Vol. 29 Núm. 1 (2016): Revista ION
Artículos

Efecto de la configuración de reactores anaerobios de alta tasa en la producción de hidrógeno: biomasa fija y UASB-híbrido

Diana Margarita Hernández Avilés
Universidad Militar Nueva Granada (UMNG)
Dayana Katerine Grisales Penagos
Universidad Militar Nueva Granada (UMNG)
Adela Tatiana Rodríguez Chaparro
Universidad Militar Nueva Granada (UMNG)

Publicado 2016-07-15

Palabras clave

  • Ácidos Volátiles Totales,
  • Conversión de la Sacarosa,
  • Energía Renovable,
  • Fermentación Natural.

Cómo citar

Hernández Avilés, D. M., Grisales Penagos, D. K., & Rodríguez Chaparro, A. T. (2016). Efecto de la configuración de reactores anaerobios de alta tasa en la producción de hidrógeno: biomasa fija y UASB-híbrido. Revista ION, 29(1). https://doi.org/10.18273/revion.v29n1-2016002

Resumen

El objetivo de este estudio es comparar la producción de hidrógeno en un reactor de biomasa fija y de manto de lodos y flujo ascendente (Hybrid UASB). Se utilizó neumático triturado y anillos de Biopack como material de soporte. Los reactores fueron operados por 35 días con un tiempo de detención hidráulica de 12 h y una carga orgánica volumétrica de 11,26gDQO/L.d, usando sacarosa como fuente de carbono. La producción porcentual promedio de hidrógeno fue de 45 y 48% para el reactor de biomasa fija y el reactor UASB-Híbrido, respectivamente. Con base en los resultados y análisis estadístico, se determinó que la configuración del reactor no influye en la producción de H2. Adicional a lo anterior, se observó estabilidad en el proceso.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Barca C, Audrey S, Ranava D, Giudici-Orticoni MT, Ferrasse JH. Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: A review. Bioresour. Technol. 2015;185:386–98.

[2] Reinders M, Beckhaus P, Illing F, Misz U, Riße H, Schroder M, et al. Biogas as a source for producing hydrogen at wastewater treatment plants e EuWaK e A pilot project. Int J Hydrogen Energy. 2015;40(28):8601-6.

[3] Pisutpaisal N, Chananchida N, Sirisukpoka U. Biological Hydrogen and Methane Production in from Food Waste in Two-stage CSTR. Energy Procedia. 2014;50:719-22.

[4] Shen Y, Linville JL, Demirtas MU, Mintz MM, Snyder SW. An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs. Renew. Sustainable Energy Rev. 2015;50:346-62.

[5] Cakir FY, Stenstrom MK. Greenhouse gas production: A comparison between aerobic and anaerobic wastewater treatment technology. Water Res. 2005;39(17):4197-203.

[6] Barros AR, Tallarico MA, Sakamoto IK, Maintinguer SI, Amâncio MB, Silva EL. Performance evaluation and phylogenetic characterization of anaerobic fluidized bed reactors using ground tire and pet as support materials for biohydrogen production. Bioresour. Technol. 2011;102(4):3840‒7.

[7] Kapdan IK, Kargi F. Bio-hydrogen production from waste materials. Enzym. Microb. Technol. 2006;38(5):569–82.

[8] Das D, Veziroglu TN. Hydrogen production by biological process: a survey of literature. International Journal of Hydrogen Energy. 2001;26(1):13–28.

[9] Nath K, Das D. Improvement of fermentative hydrogen production: various approaches. Appl. Microbiol. Biotechnol. 2004;65(5):520–9.

[10] Show KY, Lee DJ, Chang JS. Bioreactor and process design for biohydrogen production. Bioresour. Technol. 2011;102(18):8524–33.

[11] Lin CY, Lay CH, Sen B, Chu C, Kumar G, Chen C, Chang J. Fermentative hydrogen production from wastewaters: a review and prognosis. Int. J. Hydrogen Energy. 2012;37(20):15632–642.

[12] Jung K, Kim D, Kim S, Shin H. Bioreactor design for continuous dark fermentative hydrogen production. Bioresour. Technol. 2011;102(18):8612–20.

[13] Li WW, Yu HQ. Biohydrogen Production with high-rate bioreactors. En: Biofuels. Pandey A, Larroche CI, Ricke SC, Dussap CG, Gnansounou E, editors. Estados Unidos: Elsevier Inc. Academic Press; 2011.p. 537-67.

[14] Yu H, Zhu Z, Hu W, Zhang H. Hydrogen production from rice winery wastewater in an upow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrogen Energy. 2002;27(11-12):1359-65.

