Revisión del cálculo de poder calorífico y punto de rocío del gas natural, y de la estimación de sus incertidumbres
Publicado 2016-12-15
Palabras clave
- Gas Natural,
- Punto de Rocío de Hidrocarburo,
- Poder Calorífico,
- ncertidumbre.Abstract
Cómo citar
Resumen
El gas natural debe cumplir ciertos requisitos que garanticen que su producción, transporte, distribución y consumo se realiza de forma segura. Estos requisitos corresponden a los parámetros de calidad de gas dentro de los cuales se encuentran el poder calorífico y el punto de rocío de hidrocarburo. Su correcta medición es de vital importancia, especialmente en los puntos de transferencia de custodia, ya que tanto quien entrega como quien recibe está interesado en conocer la calidad del gas comercializado con una alta exactitud. La presente revisión recopila las diferentes formas de medición de los parámetros de calidad de gas seleccionados, a partir de trabajos encontrados en la literatura tanto en la determinación de su valor como de su incertidumbre asociada. Sin embargo, a pesar de que los trabajos relacionados con la estimación de incertidumbre del poder calorífico y el punto de rocío de hidrocarburos son limitados, esta revisión representa un avance en la ruta de investigación aplicada en la adecuada determinación de estos parámetros y en la obtención de resultados con mayor confiabilidad metrológica de las magnitudes químicas del gas natural.
Descargas
Referencias
[2] BP p.l.c. BP Statistical Review of World Energy June 2014. Londres. Inglaterra. 2014.
[3] Karpash O, Darvay I, Karpash M. New approach to natural gas quality determination. J Pet Sci Eng. 2010;71(3-4):133-7.
[4] ASTM International. D03 Committee. ASTM D1142: Test Method for Water Vapor Content of Gaseous Fuel by Measurement of Dew Point Temperature. 2012.
[5] Comisión de Regulación de Energía y Gas. Resolución CREG-071: Reglamento Único de Transporte de Gas Natural (RUT). Consejo Nacional de Operación de Gas Natural-CNO Gas. 1999.
[6] Comisión Reguladora de Energía (CRE). Norma Oficial Mexicana NOM-001-SECRE-2003, Calidad del Gas Natural. Diario Oficial de la Federación. 2003.
[7] Australia Standards. Committee AG-010. AS 4564: Specification for general purpose natural gas. 2011.
[8] Bureau of Indian Standards. IS 15126:2002 Natural Gas –Standard Reference Conditions.
[9] Siemens AG. Process Analytics Throughout the Entire Natural Gas Pipeline Supply Chain. 2008.
[10] Ulbig P, Hoburg D. Determination of the calorific value of natural gas by different methods. Thermochim Acta. 2002;382(1-2):27-35.
[11] George DL, Barajas AM, Burkey RC. The need for accurate hydrocarbon dew point determination. Pipeline Gas J. 2005;232(9):32-4.
[12] Herring J. Hydrocarbon Dew Point Is A Critical Consideration For Pipeline Operations. Pipeline Gas J. 2010; 237(7):48.
[13] Meyer VR. Measurement uncertainty. J Chromatogr A. 2007;1158(1-2):15-24.
[14] Carotenuto A, Giovinco G, Viglietti B, Vanoli L. A new procedure for the determination of calibration curves for a gas chromatograph used in natural gas analysis. Chemom Intell Lab Syst. 2005;75(2):209-17.
[15] Haloua F, Ponsard JN, Lartigue G, Hay B, Villermaux C. Thermal behaviour modelling of a reference calorimeter for natural gas. Int J Therm Sci. 2012;55:40-7.
[16] Sunner S, Mansson M. Experimental chemical thermodynamics. 1: Combustion calorimetry. Oxford: Pergamon Press; 1979.
[17] Domalski E S. From the history of combustion calorimetry. En: Experimental chemical thermodynamics. 1: Combustion calorimetry. Sunner S, Mansson M. Oxford: Pergamon Press; 1979. p. 401.
[18] Popoff MM, Schirokich PK. Ein calorimeter zum verbrennen von chlor-und bromderivaten. Z.Phys. Chem (Leipzig). 1933;167:83.
[19] Haloua F, Ponsard J-N, Lartigue G, Hay B, Villermaux C, Foulon E, et al. Thermal behaviour modelling of a reference calorimeter for natural gas. Int J Therm Sci. 2012;55:40-7.
[20] Barbato PS, Landi G, Russo G. Catalytic combustion of CH4-H2-CO mixtures at pressure up to 10bar. Fuel Process Technol. 2013;107:147-54.
[21] Pérez Fernando J, Sarge Stefan M. Development of an accurate, modern, adaptable, isothermal gas calorimeter.University of Valladolid and PTB. 2015.
