Vol. 34 No. 1 (2021): Revista ION
Articles

Efficiency of an SBR reactor for the removal of the organic matter present in the wastewater of a flower dyeing industry

Alfoncina Restrepo Sierra
Universidad de Antioquia
Diana Catalina Rodríguez Loaiza
Universidad de Antioquia
Gustavo Antonio Peñuela Mesa
Universidad de Antioquia

Published 2021-05-25

Keywords

  • Dyes,
  • Organic material,
  • Biological processes,
  • Aerobic reactor,
  • Anaerobic reactor

How to Cite

Restrepo Sierra, A., Rodríguez Loaiza, D. C., & Peñuela Mesa, G. A. (2021). Efficiency of an SBR reactor for the removal of the organic matter present in the wastewater of a flower dyeing industry. Revista ION, 34(1), 47–59. https://doi.org/10.18273/revion.v34n1-2021005

Abstract

The implementation of an SBR reactor (Sequencing Batch Reactor- for its acronym in English and Sequential Reactor in Discontinuous- in Spanish) was carried out for the removal of organic matter present in the wastewater of a flower dyeing company. Physicochemical parameters were analyzed to evaluate the efficiency of the process and biomass monitoring through sedimentation tests and microscopic observations. The SBR system was operated using a static filling phase for 2 h, a reaction step for 8 h (4 h of aeration and 4 h of mixing) and finally a sedimentation step for 2 h, for a total of 12 hours per cycle and 2 cycles per day and two azo dyes (C1 and C2) widely used in the flower dyeing industry were evaluated, temporarily varying the concentration of organic matter in terms of COD with values of 3.0 g/L.d and 7.0 g/L.d The experimental results and statistical analysis allowed to analyze the behavior of the SBR reactor, concluding that both colorants behaved statistically the same in the removal of total organic carbon (TOC), with an average removal value of 92.02% for C1 and 94.60% for C2 with a loading of 3.0 g COD/L.d and 96.69% for C1 and 98.30% for C2 with a loading of 7.0 g COD/L.d The biomass presented a low SVI, indicating a good sedimentability for both the tests carried out with C1 and C2. Finally, the microorganisms identified in the biomass allowed to corroborate the efficiency of the treatment system, since rotifers and fixed ciliates with C1 and free ciliates with C2 abounded, which are indicators of good efficiency in the treatment processes and, in turn, high sludge age indicators, which contrasts with the sludge age used in this study (θc = 15 d).

Downloads

Download data is not yet available.

References

[1] Weisburger JH. Comments on the history and important of aromatic and heterocyclic amines in public health. Mutat. Research. 2002;506-507:9-20.

[2] Easton J. The dye Marke´s View. Society of Dyers and colorurists Nothtingham. 1995: 9.

[3] Garcés LF, Hernández ML, Peñuela GA, Rodríguez A, Salazar JA. Degradación de aguas residuales de la industria textil por medio de fotocatálisis. Revista Lasallista de Investigación. 2006;2:15-18.

[4] Domíngues L, Pérez M, Zorrilla M, González Y, Pedrozo F. Evaluación de la remoción de colorantes mediante humedales subsuperficiales. Revista Cubana de Química. 2019;31(1):108-119.

[5] Zaruma P, Proal J, Chaires I, Salas H. Los Colorantes Textiles Industriales Y Tratamientos Óptimos De Sus Efluentes De Agua Residual: Una Breve Revisión. Revista de la Facultad de Ciencias Químicas. 2019;19:38-47.

[6] Manu B, Chaudhari S. Decolorization of indigo and azo dyes in semi continuous reactors with long hydraulic retention time. Process Biochem. 2003;38:1213- 1221.

[7] Khelifi E, Ganno H, Touhami Y, Bouallagui H, Hamdi M. Aerobic decolourization of the indigo dye containing textile wastewater using continuous combined bioreactors. J. Hazard Mater. 2008;152:683-689.

[8] Vasanth K, Ramamurthi V, Sivánesan V. Biosorption of malachite green, a cationic dye onto Pithophora sp., a freshwater alga. Dyes and Pigments. 2006;69:102-107.

