Adsorción de azul de metileno utilizando cáscara de yuca (Manihot esculenta) modificada químicamente con ácido oxálico

  • Alberto Albis Arrieta Programa de Ingeniería Química. Universidad del Atlántico. Km 7 vía puerto, Barranquilla, Atlántico, Colo
  • Hellman Llanos Reales Programa de Ingeniería Química. Universidad del Atlántico. Km 7 vía puerto, Barranquilla, Atlántico, Colo
  • Jeffrey Galeano Gil Programa de Ingeniería Química. Universidad del Atlántico. Km 7 vía puerto, Barranquilla, Atlántico, Colo
  • Daniela García Moreno Programa de Ingeniería Química. Universidad del Atlántico. Km 7 vía puerto, Barranquilla, Atlántico, Colo

Resumen

En esta investigación se evaluó el potencial de la cáscara de yuca (Manihot esculenta) modificada
con ácido oxálico para remover azul de metileno de soluciones acuosas. Se determinaron las mejores
condiciones de temperatura (40-60 °C), tiempo (1-3 h) y relación másica ácido oxálico/biomasa (1,5-2)
para la modificación. Se obtuvieron porcentajes de remoción de hasta 99,48% y capacidad de adsorción
de 24,87 mg/g con cáscara de yuca modificada a 50°C por dos horas y 1,75 de relación ácido oxálico/
biomasa. El proceso de adsorción se ajustó al modelo de isotermas de Freundlich y la cinética de
adsorción a un modelo de pseudo segundo orden.

Palabras clave: cáscara de yuca, ácido oxálico, azul de metileno, adsorción

Descargas

La descarga de datos todavía no está disponible.