[22] Parameswaran T, Gogolek P, Hughes P. Estimation of combustion air requirement and heating value of fuel gas mixtures from flame spectra. Appl. Therm. Eng. 2016;105:353-61.
[23] Thompson ED. Chilled Mirror Device For Water & Hydrocarbon Dew Point Determination. Chandler Engineering. AGMSC 2003.
[24] Tripathy S, Leong E-C, Rahardjo H. Total suction measurement of unsaturated soils with a device using the chilled-mirror dew-point technique. Géotechnique. 2003;53(2):173-82.
[25] Benton A. Determination of hydrocarbon dew point in natural gas. Am Sch Gas Meas Technol. 2006;1-8.
[26] Brown A, Milton M, Vargha G, Mounce R, Cowper C, Stokes A et al. NPL Report AS 3 - Comparison of methods for the measurement of hydrocarbon dew point of natural gas. Inglaterra: National Physical Laboratory; 2007.
[27] American Petroleum Institute. Chapter 14-Natural Gas Fluids Measurements, section 1 Collecting and Handling of Natural Gas Samples for Custody Transfer. En: Manual of Petroleum Measurement Standards. Measurement Coordination Department. United States: API; 2006. p. 72.
[28] Joint Committee for Guides in Metrology (JCGM/WG 2). International vocabulary of metrology — Basic and general concepts and associated terms (VIM). BIPM. 2008.
[29] Barceló D. Advance techniques in gas chromatography −mass spectrometry (GC-MS-MS and GC-TOF-MS) for environment chemistry. Elservier. 2013;61:360-5.
[30] Bahadori A. Natural gas processing: technology and engineering design. Amsterdam: Elsevier; 2014.
[31] Rojey A. Natural gas: production processing transport. Paris: Editions Technip; 1997. p. 429.
[32] American Gas Association. Report No.8: Compressibility Factors of Natural Gas and Other Related Hydrocarbon Gases. United States: Starling KE, Savidge JL. 1994.
[33] ASTM International. D03 Committee. ASTM 3588: Practice for Calculating Heat Value, Compressibility Factor, and Relative Density of Gaseous Fuels. 2011.
[34] Azizi N, Behbahani R, Isazadeh MA. An efficient correlation for calculating compressibility factor of natural gases. J Nat Gas Chem. 2010;19(6):642-5.
[35] Obuba J, Ikiesnkimama SS, Ubani CE, Ekeke IC. Natural Gas Compressibility Factor Correlation Evaluation for Niger Delta Gas Fields. IOSR-JEEE. 2013;6(4):10.
[36] Ahmed TH. Reservoir engineering handbook. 4th ed. Amsterdam: Gulf Professional Pub; 2010. p. 1454.
[37] Fayazi A, Arabloo M, Mohammadi AH. Efficient estimation of natural gas compressibility factor using a rigorous method. J Nat Gas Sci Eng. 2014;16:8-17.
[38] Kumar N. Compressibility factors for natural and sour reservoir gases by correlations and cubic equations of state (Tesis de maestría). United States. Texas Tech University. 2004.
[39] Zhou L, Zhou Y. Determination of compressibility factor and fugacity coefficient of hydrogen in studies of adsorptive storage. Int J Hydrog Energy. 2001;26(6):597-601.
[40] Heidaryan E, Moghadasi J, Rahimi M. New correlations to predict natural gas viscosity and compressibility factor. J Pet Sci Eng. 2010;73(1-2):67-72.
[41] Sanjari E, Lay EN. An accurate empirical correlation for predicting natural gas compressibility factors. J Nat Gas Chem. 2012;21(2):184-8.
[42] Kunz O, Wagner W. The GERG-2008 Wide-Range Equation of State for Natural Gases and Other Mixtures: An Expansion of GERG-2004. J Chem Eng Data. 2012;57(11):3032-91.
[43] Nasrifar K, Bolland O, Moshfeghian M. Predicting Natural Gas Dew Points from 15 Equations of State. Energy Fuels. 2005;19(2):561-72.
[44] Nasrifar K, Bolland O. Prediction of thermodynamic properties of natural gas mixtures using 10 equations of state including a new cubic two-constant equation of state. J Pet Sci Eng. 2006;51(3-4):253-66.
[45] Elsharkawy AM. Predicting the dew point pressure for gas condensate reservoirs: empirical models and equations of state. Fluid Phase Equilibria. 2002;193(1-2):147-65.
[46] Galatro D, Marín-Cordero F. Considerations for the dew point calculation in rich natural gas. J Nat Gas Sci Eng. 2014;18:112–9.
