Nanoadsorbents to capture carbon dioxide (CO2): an approach to biogas purification
Published 2020-06-30
Keywords
- Silica Nanoparticles,
- CO2 Adsorption,
- Biogas Purification
How to Cite
Abstract
In recent years, the production of biogas in domestic biodigesters has been growing, being used in rural areas mainly for lighting and heating. Nevertheless, the presence of CO2 considerably reduces the calorific value of biogas, generating a decrease in thermal efficiency which makes it necessary to remove this component to improve the quality of the gas and increase its possibilities of application as fuel. In this research, the CO2 adsorption capacity of Aerosil 380 commercialized pyrogenic silica nanoparticles with amines was evaluated. Silica nanoparticles were prepared by the sol-gel method using tetraethyl orthosilicate (TEOS) as a precursor to silicon oxide or silica. The materials were functionalized by wet impregnation with 15 and 30 %w of diethanolamine and ethylenediamine. The characterization tests allowed us to determine the nanoparticle size (TEM), surface area (BET), thermal stability (TGA) and chemical composition (FTIR) of the nanostructures and to relate these properties to the affinity for adsorbate. The CO2 adsorption tests were carried out at a temperature of 30 °C under a flow of 60 mLmin-1 of CO2 at a pressure of 20 psi. Pyrogenic Aerosil 380 based silica materials obtained a higher adsorption capacity compared to synthesized silica nanoparticles, obtaining the highest adsorption capacity (35.4 mg/g) for the 30 %w impregnated sample of diethanolamine, which can also adsorb CO2 in the presence of H2O.
Downloads
References
[2] Navarro-Puyelo A, Reyero I, Moral A, Bimbela F, Gandía LM. Rutas y retos para la valorización de biogás. Av. Investig. en Ing. 2017;14(1):211-24.
[3] Panuena M, Pascualino J. Potencial de Uso de Biogás en Colombia. Teknos. 2014;14(2):27-33.
[4] Rasi S, Veijanen A, Rintala J. Trace compounds of biogas from different biogas production plants. Energy. 2007;32(8):1375-80.
[5] Awe OW, Zhao Y, Nzihou A, Minh DP, Lyczko N. A Review of Biogas Utilisation, Purification and Upgrading Technologies. Waste and Biomass Valorization. 2017;8(2):267-83.
[6] Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, Kougias PG. Biogas upgrading and utilization: Current status and perspectives Biotechnol. 2018;36(2):452-66.
[7] Bharathiraja B, Sudharsana T, Jayamuthunagai J, Praveenkumar R, Chozhavendhan S, Lyyappan J. Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renew. Sustain. Energy Rev. Eng. 2018;90(C):570-82.
[8] Zanganeh KE, Shafeen A, Salvador C. CO2 Capture and Development of an Advanced Pilot-Scale Cryogenic Separation and Compression Unit. Energy Procedia. 2009;1(1):247-52.
[9] Knapik E, Kosowski P, Stopa J. Cryogenic liquefaction and separation of CO2 using nitrogen removal unit cold energy. Chem. Eng. Res. Des. 2018;131:66-79.
[10] Chue KT, Kim JM, Yoo YJ, Cho SH, Yang RT. Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption. Ind. Eng. Chem. Res. 1995;34(2):591-98.
[11] Ko D, Siriwardane R, Biegler LT. Optimization of a pressure-swing adsorption process using zeolite 13X for CO2 sequestration. Ind. Eng. Chem. Res. 2003;42(2):339-48.
[12] Brunetti A, Scura F, Barbieri G, Drioli E. Membrane technologies for CO2 separation. J Memb Sci. 2010;359(1–2):115–25.
[13] Deng L, Hägg MB. Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane. Int J Greenh Gas Control. 2010; 4(4):638–46.
[14] Abdeen FRH, Mel M, Jami MS, Ihsan SI, Ismail AF. A review of chemical absorption of carbon dioxide for biogas upgrading. Chinese J Chem Eng. 2016;24(6):693–702.
[15] Maile OI, Muzenda E, Tesfagiorgis H. Chemical Absorption of Carbon Dioxide in Biogas Purification. Procedia Manuf. 2017;7:639–46.