Citas

[1] Moeller G, Alatorre F, editors. Influencia De Las
Características Hidráulicas Y Geometrías De
Biofiltros Empacados Sobre La Eliminación De
Un Colorante Azo. Xv Congreso Nacional De
Ingeniería Sanitaria Y Ciencias Ambientales;
2006.
[2] Hameed B, Ahmad A. Batch adsorption of
methylene blue from aqueous solution by garlic
peel, an agricultural waste biomass. Journal of
Hazardous Materials. 2009;164(2):870-5.
[3] Sohrabi M, Ghavami M. Photocatalytic
degradation of direct red 23 dye using UV/TiO
2: effect of operational parameters. Journal of
Hazardous Materials. 2008;153(3):1235-9.
[4] Órfão J, Silva A, Pereira J, Barata S, Fonseca
I, Faria P, et al. Adsorption of a reactive dye
on chemically modified activated carbons—
influence of pH. Journal of Colloid and interface
Science. 2006;296(2):480-9.
[5] Ciardelli G, Corsi L, Marcucci M. Membrane
separation for wastewater reuse in the
textile industry. Resources, conservation and
recycling. 2001;31(2):189-97.
[6] Fan L, Zhou Y, Yang W, Chen G, Yang F.
Electrochemical degradation of aqueous
solution of Amaranth azo dye on ACF under
potentiostatic model. Dyes and Pigments.
2008;76(2):440-6.
[7] Zhu M-X, Lee L, Wang H-H, Wang Z. Removal
of an anionic dye by adsorption/precipitation
processes using alkaline white mud. Journal of
Hazardous Materials. 2007;149(3):735-41.
[8] O’Connell DW, Birkinshaw C, O’Dwyer TF.
Heavy metal adsorbents prepared from the
modification of cellulose: A review. Bioresource
technology. 2008;99(15):6709-24.
[9] Bhatnagar A, Sillanpää M. Utilization of agroindustrial
and municipal waste materials as
potential adsorbents for water treatment—a
review. Chemical engineering journal.
2010;157(2):277-96.
[10] Rafatullah M, Sulaiman O, Hashim R, Ahmad
A. Adsorption of methylene blue on low-cost
adsorbents: a review. Journal of Hazardous
Materials. 2010;177(1):70-80.
[11] Al-Anber ZA, Al-Anber MA, Matouq M, Al-
Ayed O, Omari NM. Defatted Jojoba for the
removal of methylene blue from aqueous
solution: Thermodynamic and kinetic studies.
Desalination. 2011;276(1):169-74.
[12] Gong R, Zhong K, Hu Y, Chen J, Zhu G.
Thermochemical esterifying citric acid onto
lignocellulose for enhancing methylene blue
sorption capacity of rice straw. Journal of
Environmental Management. 2008;88(4):875-
80.
[13] Kumar KV, Kumaran A. Removal of methylene
blue by mango seed kernel powder. Biochemical
Engineering Journal. 2005;27(1):83-93.
[14] Bulut Y, Aydın H. A kinetics and thermodynamics
study of methylene blue adsorption on wheat
shells. Desalination. 2006;194(1-3):259-67.
[15] Chen L, Ramadan A, Lü L, Shao W, Luo F, Chen
J. Biosorption of methylene blue from aqueous
solution using lawny grass modified with citric
acid. Journal of Chemical & Engineering Data.
2011;56(8):3392-9.
[16] Sudaryanto Y, Hartono S, Irawaty W, Hindarso
H, Ismadji S. High surface area activated
carbon prepared from cassava peel by
chemical activation. Bioresource technology.
2006;97(5):734-9.
[17] Marsh H, Reinoso FR. Activated carbon:
Elsevier; 2006.
[18] Acosta Arguello HA, Barraza Yance CA,
Albis Arrieta AR. Adsorption of chromium
(VI) using cassava peel (Manihot esculenta)
as biosorbent: A kinetic study. Ingeniería y
Desarrollo. 2017;35(1):58-76.
[19] Albis A, Martínez JE, Santiago PJ. Remoción de
zinc (II) de soluciones acuosas usando cáscara
de yuca (Manihot esculenta): experimentos en
columna. Prospectiva. 2017;15(1):16-28.
[20] Albis AR, Cajar LV, Domínguez MI. Análisis
cinético de la adsorción de Cr (VI) en soluciones
acuosas a concentraciones de 10-20 mg/L con
el uso de cáscara de yuca amarga (Manihot
esculenta). Prospectiva. 2015;13(2):64-71.
[21] Wu HY, Shieh FK, Kao HM, Chen YW, Deka JR,
Liao SH, et al. Synthesis, Bifunctionalization,
and Remarkable Adsorption Performance
of Benzene‐Bridged Periodic Mesoporous
Organosilicas Functionalized with High
Loadings of Carboxylic Acids. Chemistry-A
European Journal. 2013;19(20):6358-67.
[22] Lee S-M, Ong S-T. Oxalic acid modified rice
hull as a sorbent for methylene blue removal.
APCBEE Procedia. 2014;9:165-9.
[23] Boehm HP. Surface oxides on carbon and
their analysis: a critical assessment. Carbon.
2002;40(2):145-9.
[24] Ahmad A, Rafatullah M, Sulaiman O, Ibrahim
M, Hashim R. Scavenging behaviour of meranti
sawdust in the removal of methylene blue
from aqueous solution. Journal of Hazardous
Materials. 2009;170(1):357-65.
[25] Leyva‐Ramos R, Geankoplis C. Diffusion in
liquid‐filled pores of activated carbon. I. Pore
volume diffusion. The Canadian Journal of
Chemical Engineering. 1994;72(2):262-71.
[26] Freundlich H. Über die adsorption in lösungen.
Zeitschrift für physikalische Chemie.
1907;57(1):385-470.
[27] Langmuir I. The constitution and fundamental
properties of solids and liquids. Part I. Solids.
Journal of the American chemical society.
1916;38(11):2221-95.
[28] Menzinger M, Wolfgang R. The meaning
and use of the Arrhenius activation energy.
Angewandte Chemie International Edition.
1969;8(6):438-44.
[29] Albis Arrieta AR, Martínez J, Santiago P.
Remoción de Zinc (II) de soluciones acuosas
usando cáscara de yuca (Manihot esculenta):
Experimentos en columna/Removal of zinc (II)
from aqueous solutions using cassava peel
(Manihot esculenta): column experiments.
Prospectiva. 2017;15(1):16-28.
[30] Yu J, Tong M, Sun X, Li B. A simple method
to prepare poly (amic acid)-modified biomass
for enhancement of lead and cadmium
adsorption. Biochemical Engineering Journal.
2007;33(2):126-33.
[31] Franz M, Arafat HA, Pinto NG. Effect of chemical
surface heterogeneity on the adsorption
mechanism of dissolved aromatics on activated
carbon. Carbon. 2000;38(13):1807-19.
[32] Iqbal M, Saeed A, Zafar SI. FTIR
spectrophotometry, kinetics and adsorption
isotherms modeling, ion exchange, and EDX
analysis for understanding the mechanism
of Cd 2+ and Pb 2+ removal by mango peel
waste. Journal of Hazardous Materials.
2009;164(1):161-71.
[33] Zhu F. Composition, structure, physicochemical
properties, and modifications of cassava
starch. Carbohydrate polymers. 2015;122:456-
80.
[34] Owamah HI, Izinyon OC, Asiagwu AK.
Sorption Model and Kinetic Assessment of
Ultramarine Blue Removal using Modified
Cassava Peels Biomass. Journal Civil Environ
Eng. 2012;2:121.
[35] Castellar G, Angulo E, Zambrano A, Charris
D. Equilibrio de adsorción del colorante azul
de metileno sobre carbón activado. Revista
UDCA Actualidad & Divulgación Científica.
2013;16(1):263-71.
[36] Guo J-Z, Li B, Liu L, Lv K. Removal of
methylene blue from aqueous solutions by
chemically modified bamboo. Chemosphere.
2014;111:225-31.
Publicado
2019-01-17
Sección
Artículos