Vol. 34 No. 1 (2021): Revista ION
Articles

Enzymatic hydrolysis of maralfalfa grass (Pennisetum sp) submmited to wet extrusion

Ligia Johana Jaimes Cruz
Universidad Nacional de Colombia
Cristian Adoni Menjivar Dominguez
Universidad Nacional de Agricultura de Honduras
Elsy Valeska Montoya Almendarez
Universidad Nacional de Agricultura de Honduras
Esdras Omar Mendoza Orellana
Universidad Nacional de Agricultura de Honduras
Héctor Jairo Correa Cardona
Universidad Nacional de Colombia
Ángel Giraldo Mejía
Universidad Nacional de Colombia
Ángela Adriana Ruíz
Universidad Nacional de Colombia

Published 2021-05-26

Keywords

  • Bagasse,
  • Biomass,
  • Delignification,
  • Fiber,
  • In vitro

How to Cite

Jaimes Cruz, L. J., Menjivar Dominguez, C. A., Montoya Almendarez, E. V., Mendoza Orellana, E. O., Correa Cardona, H. J., Mejía, Ángel G., & Ruíz, Ángela A. (2021). Enzymatic hydrolysis of maralfalfa grass (Pennisetum sp) submmited to wet extrusion. Revista ION, 34(1), 111–120. https://doi.org/10.18273/revion.v34n1-2021009

Abstract

The effect of extrusion of maralfalfa grass (Pennisetum sp) on the chemical composition of the cell wall and the in vitro digestibility of dry matter and fiber in neutral detergent was evaluated. Seven samples (10.0 kg/sample) were collected from the same batch, with 51 days of regrowth, and chopped 2 cm. Three of them, taken at random, were processed fresh in a conical screw extruder turning at 1050 rpm and with 3 mm output, while the other four were extruded in the same equipment with 1 mm output. In the samples of raw grass and bagasse from the extrusion, the fibre content in neutral detergent, fibre in acid detergent, lignin in acid detergent, in vitro digestibility of dry matter and in vitro digestibility fibre in
neutral detergent were determined. The Student T test was applied to analyze the effect of the type of treatment, both among them and with respect to fresh grass. The results indicate that, with respect to fresh grass, the extrusion generated a bagasse with high fiber content in neutral detergent, increased the in vitro digestibility of dry matter by 8.81 % and that of fiber in neutral detergent by 20.6 %, but did not differ due to the size of the extruder outlet (p<0.1). It is concluded that the extrusion process as applied to maralfalfa grass in this experiment improves the digestibility of dry matter and fiber in neutral detergent.

Downloads

Download data is not yet available.

References

[1] Correa HJ, Ceron JM, Arroyave H, Henao Y, López A. Pasto Maralfalfa: mitos y realidades. En: Cooperativa Colanta, IV seminario internacional Competitividad en carne y leche, 2004 nov 10-11; Medellín, Colombia. 2004. p. 231-274.

[2] Hanna WW, Gaines TP, Gonzales B, Monson WG. Effects of ploid on yield and quality of pearl millet x napiergrass hybrids. Agron J. 1984;76:669-971.

[3] Clavero T, Razz R. Valor nutritivo del pasto maralfalfa (Pennisetum purpureum x Pennisetum glaucum) en condiciones de defoliación. Revista Facultad de Agronomía (online). 2009;26(1):78-87.

[4] Kolver ES. Nutritional limitations to increased production on pasture based systems. Proceedings of the Nutrition Society, 2003;62:291-300.

[5] Natsir A. Fibre utilization by ruminants. Masagena Press, Makassar. 2012. 243 p.

[6] Ferraretto LF, Shaver RD. Making sense of starch by NDF interactions. In: Penn State Dairy Nutrition Workshop. Proceedings of the Penn State Dairy Nutrition Workshop. Grantville, PA, United States of America. 2016. p. 45-50.

[7] CONPES (Consejo Nacional de Política Económica y Social). Política Nacional Para Mejorar La Competitividad Del Sector Lácteo Colombiano. República de Colombia, Departamento Nacional de Planeación, 2010.

[8] dos Santos AC, Ximenes E, Kim Y, Ladisch M. Lignin–Enzyme Interactions in the Hydrolysis of Lignocellulosic Biomass. Trends in Biotechnology. 2019;37(5):518-531.

[9] Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. Biomass pretreatment: Fundamentals toward application. Biotechnology Advances. 2011;29:675–685.

[10] Lin Z, Liu L, Li R, Shi J. Screw Extrusion Pretreatments to Enhance the Hydrolysis of Lignocellulosic Biomass. J Micr Bioch Tech. 2012;5(S12):5.

[11] Elgemark E. Intensively processed silage using Bio-extruder. Uppsala, Sweden: Swedish University of Agricultural Sciences, Department of Animal Nutrition and Management; 2019.

[12] Sanders KJ. The effects of extrusion on ruminal digestion and performance of ruminants. Lubbock, TX, United States of America: Texas Tech University; 1998.

[13] Lichovnikovaa M, Zemanb L, Kracmarb S, Kleckera D. The effect of the extrusion process on the digestibility of feed given to laying hens. Anim Feed Sci and Tech. 2004;116:313–318.