[16] Yoosuk B, Wongsanga T, Prasassarakich P. CO2 and H2S binary sorption on polyamine modified fumed silica. Fuel. 2016;168:47–53.
[17] Meth S, Goeppert A, Prakash GKS, Olah GA. Silica nanoparticles as supports for regenerable CO2 sorbents. Energy and Fuels. 2012;26(5):3082–90.
[18] Goeppert A, Czaun M, May RB, Prakash GKS, Olah GA, Narayanan SR. Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. J Am Chem Soc. 2011;133(50):20164–67.
[19] Belmabkhout Y, Sayari A. Effect of pore expansion and amine functionalization of mesoporous silica on CO2 adsorption over a wide range of conditions. Adsorption. 2009;15(3):318–28.
[20] Liu X, Zhou L, Fu X, Sun Y, Su W, Zhou Y. Adsorption and regeneration study of the mesoporous adsorbent SBA-15 adapted to the capture/separation of CO2 and CH4. Chem Eng Sci. 2007;62(4):1101–10.
[21] Chatti R, Bansiwal AK, Thote JA, Kumar V, Jadhav P, Lokhande SK, et al. Amine loaded zeolites for carbon dioxide capture: Amine loading and adsorption studies. Microporous Mesoporous Mater. 2009;121(1–3):84–89.
[22] Hakim A, Abu Tahari MN, Sharifah Marliza T, Wan Isahak WNR, Rahimi Yusop M, Mohamed Hisham MW. Study of CO2 adsorption and desorption on activated carbon supported iron oxide by temperature programmed desorption. J Teknol. 2015;77(33):75–84.
[23] Vivo-Vilches JF, Pérez-Cadenas AF, Maldonado-Hódar FJ, Carrasco-Marín F, Regufe MJ, Ribeiro AM, et al. Resorcinol–formaldehyde carbon xerogel as selective adsorbent of carbon dioxide present on biogas. Adsorption. 2018;24(2):169–77.
[24] Yue MB, Sun LB, Cao Y, Wang Y, Wang ZJ, Zhu JH. Efficient CO2 capturer derived from As-synthesized MCM-41 modified with amine. Chem - A Eur J. 2008;14(11):3442–51.
[25] Chen Q, Fan F, Long D, Liu X, Liang X, Qiao W, et al. Poly(ethyleneimine)-loaded silica monolith with a hierarchical pore structure for H2S adsorptive removal. Ind Eng Chem Res. 2010;49(22):11408–414.
[26] Wang L, De Cui F, Sunada H. Preparation and evaluation of solid dispersions of nitrendipine prepared with fine silica particles using the melt-mixing method. Chem Pharm Bull. 2006;54(1):37–43.
[27] Jaiboon V, Yoosuk B, Prasassarakich P. Amine modified silica xerogel for H2S removal at low temperature. Fuel Process Technol [Internet]. 2014;128:276–82.
[28] Zheng F, Tran DN, Busche BJ, Fryxell GE, Addleman RS, Zemanian TS, et al. Ethylenediamine-modified SBA-15 as regenerable CO2 sorbent. Ind Eng Chem Res. 2005;44(9):3099–105.
[29] Betancur S. Desarrollo de nanopartículas basadas en sílice para la inhibición de la precipitación/depositación de asfaltenos (tesis de maestria). Medellín, Colombia: Universidad Nacional de Colombia; 2015.
[30] Zhao P, Zhang G, Sun Y, Xu Y. CO2Adsorption Behavior and Kinetics on Amine-Functionalized Composites Silica with Trimodal Nanoporous Structure. Energy and Fuels. 2017;31(11):12508–20.
[31] Kamarudin KSN, Alias N. Adsorption performance of MCM-41 impregnated with amine for CO2 removal. Fuel Processing Technology. 2013;106:332–37.
[32] Ünveren EE, Monkul BÖ, Sarıoğlan Ş, Karademir N, Alper E. Solid amine sorbents for CO2 capture by chemical adsorption: A review. 2017;3(1):37–50.