[47] Jarrahian A, Heidaryan E. A new cubic equation of state for sweet and sour natural gases even when composition is unknown. Fuel. 2014;134:333–42.
[48] Cox MG, Harris PM. Measurement uncertainty and traceability. Meas Sci Technol. 2006;17(3):533-40.
[49] Taverniers I, De Loose M, Van Bockstaele E. Trends in quality in the analytical laboratory. I. Traceability and measurement uncertainty of analytical results. TrAC Trends Anal Chem. 2004;23(7):480-90.
[50] Wallace J. Ten methods for calculating the uncertainty of measurement. Sci Justice. 2010;50(4):182-6.
[51] Joint Committee for Guides in Metrology (JCGM/WG 1). Evaluation of measurement data — Guide to the expression of uncertainty in measurement. BIPM. 2008.
[52] Papadopoulos CE, Yeung H. Uncertainty estimation and Monte Carlo simulation method. Flow Meas Instrum. 2001;12(4):291-8.
[53] Joint Committee for Guides in Metrology (JCGM/WG 1). Evaluation of measurement data — Supplement 1 to the “Guide to the expression of uncertainty in measurement” —Propagation of distributions using a Monte Carlo method. BIPM. 2008.
[54] Enright PA, Fleischmann CM. Unvertainty of Heat Release Rate Calculation of the ISO5660-1 Cone Calorimeter Standard Test Method. Fire Technol. 1999;35(2):153-69.
[55] Zhao L, Dembsey NA. Measurement uncertainty analysis for calorimetry apparatuses. Fire Mater. 2008;32(1):1-26.
[56] Alexandrov YI. Estimation of the uncertainty for an isothermal precision gas calorimeters. Thermochim Acta. 2002;382(1):55-64.
[57] Haloua F, Foulon E, El-Harti E, Sarge SM, Rauch J, Neagu M, et al. Comparison of traceable methods for determining the calorific value of non-conventional fuel gases. Int. J. Therm. Sci. 2016;100:438-47.
[58] Yackow A. Laughton A, Gronemann U, Benito A, Lindgren T, Kukova E, et.al. GERG-PROJECT 1.52 − Comparing and defining a relation between experimental and calculating techniques for hydrocarbon dew-point. International Gas Union Research Conference; 2008; París, Francia.
[59] Ramsey MH, Ellison SLR (Eds.). Eurachem/EUROLAB/CITAC/Nordtest/AMC Guide: Measurement uncertainty arising from sampling: a guide to methods and approaches Eurachem. 2007. ISBN 978 0 948926 26 6. Available from the Eurachem secretariat.
[60] Puglisi C. Kornblit F. Incertidumbre de medición en química analítica. Recta de calibración. Instituto Nacional de Tecnología Industrial; 2002.
[61] De Oliveira E. Simplified calibration methodology of chromatographs used in custody transfer measurements of natural gas. Metrol Meas Syst. 2012;19(2):405-16.
[62] Tsochatzidis NA, Karantanas E. Assessment of calorific value at a gas transmission network. J Nat Gas Sci Eng. 2012;9:45-50.
[63] Louli V, Pappa G, Boukouvalas C, Skouras S, Solbraa E, Christensen KO, et al. Measurement and prediction of dew point curves of natural gas mixtures. Fluid Phase Equilibria. 2012;334:1-9.
[64] Skylogianni E. Measurements and Modelling of Hydrocarbon Dew Points for Natural Gases (Master thesis). Norway: Norwegian University of Science and Technology; 2012.
[65] Hajipour S, Satyro MA, Foley MW. Uncertainty Analysis Applied to Thermodynamic Models and Fuel Properties – Natural Gas Dew Points and Gasoline Reid Vapor Pressures. Energy Fuels. 2014;28(2):1569-78.
[66] Martins LL, Ribeiro AS, e Sousa JA, Forbes AB. Measurement Uncertainty of Dew-Point Temperature in a Two-Pressure Humidity Generator. Int J Thermophys. 2012;33(8-9):1568–82.
[67] Aparicio A, Ayala E. Identificación y Cuantificación de las Fuentes de Incertidumbre que Afectan el Proceso de Medición del Punto de Rocío de Hidrocarburo y el Poder Calorífico del Gas Natural. Met&Flu. 10:06-15.
[68] Gas Processor Association. GPA 2172: Calculation of Gross Heating Value, Relative Density, Compressibility and Theoretical Hydrocarbon Liquid Content for Natural Gas Mixtures for Custody Transfer. Washington, D.C. United States of America. 2015.
[69] International Organization for Standardization. ISO6976: Calculation of calorific values, density, relative density and Wobbe index from composition. Ginebra, Suiza. ISO.1995.