[14] Tayyab U, Wilkinson RG, Reynolds CK, Sinclair LA. Particle size distribution of forages and mixed rations, and their relationship with ration variability and performance of UK dairy herds. Liv Sci. 2018;217:108–115.

[15] AOAC. Official method 2002.04. Amylasetreated neutral detergent fiber in feeds using refluxng in beakers or crucibles. First action 2002. Final action 2005.

[16] AOAC. official method 973.18. Fiber (acid detergent) and lignin H2SO4 in animal feed. First action 1977. Final action 1977.

[17] Van Soest PJ. Use of detergent in analysis of fibrous feeds. III. Study of effects of heating and drying on yield of fiber and Lignin Forage. J AOAC. 1965;48(4):787-790.

[18] Van Soest PJ; Wine, RH. Determination of lignin and cellulose in acid detergent fiber with permanganate. J AOAC. 1968;51(4):780-785.

[19] López HA, Roldan M. Estandarización del método de la celulasa para la determinación de la digestibilidad in vitro (trabajo de grado). Medellín, Colombia: Universidad Nacional de Colombia, Facultad de Ciencias Agropecuarias; 1991.

[20] Ross A, Willson VL. One-Sample T-Test. In: Basic and Advanced Statistical Tests. Rotterdam: Sense Publishers; 2017. p. 9-12.

[21] Feng Y, Huang Y, Ma X. The application of Student’st-test in internal quality control of clinical laboratory. Front Lab Med. 2017;1:125- 128.

[22] Heinrichs J, Kononoff P. Evaluating Particle Size of Forages and TMRs using the New Penn State Forage Particle Separator. DAS 02- 42. Pennsylvania State University, University Park, PA, United States of America; 2002.

[23] Williams A, van der Poel A, Boer H, Tamminga S. The Effect of Extrusion Conditions on the Fermentability of Wheat Straw and Corn Silage. J Sci Food Agr. Vol. 1999;74:117-124.

[24] National Research Council (NRC) 2001 Nutrient Requirements of Dairy Cattle. Seventh Revised Edition. National Academy Press, Washington, D C. 405 p.

[25] Mertens DR. Creating a system for meeting the fiber requirements of dairy cows. Journal of Dairy Science. 1997;80:1463-1481.

[26] Poppi DP, Hendricksen RE, Minson DJ. The relative resistance to escape of leaf and stem particles from the rumen of cattle and sheep. J. Agric. Sci. 1985;105:9-14.

[27] Correa HJ. Calidad nutricional del pasto maralfalfa (Pennisetum sp) cosechado a dos edades de rebrote. Livestock Research for Rural Development. 2006;18(6):326-335.

[28] Delevatti LM, Cardoso AS, Barbero RP, Leite LG, Romanzini EP, Ruggieri A, Reis RA. Effect of nitrogen application rate on yield, forage quality, and animal performance in a tropical pasture. Sci Rep. 2019;9(1):7596.

[29] Hassan A, Zewdu T, Urge M, Fikru S. Effect of Nitrogen Fertilizer Application on Nutritive Value of Cenchrus ciliaris and Panicum Maximum Grown under Irrigation at Gode, Somali Region. J Nutr Food Sci. 2015;S11:S11005.

[30] Zhan X, Wang D, Bean SR, Mo X, Sun XS, Boyle D. Ethanol production from supercriticalfluid- extrusion cooked sorghum. Industrial Crops and Products. 2006;23(3):304-310.

[31] Heredia-Olea E, Pérez-Carrillo E, Montoya- Chiw M, Serna-Saldívar SO. Effects of extrusion pretreatment parameters on sweet sorghum bagasse enzymatic hydrolysis and its subsequent conversion into bioethanol. Biomed Res Int. 2015;2015:325905.

[32] Barakat A, Mayer C, Solhy A, Arancon RAD, De Vries H, Luque R. Mechanical pretreatments of lignocellulosic biomass: towards facile and environmentally sound technologies for biofuels production. RSC Adv. 2014;4:48109-48127.

[33] Duque A, Manzanares P, Ballesteros M. Extrusion as a pretreatment for lignocellulosic biomass: Fundamentals and applications. Renew Energy. 2017;114:1427–1441.

[34] Sanders KJ. The effects of extrusion on ruminal digestion and performance of ruminants. Lubbock, Texas, United States of America: Texas Tech University; 1998.

[35] Kononoff PJ, Heinrichs AJ, Lehman HA. The Effect of Corn Silage Particle Size on Eating Behavior, Chewing Activities, and Rumen Fermentation in Lactating Dairy Cows. Journal of Dairy Science. 2003;86(10):3343–3353.

[36] Khullar E, Dien BS, Rausch KD, Tumbleson ME, Singh V. Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus. Industrial Crops and Products. 2013;44,11–17.

[37] Bellet N, Besle J and Demarquilly C 1998 Ammonia treatment of lucerne and cocksfoot harvested at two growth stages: Effect on cell wall composition and digestibility, Champanelle, Francia. 19 p.

[38] Gosselink JMJ, Dulphy JP, Poncet C, Jailler M, Tamminga S, Cone JW. Prediction of forage digestibility in ruminants using in situ and in vitro techniques. Animal Feed Science and Technology. 2004;115(3-4):227-246