[9] Tantak NP, Chaudhari. Degradation of azo dyes by sequential Fenton’s oxidation and aerobic biological treatment. J. Hazard. Mater. 2006;13:698-705.

[10] García M. Puesta en marcha de un proceso de nitrificación/desnitrificación. Estudio de la influencia de la carga másica y la temperatura (tesis de maestría). Cataluña, España: Universidad Politécnica de Cataluña; 1997.

[11] Irvine RL, Wilderer PA, Flemming HC. Controlled Unsteady State Processes and Technologies- an Overview. Water Sci. Technol. 1997;35 (1):1-10.

[12] Mahvi AH. Sequencing Batch Reactor: a promising technology in wastewater treatment, J. Environ. Health, Sci. Eng. 2008;5(2):79-90.

[13] Rodriguez DC, Pino N, Peñuela GA. Monitoring the removal of nitrogen by applying a nitrification–denitrification process in a Sequencing Batch Reactor (SBR). Bioresource Technology. 2011;102:2316-2321.

[14] Wilderer P, Irvine R, Goronsky M. Sequencing Batch Reactor Technology, Scientific and Technical Report No 10. 2001. International Water Association Publishing.

[15] Londoño Y, Peñuela GA. Biological Removal of Different Concentrations of Ibuprofen and Methylparaben in a Sequencing Batch Reactor (SBR). Water Air and Soil Pollution. 2015;226(12):393.

[16] Ferrentino R, Ferraro A, Mattei MR, Esposito G, Andreottola G. Process performance optimization and mathematical modelling of a SBR-MBBR treatment at low oxygen concentration. Process Biochem. 2018;75:230-239.

[17] Barajas MG. Eliminación biológica de nutrientes en un reactor biológico secuencial (tesis de Doctorado). Barcelona, España: Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports de Barcelona; 2002.

[18] Li C, Liu S, Ma T, Zheng M, Ni J. Simultaneous nitrification, denitrification and phosphorus removal in a sequencing batch reactor (SBR) under low temperature. Chemosphere. 2019;229:132-141.

[19] Ye J, Liang J, Wang L, Markou G, Jia Q. Operation optimization of a photo- sequencing batch reactor for wastewater treatment: study on influencing factors and impact on symbiotic microbial ecology. Bioresour. Technol.
2018;252:7–13.

[20] Jena J, Kumar R, Saifuddin M, Dixit A, Das T. Anoxic-aerobic SBR system for nitrate, phosphate and COD removal from highstrength wastewater and diversity study of microbial communities. Biochem. Eng. J. 2016;105:80-89.

[21] American Public Health Association (APHA), American Water Works Association (AWWA), Pollution Control Federation (WPCF). Standard methods for examination of water and wastewater 23th ed. Washington, Estados Unidos; 2017.

[22] Cobos YL, Gonzalez S. Degradación biologica de colorantes azo en agua residual. Conference paper. 2nd IWA Mexico Young Water Professional Conference. 2010: 1-9.

[23] Coughlin MF, Kinkle BK, Bishop JL. Degradation of azo dyes containing amino naphthol by Sphingomonas sp. strain 1CX. J. Ind. Microb. Biotechnol. 1999;23(4-5):341-346.

[24] Sathian S, Rajasimman M, Radha G, Shanmugapriya V, Karthikeyan C. Performance of SBR for the treatment of textile dye wastewater: Optimization and kinetic studies. Alexandria Engineering Journal. 2014;53(2):417-426.

[25] Ong S, Toorisaka E, Hirata M, Hano T. Treatment of azo dye Orange II in aerobic and anaerobic-SBR systems. Process Biochemistry. 2005;40(8):2907-2914.

[26] Khosravi A, Karimia M, Ebrahimi H, Fallah N. Sequencing batch reactor/nanofiltration hybrid method for water recovery from textile wastewater contained phthalocyanine dye and anionic surfactant. Journal of Environmental
Chemical Engineering. 2020;8(2):103701.

[27] Molina F, Rodríguez DC. Procesos Biológicos. Colombia: Universidad de Antioquia, Reimpresos; 2015.

[28] González G. Microbiología de los Procesos Biológicos de Tratamiento de Agua Residual. Medellín. Capítulo 8. 2012: 300-329.