnesium oxide production to precipitate phosphorus and nitrogen as struvite from wastewater treatment liquors. J Agric Food Chem. 2004;52:294–9.

[134]Quintana M, Sánchez E, Colmenarejo MF, Barrera J, García G, Borja R. Kinetics of phosphorus removal and struvite formation by the utilization of by-product of magnesium oxide production. Chem Eng J. 2005;111:45–52.

[135]Quintana M, Colmenarejo MF, Barrera J, Sánchez E, García G, Travieso L, et al. Removal of phosphorus through struvite precipitation using a by-product of magnesium oxide production (BMP): Effect of the mode of BMP preparation. Chem Eng J. 2008;136:204–9.

[136]Lee J, Choi C, Lee M, Cheng I, Kim D. A study of NH3-N and P fixation by struvite formation in hybrid anaerobic reactor. Water Sci Technol. 2004;49:207–14.

[137]Uludag-Demirer S, Demirer GN, Frear C, Chen S. Anaerobic digestion of dairy manure with enhanced ammonia removal. J Environ Manage. 2008;86:193–200.

[138]Yilmazel YD, Demirer GN. Removal and recovery of nutrients as struvite from anaerobic digestion residues of poultry manure. Environ Technol. 2011;32:783–94.

[139]Romero-Güiza MS, Astals S, Chimenos JM, Martínez M, Mata-Alvarez J. Improving anaerobic digestion of pig manure by adding in the same reactor a stabilizing agent formulated with low-grade magnesium oxide. Biomass and Bioenergy. 2014;67:243–51.

[140]Gaterell MR, Gay R, Wilson R, Gochin RJ, Lester JN. An Economic and Environmental Evaluation of the Opportunities for Substituting Phosphorus Recovered from Wastewater Treatment Works in Existing UK Fertiliser Markets. Environ Technol. 2000;21:1067–84.

[141]Münch EV, Barr K. Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams. Water Res 2001;35:151–9.

[142]Liu Y, Kwag J-H, Kim J-H, Ra C. Recovery of nitrogen and phosphorus by struvite crystallization from swine wastewater. Desalination. 2011;277:364–9.

[143]Song Y, Qiu G, Yuan P, Cui X, Peng J-F, Zeng P, et al. Nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization without chemical additions. J Hazard Mater. 2011;190:140–9.

[144]Marcato CE, Pinelli E, Pouech P, Winterton P, Guiresse M. Particle size and metal distributions in anaerobically digested pig slurry. Bioresour. Technol. 2008;99:2340–8.

[145]Siciliano A, Rosa SD. Recovery of ammonia in digestates of calf manure through a struvite precipitation process using unconventional reagents. Environ Technol. 2014;35:841–50.

[146]Sakthivel SR, Tilley E, Udert KM. Wood ash as a magnesium source for phosphorus recovery from source-separated urine. Sci Total Environ. 2012;419:68–75.

[147]Türker M, Celen I. Removal of ammonia as struvite from anaerobic digester effluents and recycling of magnesium and phosphate. Bioresour. Technol. 2007;98:1529–34.

[148]Pritchard D, Penney N, McLaughlin M, Rigby H, Schwarz K. Land application of sewage sludge (biosolids) in Australia: risks to the environment and food crops. Water Sci Technol. 2010;62:48–57.

[149]Erdincler A, Seyhan L. Agricultural use of municipal wastewater sludges: phosphorus availability of biological excess phophorus removal sludges. Water Sci Technol. 2006;54:131–8.

[150]Bauer P, Szogi A, Vanotti M. Agronomic effectiveness of calcium phophate recovered from liquid swine manure. Agron J. 2007;99:1352–6.

[151]Pastor L, Marti N, Bouzas A, Seco A. Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants. Bioresour. Technol. 2008;99:4817–24.

[152]Yuan Z, Pratt S, Batstone DJ. Phosphorus recovery from wastewater through microbial processes. Curr Opin Biotechnol. 2012;23:878–83.

[153]Lv X-M, Shao M-F, Li C-L, Li J, Gao X, Sun F-Y. A Comparative Study of the Bacterial Community in Denitrifying and Traditional Enhanced Biological Phosphorus Removal Processes. Microbes Environ. 2014;00:261–8.

[154]Huang W, Huang W, Li H, Lei Z, Zhang Z, Tay JH, et al. Species and distribution of inorganic and organic phosphorus in enhanced phosphorus removal aerobic granular sludge. Bioresour. Technol. 2015;193:549–52.

[155]Oehmen A, Lemos PC, Carvalho G, Yuan Z, Keller J, Blackall LL, et al. Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Res. 2007;41:2271–300.

[156]Rashed EM, Massoud M. The effect of effective microorganisms (EM) on EBPR in modified contact stabilization system. HBRC J. 2014:1–9.

[157]Xu X, Liu G, Zhu L. Enhanced denitrifying phosphorous removal in a novel anaerobic/aerobic/anoxic (AOA) process with the diversion of internal carbon source. Bioresour. Technol. 2011;102:10340–5.

[158]Sibag M, Kim HS. Nitrification denitrification enhanced biological phosphorous removal (NDEBPR) occurs in a lab-scale alternating hypoxic/oxic membrane bioreactor. Bioresour. Technol. 2012;104:173–80.

[159]Jafarzadeh Ghehi T, Mortezaeifar S, Gholami M, Rezaei Kalantary R, Mahvi AH. Performance evaluation of enhanced SBR in simultaneous removal of nitrogen and phosphorous. J Environ Heal Sci Eng. 2014;12:1–7.

[160]Yan P, Guo J-S, Wang J, Chen Y-P, Ji F-Y, Dong Y, et al. Enhanced nitrogen and phosphorus removal by an advanced simultaneous sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal wastewater treatment process. Bioresour. Technol. 2015;183:181–7.

[161]Xu D, Chen H, Li X, Yang Q, Zeng T, Luo K, et al. Enhanced biological nutrient removal in sequencing batch reactors operated as static/oxic/anoxic (SOA) process. Bioresour. Technol. 2013;143:204–11.

[162]Wang Z, Meng Y, Fan T, Du Y, Tang J, Fan S. Phosphorus removal and N2O production in anaerobic/anoxic denitrifying phosphorus removal process: Long-term impact of influent phosphorus concentration. Bioresour. Technol. 2015;179:585–94.