[15] Chang FY, Lin CY. Biohydrogen production using an up-flow anaerobic sludge blanket reactor. Int J Hydrogen Energy. 2004;29(1):33-9.

[16] Nunes Ferraz ADJ, Zaiat M, Gupta M, Elbeshbishy E, Hafez H, Nakhla G. Impact of organic loading rate on biohydrogen production in an up-flow anaerobic packed bed reactor (UAnPBR). Bioresour. Technol. 2014;164:371-9.

[17] Alzate-Gaviria LM, Sebastian PJ, Pérez-Hernández A, Eapen D. Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater. Int J Hydrogen Energy. 2007;32(15):3141-6.

[18] Mohammadi P, Ibrahim S. High-rate fermentative hydrogen production from palm oil mill effluent in an up-flow anaerobic sludge blanket-fixed film reactor. Chemical Engineering Research and Design. 2014;92(10):1811-7.

[19] Si B, Li J, Li B, Zhu Z, Shen R, Zhang Y, et al. The role of hydraulic retention time on controlling methanogenesis and homoacetogenesis in biohydrogen production using upflow anaerobic sludge blanket (UASB) reactor and packed bed reactor (PBR). Int J Hydrogen Energy. 2015;40(35):11414-21.

[20] I.N.V.E-123. Análisis granulométrico por tamizado. Bogotá, Colombia: Instituto Nacional de vías (INVIAS); 2007.

[21] Carminato VM. Influência do cálcio na produção biológica de hidrogênio a partir de águas residuárias em biorreatores anaeróbios (tesis maestria). São Paulo, Brasil: Escola de Engenharia de São Carlos, da Universidade de São Paulo; 2013.

[22] Mendez AA, Hernández DM, Torres YV, Chaparro AT. Influencia del medio de soporte en la producción de biohidrógeno a partir del tratamiento de aguas residuales de la industria cervecera utilizando reactores de biomasa inmovilizada y flujo ascendente (Informe Colciencias). Bogotá, Colombia: Universidad Militar Nueva Granada; 2015.

[23] Leite JAC, Fernandes BS, Pozzi E, Barboza M, Zaiat M. Application of an anaerobic packed-bed bioreactor for the production of hydrogen and organic acids. Int. J. Hydrogen Energy. 2008;33(2):579-86.

[24] Hafez H, Nakhla G, Naggar MHE, Elbeshbishy E, Baghchehsaraee B. Effect of organic loading on a novel hydrogen bioreactor. Int J Hydrogen Energy. 2010;35(1):81-92.

[25] Wei J, Liu ZT, Zhang X. Biohydrogen production from starch wastewater and application in fuel cell. Int J Hydrogen Energy. 2010;35(7):2949-52.

[26] Mohan SV, Babu VL, Sarma PN. Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): effect of organic loading rate. Enzyme Microb. Technol. 2007;41(4):506-15.

[27] Ripley LE, Boyle WC, Converse JC. Improved alkalimietric monitoring for anaerobic digestion of high-strength wastes. J Water Pollut Control Fed. 1986;58(5):406-11.

[28] APHA. Standard methods for the examination for water and wastewater. 20th ed. Washington, DC, Estados Unidos: American Public Health Association/American Water Works Association/ Water Environmental Federation; 1998.

[29] Van Ginkel S, Sung S, lay J. Biohydrogen Production as a Function of pH and Substrate Concentration. Environ. Sci. Technol. 2001;35(24):4726-30.

[30] Lima DM, Zaiat M. The influence of the degree of back-mixing on hydrogen production in an anaerobic fixed-bed reactor. Int J Hydrogen Energy. 2012;37(12):9630-5.

[31] Kisielewska M, Debowski M, Zielinski M. Improvement of biohydrogen production using a reduced pressure fermentation. Bioprocess Biosyst Eng. 2015;38(10):1925-33.

[32] Van Ginkel SW, Logan B. Increased biological hydrogen production with reduced organic loading. Water Res. 2005;39(16):3819-26.

[33] Cardeña R, Moreno G, Valdez-Vazquez I, Buitrón G. Optimization of volatile fatty acids concentration for photofermentative hydrogen production by a consortium. Int J Hydrogen Energy. 2015;40(48):17212–23.

[34] Trad Z, Akimbomi J, Vial C, Larroche C, Taherzadeh MJ , Fontaine JP. Development of a submerged anaerobic membrane bioreactor for concurrent extraction of volatile fatty acids and biohydrogen production. Bioresour. Technol. 2015;196:290-300.