Optimization of Chalcopyrite Froth Flotation Process by Sludge Removal Step

  • Nicolás Rojas Arias Universidad Pedagógica y Tecnológica de Colombia, Grupo de materiales siderúrgicos
  • Carlos Alberto Sandoval Universidad Pedagógica y Tecnológica de Colombia, Grupo de materiales siderúrgicos
  • Isaí Santamaria Universidad Pedagógica y Tecnológica de Colombia, Grupo de materiales siderúrgicos

Resumen


En este trabajo, estudiamos el proceso de flotación de espuma de calcopirita, con énfasis en la influencia
de la presencia de lodos y arcillas en la pulpa durante la flotación. Para este propósito, la calcopirita se
preparó mecánicamente (trituración y molienda), el material se clasificó (entre la malla 100 y 120 y se
midieron los tamaños de partícula). En el proceso, se empleó un dispositivo de tipo Jig para la eliminación
de lodos y celdas de flotación de Denver para el mismo propósito. Durante el proceso, se consideró una
reducción en el consumo de reactivo al manejar el paso de concentración. Se observó una optimización
significativa en la concentración por flotación de espuma de la calcopirita mediante el uso de la pantalla
Jig y los peptizados se eliminaron durante la etapa de flotación. El manejo hidráulico de la malla mejora
significativamente la remoción de lodo, siendo más eficiente que el uso de la Celda Denver.

Palabras clave: Calcopirita, Flotación de espuma, Peptizes, , Jig screen, Denver Cell

Descargas

La descarga de datos todavía no está disponible.

Citas

[1] L Wangm Y Peng, K Runge, D Bradshaw.
A review of entrainment: Mechanisms,
Contributing factors and modelling in flotation.
2015. (cited: April 18th, 2017). Minerals
Engineering. Elsevier. vol. 70. pp. 77-91.
[2] C Bazin, M Proulx. Distribution of reagents
down a flotation bank to improve the recovery
of coarse particles. 2001- (cited: March 9th,
2017). Department of Mining and Metallurgy,
La-Oal University, Quebec, Canada G1K-7P4.
Int. J. of Mineral Processing. Elsevier. Vol. 61.
pp. 1-12
[3] P Smith, L Warren. Entrainment of particles into
flotation froths. 1989. (cited: April 6th, 2017).
Mineral Processing and Extractive Metallurgy
Review. An International Journal. Vol. 5 - Issue
1-4. pp. 123-145.
[4] J S J Denventer, W A Dyk, L Lorenzen, D Feng.
The dynamic behaviour of coarse particles in
flotation froths Part I: Model. (Cited: April 12th,
2017). Minerals Engineering. Elsevier. Vol. 15.
pp. 635-645.
[5] Y Mu, Y Peng, R Lauten. The depression of
pyrite in selective flotation by different reagent
systems A Literature review. 2016. (cited:
February 26th, 2017). Minerals Engineering.
Elsevier. Vol. 96-97. pp. 143-156.
[6] G Lagaly, M Ogawa, I Dkny. CLAY MINERAL
ORGANIC INTERACTIONS. Chapter 7.3.
2006. (cited: May 1th, 2017). Handbook of
Clay Science. Developments in Clay Science.
Elsevier Science BV. Amsterdam. Vol. 1. pp.
309-337
[7] B K G Theng. The Clay Minerals In: Theng.
B.K.G. (Ed.). Chapter 1 -Formation and
properties of Clay-Polymer Complexes. 2012.
(cited: April 6th, 2017). Developments in Clay
Science. Elsevier. Vol. 4. pp. 3-45.
[8] N O Lotter, D J Bradshaw, A R Barnes.
Classification of the Major Copper Sulphides
into semiconductor types, and associated
flotation characteristics. 2016. (cited: March
6th, 2017). Minerals Engineering. Elsevier.
Vol. 96-97. pp. 177-184.
[9] G Lagaly, I Dkny. Chapter 8 - Colloid Clay
Science. 2013. (cited: March 25th, 2017).
Handbook of Clay Science. Developments in
Clay Science. Elsevier. Vol. 5. pp. 243-245.
[10] Y Wang, R A Lauten, Y Peng. The effect of
biopolymer dispersants on copper flotation
in the presence of kaolinite. (online). 2016.
(cited: April 6th, 2017). Minerals Engineering.
Elsevier. Vol 96-97. pp. 123-129.
[11] Y Wang, Y Peng, T Nicholson, R A Lauten.
The role of cations in copper flotation in the
presence of bentonite. 2016. (cited: March
23th, 2017). Minerals Engineering. Elsevier.
Vol. 96-97. pp. 108-112.
[12] R M Rahman, S Ata, G J Jameson. The effect
of flotation variables on the recovery of different
particle size fraction in the froth and the pulp.
20th May 2012. (cited: March 9th, 2017).
Centre for Multiphase Processes, University
of Newcastle, University Drive, Callaghan
NSW 2308, Australia. International Journal of
Mineral Processing. Elsevier. Vol. 106-109. pp.
70-77
[13] E S Boek, P V Coveney, N T Skipper. Monte
Carlo Molecular Modeling Studies of Hydrated
Li-, Na-, and K-Smectites: Understanding Role
of Potassium as a Clay Swelling Inhibitor.
December 1995. (cited: March 9th, 2017).
Journal of the American Chemical Society
JACS. Vol. 117. pp. 12608- 12617.
[14] N F Feil, C H Sampaio, H Wotruba. Inuence
of jig frequency on the separation of coal from
the Bonito seam Santa Catarina, Brazil. 2012.
(cited: March 2th, 2017). Fuel Processing
Technology. Elsevier. Vol. 96. pp. 22-26.
[15] M Tsunekawa, R Kobayashi, K Hori, O Hideaki,
A Naka, H Naoky, I Mayumi. Newly developed
discharge device for jig separation of plastics
to recover higher grade bottom layer product.
2012. (cited: April 1th, 2017). International
Journal of Mineral Processing. Elsevier. Vol.
114-117. pp. 27-29.
[16] K Ya-li, Z Jun, Z Hai-yang, G Jun. Mathematic
simulation of +13 mm particles motion in
jig. 2009. (cited: April 1th, 2017). The 6th
International Conference on Mining Science
Technology. Procedia Earth and Planetary
Science. Elsevier. ScienceDirect. pp. 819-29.
[17] W M Ambrs, B G Cazacliu, C H Sampaio. Wall
e_ects on particle separation in air jigs. 2016.
Publicado
2018-09-28